Frontiers of Chemical Science and Engineering >
Fe3O4 encapsulated mesoporous silica nanospheres with tunable size and large void pore
Received date: 08 Dec 2013
Accepted date: 12 Jan 2014
Published date: 05 Mar 2014
Copyright
Magnetic Fe3O4 and mesoporous silica core-shell nanospheres with tunable size from 110–800 nm were synthesized via a one step self-assembly method. The morphological, structural, textural, and magnetic properties were well-characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, N2 adsorption-desorption and magnetometer. These nanocomposites, which possess high surface area, large pore volume and well-defined pore size, exhibit two dimensional hexagonal (P6mm) mesostructures. Interestingly, magnetic core and mesoporous silica shell nanocomposites with large void pore (20 nm) on the shell were generated by increasing the ratio of ethanol/water. Additionally, the obtained nanocomposites combined magnetization response and large void pore, implying the possibility of applications in drug/gene targeting delivery. The cell internalization capacity of NH2-functionalized nanocomposites in the case of cancer cells (HeLa cells) was exemplified to demonstrate their nano-medicine application.
Tingting LIU , Lihong LIU , Jian LIU , Shaomin LIU , Shi Zhang QIAO . Fe3O4 encapsulated mesoporous silica nanospheres with tunable size and large void pore[J]. Frontiers of Chemical Science and Engineering, 2014 , 8(1) : 114 -122 . DOI: 10.1007/s11705-014-1413-2
1 |
Lu A H, Schmidt W, Matoussevitch N, Bonnemann H, Spliethoff B, Tesche B, Bill E, Kiefer W, Schuth F. Nanoengineering of a magnetically separable hydrogenation catalyst. Angewandte Chemie International Edition, 2004, 43(33): 4303–4306
|
2 |
Liu J, Qiao S Z, Hu Q H, Lu G Q. Magnetic nanocomposites with mesoporous structures: Synthesis and applications. Small, 2011, 7(4): 425–443
|
3 |
Guerrero-Martínez A, Pérez-Juste J, Liz-Marzán L M. Recent progress on silica coating of nanoparticles and related nanomaterials. Advanced Materials, 2010, 22(11): 1182–1195
|
4 |
Wu P G, Zhu J H, Xu Z H. Template-assisted synthesis of mesoporous magnetic nanocomposite particles. Advanced Functional Materials, 2004, 14(4): 345–351
|
5 |
Yi D K, Lee S S, Papaefthymiou G C, Ying J Y. Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites. Chemistry of Materials, 2006, 18(3): 614–619
|
6 |
Kim J, Lee J E, Lee J, Yu J H, Kim B C, An K, Hwang Y, Shin C H, Park J G, Hyeon T. Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. Journal of the American Chemical Society, 2006, 128(3): 688–689
|
7 |
Kim J, Kim H S, Lee N, Kim T, Kim H, Yu T, Song I C, Moon W K, Hyeon T. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angewandte Chemie International Edition, 2008, 47(44): 8438–8441
|
8 |
Liong X, Lu J, Kovochich M, Xia T, Ruehm S G, Nel A E, Tamanoi F, Zink J I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano, 2008, 2(5): 889–896
|
9 |
Zhang L, Qiao S Z, Jin Y G, Yang H G, Budihartono S, Stahr F, Yan Z F, Wang X L, Hao Z P, Lu G Q. Fabrication and size-selective bioseparation of magnetic silica nanospheres with highly ordered periodic mesostructure. Advanced Functional Materials, 2008, 18(20): 3203–3212
|
10 |
Lin Y S, Haynes C L. Synthesis and characterization of biocompatible and size-tunable multifunctional porous silica nanoparticles. Chemistry of Materials, 2009, 21(17): 3979–3986
|
11 |
Ruiz-Hernandez E, Lopez-Noriega A, Arcos D, Izquierdo-Barba I, Terasaki O, Vallet-Regi M. Aerosol-assisted synthesis of magnetic mesoporous silica spheres for drug targeting. Chemistry of Materials, 2007, 19(14): 3455–3463
|
12 |
Zhang L, Zhang F, Dong W F, Song J F, Huo Q S, Sun H B. Magnetic-mesoporous Janus nanoparticles. Chemical Communications, 2011, 47(4): 1225–1227
|
13 |
Zhao Y, Lin L N, Lu Y, Gao H L, Chen S F, Yang P, Yu S H. Synthesis of tunable theranostic Fe3O4@mesoporous silica nanospheres for biomedical applications. Advanced Healthcare Materials, 2012, 1(3): 327–331
|
14 |
Liu Q, Zhang J X, Xia W L, Gu H C. Magnetic field enhanced cell uptake efficiency of magnetic silica mesoporous nanoparticles. Nanoscale, 2012, 4(11): 3415–3421
|
15 |
Liu J, Wang B, Hartono S B, Liu T T, Kantharidis P, Middelberg A P J, Lu G Q, He L Z, Qiao S Z. Magnetic silica spheres with large nanopores for nucleic acid adsorption and cellular uptake. Biomaterials, 2012, 33(3): 970–978
|
16 |
Wan Y, Zhao D Y. On the controllable soft-templating approach to mesoporous silicates. Chemical Reviews, 2007, 107(7): 2821–2860
|
17 |
Deng Y, Qi D, Deng C, Zhang X, Zhao D Y. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. Journal of the American Chemical Society, 2008, 130(1): 28–29
|
18 |
Wang P, Shi Q H, Shi Y F, Clark K K, Stucky G D, Keller A A. Magnetic permanently confined micelle arrays for treating hydrophobic organic compound contamination. Journal of the American Chemical Society, 2009, 131(1): 182–188
|
19 |
Hartono S B, Gu W Y, Kleitz F, Liu J, He L Z, Middelberg A P J, Yu C Z, Lu G Q, Qiao S Z. Poly-L-lysine functionalized large pore cubic mesostructured silica nanoparticles as biocompatible carriers for gene delivery. ACS Nano, 2012, 6(3): 2104–2117
|
20 |
Na H K, Kim M H, Park K, Ryoo R S, Lee K E, Jeon H, Ryoo R, Hyeon C B, Min D H. Efficient functional delivery of siRNA using mesoporous silica nanoparticles with ultralarge pores. Small, 2012, 8(11): 1752–1761
|
21 |
Huang X L, Li L L, Liu T L, Hao N J, Liu H Y, Chen D, Tang F Q. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano, 2011, 5(7): 5390–5399
|
22 |
Zhao W R, Zhang H T, Chang S, Gu J L, Li Y S, Li L, Shi J L. An organosilane route to mesoporous silica nanoparticles with tunable particle and pore sizes and their anticancer drug delivery behavior. RSC Advances, 2012, 2(12): 5105–5107
|
23 |
Chen Z T, Niu D C, Li Y S, Shi J L. One-step approach to synthesize hollow mesoporous silica spheres co-templated by an amphiphilic block copolymer and cationic surfactant. RSC Advances, 2013, 3(19): 6767–6770
|
24 |
Niu D C, Ma Z, Li Y S, Shi J L. Synthesis of core-shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness. Journal of the American Chemical Society, 2010, 132(43): 15144–15147
|
/
〈 | 〉 |