Fe3O4 encapsulated mesoporous silica nanospheres with tunable size and large void pore
Tingting LIU, Lihong LIU, Jian LIU, Shaomin LIU, Shi Zhang QIAO
Fe3O4 encapsulated mesoporous silica nanospheres with tunable size and large void pore
Magnetic Fe3O4 and mesoporous silica core-shell nanospheres with tunable size from 110–800 nm were synthesized via a one step self-assembly method. The morphological, structural, textural, and magnetic properties were well-characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, N2 adsorption-desorption and magnetometer. These nanocomposites, which possess high surface area, large pore volume and well-defined pore size, exhibit two dimensional hexagonal (P6mm) mesostructures. Interestingly, magnetic core and mesoporous silica shell nanocomposites with large void pore (20 nm) on the shell were generated by increasing the ratio of ethanol/water. Additionally, the obtained nanocomposites combined magnetization response and large void pore, implying the possibility of applications in drug/gene targeting delivery. The cell internalization capacity of NH2-functionalized nanocomposites in the case of cancer cells (HeLa cells) was exemplified to demonstrate their nano-medicine application.
mesoporous silicas / magnetic nanoparticles / core-shell nanoparticles / cell uptake
[1] |
Lu A H, Schmidt W, Matoussevitch N, Bonnemann H, Spliethoff B, Tesche B, Bill E, Kiefer W, Schuth F. Nanoengineering of a magnetically separable hydrogenation catalyst. Angewandte Chemie International Edition, 2004, 43(33): 4303–4306
CrossRef
Google scholar
|
[2] |
Liu J, Qiao S Z, Hu Q H, Lu G Q. Magnetic nanocomposites with mesoporous structures: Synthesis and applications. Small, 2011, 7(4): 425–443
CrossRef
Google scholar
|
[3] |
Guerrero-Martínez A, Pérez-Juste J, Liz-Marzán L M. Recent progress on silica coating of nanoparticles and related nanomaterials. Advanced Materials, 2010, 22(11): 1182–1195
CrossRef
Google scholar
|
[4] |
Wu P G, Zhu J H, Xu Z H. Template-assisted synthesis of mesoporous magnetic nanocomposite particles. Advanced Functional Materials, 2004, 14(4): 345–351
CrossRef
Google scholar
|
[5] |
Yi D K, Lee S S, Papaefthymiou G C, Ying J Y. Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites. Chemistry of Materials, 2006, 18(3): 614–619
CrossRef
Google scholar
|
[6] |
Kim J, Lee J E, Lee J, Yu J H, Kim B C, An K, Hwang Y, Shin C H, Park J G, Hyeon T. Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. Journal of the American Chemical Society, 2006, 128(3): 688–689
CrossRef
Google scholar
|
[7] |
Kim J, Kim H S, Lee N, Kim T, Kim H, Yu T, Song I C, Moon W K, Hyeon T. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angewandte Chemie International Edition, 2008, 47(44): 8438–8441
CrossRef
Google scholar
|
[8] |
Liong X, Lu J, Kovochich M, Xia T, Ruehm S G, Nel A E, Tamanoi F, Zink J I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano, 2008, 2(5): 889–896
CrossRef
Google scholar
|
[9] |
Zhang L, Qiao S Z, Jin Y G, Yang H G, Budihartono S, Stahr F, Yan Z F, Wang X L, Hao Z P, Lu G Q. Fabrication and size-selective bioseparation of magnetic silica nanospheres with highly ordered periodic mesostructure. Advanced Functional Materials, 2008, 18(20): 3203–3212
CrossRef
Google scholar
|
[10] |
Lin Y S, Haynes C L. Synthesis and characterization of biocompatible and size-tunable multifunctional porous silica nanoparticles. Chemistry of Materials, 2009, 21(17): 3979–3986
CrossRef
Google scholar
|
[11] |
Ruiz-Hernandez E, Lopez-Noriega A, Arcos D, Izquierdo-Barba I, Terasaki O, Vallet-Regi M. Aerosol-assisted synthesis of magnetic mesoporous silica spheres for drug targeting. Chemistry of Materials, 2007, 19(14): 3455–3463
CrossRef
Google scholar
|
[12] |
Zhang L, Zhang F, Dong W F, Song J F, Huo Q S, Sun H B. Magnetic-mesoporous Janus nanoparticles. Chemical Communications, 2011, 47(4): 1225–1227
CrossRef
Google scholar
|
[13] |
Zhao Y, Lin L N, Lu Y, Gao H L, Chen S F, Yang P, Yu S H. Synthesis of tunable theranostic Fe3O4@mesoporous silica nanospheres for biomedical applications. Advanced Healthcare Materials, 2012, 1(3): 327–331
CrossRef
Google scholar
|
[14] |
Liu Q, Zhang J X, Xia W L, Gu H C. Magnetic field enhanced cell uptake efficiency of magnetic silica mesoporous nanoparticles. Nanoscale, 2012, 4(11): 3415–3421
CrossRef
Google scholar
|
[15] |
Liu J, Wang B, Hartono S B, Liu T T, Kantharidis P, Middelberg A P J, Lu G Q, He L Z, Qiao S Z. Magnetic silica spheres with large nanopores for nucleic acid adsorption and cellular uptake. Biomaterials, 2012, 33(3): 970–978
CrossRef
Google scholar
|
[16] |
Wan Y, Zhao D Y. On the controllable soft-templating approach to mesoporous silicates. Chemical Reviews, 2007, 107(7): 2821–2860
CrossRef
Google scholar
|
[17] |
Deng Y, Qi D, Deng C, Zhang X, Zhao D Y. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. Journal of the American Chemical Society, 2008, 130(1): 28–29
CrossRef
Google scholar
|
[18] |
Wang P, Shi Q H, Shi Y F, Clark K K, Stucky G D, Keller A A. Magnetic permanently confined micelle arrays for treating hydrophobic organic compound contamination. Journal of the American Chemical Society, 2009, 131(1): 182–188
CrossRef
Google scholar
|
[19] |
Hartono S B, Gu W Y, Kleitz F, Liu J, He L Z, Middelberg A P J, Yu C Z, Lu G Q, Qiao S Z. Poly-L-lysine functionalized large pore cubic mesostructured silica nanoparticles as biocompatible carriers for gene delivery. ACS Nano, 2012, 6(3): 2104–2117
CrossRef
Google scholar
|
[20] |
Na H K, Kim M H, Park K, Ryoo R S, Lee K E, Jeon H, Ryoo R, Hyeon C B, Min D H. Efficient functional delivery of siRNA using mesoporous silica nanoparticles with ultralarge pores. Small, 2012, 8(11): 1752–1761
CrossRef
Google scholar
|
[21] |
Huang X L, Li L L, Liu T L, Hao N J, Liu H Y, Chen D, Tang F Q. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano, 2011, 5(7): 5390–5399
CrossRef
Google scholar
|
[22] |
Zhao W R, Zhang H T, Chang S, Gu J L, Li Y S, Li L, Shi J L. An organosilane route to mesoporous silica nanoparticles with tunable particle and pore sizes and their anticancer drug delivery behavior. RSC Advances, 2012, 2(12): 5105–5107
CrossRef
Google scholar
|
[23] |
Chen Z T, Niu D C, Li Y S, Shi J L. One-step approach to synthesize hollow mesoporous silica spheres co-templated by an amphiphilic block copolymer and cationic surfactant. RSC Advances, 2013, 3(19): 6767–6770
CrossRef
Google scholar
|
[24] |
Niu D C, Ma Z, Li Y S, Shi J L. Synthesis of core-shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness. Journal of the American Chemical Society, 2010, 132(43): 15144–15147
CrossRef
Google scholar
|
/
〈 | 〉 |