RESEARCH ARTICLE

Light olefins synthesis from С12 paraffins via oxychlorination processes

  • Anton SHALYGIN ,
  • Evgenii PAUKSHTIS ,
  • Evgenii KOVALYOV ,
  • Bair BAL’ZHINIMAEV
Expand
  • Boreskov Institute of Catalysis, Novosibirsk 630090, Russia

Received date: 01 Dec 2012

Accepted date: 13 Jun 2013

Published date: 05 Sep 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

A two-step process was employed to convert methane or ethane to light olefins via the formation of an intermediate monoalkyl halide. A novel K4RuOCl10/TiO2 catalyst was tested for the oxidative chlorination of methane and ethane. The catalyst had high selectivity for methyl and ethyl chlorides, 80% and 90%, respectively. During the oxychlorination of ethane at T≥250°C, the formation of ethylene as a reaction product along with ethyl chloride was observed. In situ Fourier transform infrared studies showed that the key intermediate for monoalkyl chloride and ethylene formation is the alkoxy group. The reaction mechanism for the oxidative chlorination of methane and ethane over the Ru-oxychloride catalyst was proposed. The novel fiber glass catalyst was also tested for the dehydrochlorination of alkyl chlorides to ethylene and propylene. Very high selectivities (up to 94%–98%) for ethylene and propylene formation as well as high stability were demonstrated.

Cite this article

Anton SHALYGIN , Evgenii PAUKSHTIS , Evgenii KOVALYOV , Bair BAL’ZHINIMAEV . Light olefins synthesis from С12 paraffins via oxychlorination processes[J]. Frontiers of Chemical Science and Engineering, 2013 , 7(3) : 279 -288 . DOI: 10.1007/s11705-013-1338-1

1
Wang W, Jiang Y, Hunger M. Mechanistic investigations of the methanol-to-olefin (MTO) process on acidic zeolite catalysts by in situ solid-state NMR spectroscopy. Catalysis Today, 2006, 113(1-2): 102–114

DOI

2
.Yang G, Wei Y, Xu S, Chen J, Li J, Liu Z, Yu J R. Nanosize-enhanced lifetime of SAPO-34 catalysts in methanol-to-olefin reactions. J Phys Chem C, 2013, 117(16): 8214–8222

3
Vora B V, Marker T L, Barger P T, Nilsen H R, Kvisle S, Fuglerud T. Economic route for natural gas conversion to ethylene and propylene. Studies in Surface Science and Catalysis, 1997, 107: 87–98

DOI

4
Wang C, Xu L, Wang Q. Review of directly producing light olefins via CO hydrogenation. Journal of Natural Gas Chemistry, 2003, 12(1): 10–16

5
Abelló D S, Montané D D. Exploring iron-based multifunctional catalysts for Fischer-Tropsch synthesis: A review. ChemSusChem, 2011, 4(11): 1538–15564(11):

DOI

6
Galvis H M T, Bitter J H, Khare C B, Ruitenbeek M, Dugulan A I, de Jong K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science, 2012, 325(6070): 835–838

DOI

7
Chen W, Fan Z, Pan X, Bao X. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst. Journal of the American Chemical Society, 2008, 130(29): 9414–9419

DOI

8
Olah G A, Gupta B, Farina M, Felberg J D, Ip W M, Husain A, Karpeles R, Lammertsma K, Melhotra A K, Trivedi N J. Selective Monohalogenation of methane over supported acid or platinum metal catalysts and hydrolysis of methyl halides over γ-alumina-supported metal oxide/hydroxide catalysts. A feasible path for the oxidative conversion of methane into methyl alcohol/dimethyl ether. Journal of the American Chemical Society, 1985, 107(24): 7097–7105

DOI

9
Olah G A, Renner R, Schilling P, Mo Y K. Antimony pentafluoride aluminum trichloride, and silver antimony hexafluoride catalyzed chlorination and chlorolysis of alkanes and cycloalkanes. Journal of the American Chemical Society, 1973, 95(23): 7686–7692

10
Jauman D, Su B L. Direct catalytic conversion of chloromethane to higher hydrocarbons over a series of ZSM-5 zeolites exchanged with alkali cations. JounalβofβMolecularβCatalysisA A, 2003, 197(1-2): 263–273

DOI

11
Wei Y, Zhang D, Liu Z, Su B. Highly efficient catalytic conversion of chloromethane to light olefins over HSAPO-34 as studied by catalytic testing and in situ FTIR. Journal of Catalysis, 2006, 238(1): 46–57

DOI

12
Seki K. Development of RuO2/Rutile TiO2 catalyst for industrial HCl oxidation process. Catalysis Surveys from Asia, 2010, 14(3-4): 168–175

DOI

13
Taylor C E, Noceti R P, Schehl R R. Direct conversion of methane to liquid hydrocarbons through chlorocarbon intermediates. Studies in Surface Science and Catalysis, 1988, 36: 483–489

DOI

14
Taylor C E. Conversion of substituted methanes over ZSM-catalyst. Studies in Surface Science and Catalysis, 2000, 130D: 3633–3638

15
Sun Y, Campbell S M, Lunsford J H, Lewis G E, Palke D, Tau L M. The catalytic conversion of methyl chloride to ethylene and propylene over phosphorus-modified Mg-ZSM-5 zeolites. Journal of Catalysis, 1993, 143(1):32–44

16
Zhang D, Wei Y, Xu L, Chang F, Liu Z, Meng S, Su B L, Liu Z. MgAPSO-34 molecular sieves with various Mg stoichiometries: Synthesis, characterization and catalytic behavior in the direct transformation of chloromethane into light olefins. Micro Meso Mater, 2008, 116(1-3): 684–692

17
Liu Z, Huang L, Li W S, Yang F, Au C T, Zhou X P. Higher hydrocarbons from methane condensation mediated by HBr. Journal of Molecular Catalysis, 2007, 273(1-2): 14–20

DOI

18
Lin R, Ding Y, Gong L, Dong W, Wang J, Zhang T. Efficient and stable silica-supported iron phosphate catalysts for oxidative bromination of methane. Journal of Catalysis, 2010, 272(1): 65–73

DOI

19
Degirmenci V, Yilmaz A, Uner D. Selective methane bromination over sulfated zirconia in SBA-15 catalysts. Catalysis Today, 2009, 142(1-2): 30–33

DOI

20
Peringer E, Podkolzin S G, Jones M E, Olindo R, Lercher J A. LaCl3-based catalysts for oxidative chlorination of CH4. Topics in Catalysis, 2006, 38(1-3): 211–220

DOI

21
Podkolzin S G, Stangland E E, Jones M E, Peringer E, Lercher J A. Methyl chloride production from methane over lantanium-based catalysts. Journal of the American Chemical Society, 2007, 129(9): 2569–2576

DOI

22
Peringer E, Salzinger M, Hutt M, Lemonidou A A, Lercher J A. Modified lantanum catalysts for oxidative chlorination of methane. Topics in Catalysis, 2009, 52(9): 1220–1231

DOI

23
He J, Xu T, Wang Z, Zhang Q, Deng W, Wang Y. Tranformation of methane to propylene: A two-step reaction route catalyzed by modified CeO2 nanocrystals and zeolites. Angewandte Chemie International Edition, 2012, 51(10): 2438–2442

DOI

24
Xu T, Zhang Q, Song H, Wang Y. Fluoride-treated H-ZSM-5 as a highly selective and stable catalyst for the production of propylene from methyl halides. Journal of Catalysis, 2012, 295: 232–241

25
Bal’zhinimaev B S, Paukshtis E A, Lapina O B, Suknev A P, Kirillov V L, Mikenin P E, Zagoruiko A N. Glass fiber materials as a new generation of structured catalysts. Studies in Surface Science and Catalysis, 2010, 175: 43–50

DOI

26
Crihan D, Knapp M, Zweidinger S, Lundgren E, Weststrate C J, Andersen J N, Seitsonen A P, Over H. Stable deacon process for HCl oxidation over RuO2. Angewandte Chemie International Edition, 2008, 120(11): 2161–2164

DOI

27
Hevia M A G, Amrute A P, Schmidt T, Pйrez-Ramнrez J. Transient mechanistic study of the gas-phase HCl oxidation to Cl2 on bulk and supported RuO2 catalysts. Journal of Catalysis, 2010, 276(1): 141–151

DOI

28
Borello E, Zecchina A, Morterra C. Journal of Physical Chemistry, 1967, 71(9): 2938–2945Infrared study of methanol adsorption on Aerosil. I. Chemisorption at room temperature

DOI

29
Murray D K, Chang J W, Haw J F. Conversion of methyl halides to hydrocarbons on basic zeolites: A discovery by in situ NMR. Journal of the American Chemical Society, 1993, 115(11): 4732–4741

DOI

30
Murray D K, Howard T, Goguen P W, Krawietz T R, Haw J F. Methyl halide reactions on multifunctional metal-exchanged zeolite catalysts. Journal of the American Chemical Society, 1994, 116(14): 6354–6360

DOI

31
Paes L W, Faria R B, Machuca-Herrera J O, Machado S P. The linear μ-oxo-bis[pentachlororuthenate(IV)] anion. Molecular orbital calculaions. Inorganica Chimica Acta, 2001, 321(1-2): 22–26

DOI

32
Gazsi A, Koysa A, Bansagi T, Solymosi F. Adsorption and decomposition of ethanol on supported Au catalysts. Catalysis Today, 2011, 160(1): 70–78

DOI

33
Hauchecorne B, Tytgat T, Verbruggen S W, Hauchecorne D, Terrens D, Smits M, Vinken K, Lenaerts S. Photocatalytic degradation of ethylene: An FTIR in situ study under atmospheric conditions. App Catal B Environ, 2011, 105(1-2): 111–116

34
Singh M, Zhou N, Paul D K, Klabunde K J. IR spectral evidence of aldol condensation: Acetaldehyde adsorption over TiO2 surface. Journal of Catalysis, 2008, 260(2): 371–379

DOI

35
Opre Z, Ferri D, Krumeich F, Mallat T, Baiker A. Insight into the nature of active redox sites in Ru-containing hydroxyapatite by DRIFT spectroscopy. Journal of Catalysis, 2007, 251(1): 48–58

DOI

36
Wu W C, Chuang C C, Lin J L. Bonding geometry and reactivity of methoxy and ethoxy groups adsorbed on powdered TiO2. Journal of Physical Chemistry B, 2000, 104(36): 8719–8724

DOI

37
Bhattacharyya K, Varma S, Tripathi A K, Bharadwaj S R, Tyagi A K. Mechanistic insight by in situ FTIR for the gas phase photo-oxidation of ethylene by V-doped titania and nano titania. Journal of Physical Chemistry B, 2009, 113(17): 5917–5928

DOI

38
Bal’zhinimaev B S, Paukshtis E A, Vanag S V, Suknev A P, Zagoruiko A N. Glass Fiber Catalysts: Novel oxidation catalysts and catalytic technologies for environmental protection. Catalysis Today, 2010, 151(1-2): 195–199

DOI

39
Gulyaeva Yu K, Suknev A P, Paukshtis E A, Bal’zhinimaev B S. Gas phase nitridation of silicate fiber glass materials with ammonia. Journal of Non-Crystalline Solids, 2011, 357(18): 3338–3344

DOI

Outlines

/