Light olefins synthesis from С1-С2 paraffins via oxychlorination processes
Anton SHALYGIN, Evgenii PAUKSHTIS, Evgenii KOVALYOV, Bair BAL’ZHINIMAEV
Light olefins synthesis from С1-С2 paraffins via oxychlorination processes
A two-step process was employed to convert methane or ethane to light olefins via the formation of an intermediate monoalkyl halide. A novel K4RuOCl10/TiO2 catalyst was tested for the oxidative chlorination of methane and ethane. The catalyst had high selectivity for methyl and ethyl chlorides, 80% and 90%, respectively. During the oxychlorination of ethane at T≥250°C, the formation of ethylene as a reaction product along with ethyl chloride was observed. In situ Fourier transform infrared studies showed that the key intermediate for monoalkyl chloride and ethylene formation is the alkoxy group. The reaction mechanism for the oxidative chlorination of methane and ethane over the Ru-oxychloride catalyst was proposed. The novel fiber glass catalyst was also tested for the dehydrochlorination of alkyl chlorides to ethylene and propylene. Very high selectivities (up to 94%–98%) for ethylene and propylene formation as well as high stability were demonstrated.
oxychlorination / methane / ethane / light olefins / ruthenium catalyst
[1] |
Wang W, Jiang Y, Hunger M. Mechanistic investigations of the methanol-to-olefin (MTO) process on acidic zeolite catalysts by in situ solid-state NMR spectroscopy. Catalysis Today, 2006, 113(1-2): 102–114
CrossRef
Google scholar
|
[2] |
.Yang G, Wei Y, Xu S, Chen J, Li J, Liu Z, Yu J R. Nanosize-enhanced lifetime of SAPO-34 catalysts in methanol-to-olefin reactions. J Phys Chem C, 2013, 117(16): 8214–8222
|
[3] |
Vora B V, Marker T L, Barger P T, Nilsen H R, Kvisle S, Fuglerud T. Economic route for natural gas conversion to ethylene and propylene. Studies in Surface Science and Catalysis, 1997, 107: 87–98
CrossRef
Google scholar
|
[4] |
Wang C, Xu L, Wang Q. Review of directly producing light olefins via CO hydrogenation. Journal of Natural Gas Chemistry, 2003, 12(1): 10–16
|
[5] |
Abelló D S, Montané D D. Exploring iron-based multifunctional catalysts for Fischer-Tropsch synthesis: A review. ChemSusChem, 2011, 4(11): 1538–15564(11):
CrossRef
Google scholar
|
[6] |
Galvis H M T, Bitter J H, Khare C B, Ruitenbeek M, Dugulan A I, de Jong K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science, 2012, 325(6070): 835–838
CrossRef
Google scholar
|
[7] |
Chen W, Fan Z, Pan X, Bao X. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst. Journal of the American Chemical Society, 2008, 130(29): 9414–9419
CrossRef
Google scholar
|
[8] |
Olah G A, Gupta B, Farina M, Felberg J D, Ip W M, Husain A, Karpeles R, Lammertsma K, Melhotra A K, Trivedi N J. Selective Monohalogenation of methane over supported acid or platinum metal catalysts and hydrolysis of methyl halides over γ-alumina-supported metal oxide/hydroxide catalysts. A feasible path for the oxidative conversion of methane into methyl alcohol/dimethyl ether. Journal of the American Chemical Society, 1985, 107(24): 7097–7105
CrossRef
Google scholar
|
[9] |
Olah G A, Renner R, Schilling P, Mo Y K. Antimony pentafluoride aluminum trichloride, and silver antimony hexafluoride catalyzed chlorination and chlorolysis of alkanes and cycloalkanes. Journal of the American Chemical Society, 1973, 95(23): 7686–7692
|
[10] |
Jauman D, Su B L. Direct catalytic conversion of chloromethane to higher hydrocarbons over a series of ZSM-5 zeolites exchanged with alkali cations. JounalβofβMolecularβCatalysisA A, 2003, 197(1-2): 263–273
CrossRef
Google scholar
|
[11] |
Wei Y, Zhang D, Liu Z, Su B. Highly efficient catalytic conversion of chloromethane to light olefins over HSAPO-34 as studied by catalytic testing and in situ FTIR. Journal of Catalysis, 2006, 238(1): 46–57
CrossRef
Google scholar
|
[12] |
Seki K. Development of RuO2/Rutile TiO2 catalyst for industrial HCl oxidation process. Catalysis Surveys from Asia, 2010, 14(3-4): 168–175
CrossRef
Google scholar
|
[13] |
Taylor C E, Noceti R P, Schehl R R. Direct conversion of methane to liquid hydrocarbons through chlorocarbon intermediates. Studies in Surface Science and Catalysis, 1988, 36: 483–489
CrossRef
Google scholar
|
[14] |
Taylor C E. Conversion of substituted methanes over ZSM-catalyst. Studies in Surface Science and Catalysis, 2000, 130D: 3633–3638
|
[15] |
Sun Y, Campbell S M, Lunsford J H, Lewis G E, Palke D, Tau L M. The catalytic conversion of methyl chloride to ethylene and propylene over phosphorus-modified Mg-ZSM-5 zeolites. Journal of Catalysis, 1993, 143(1):
|
[16] |
Zhang D, Wei Y, Xu L, Chang F, Liu Z, Meng S, Su B L, Liu Z. MgAPSO-34 molecular sieves with various Mg stoichiometries: Synthesis, characterization and catalytic behavior in the direct transformation of chloromethane into light olefins. Micro Meso Mater, 2008, 116(1-3): 684–692
|
[17] |
Liu Z, Huang L, Li W S, Yang F, Au C T, Zhou X P. Higher hydrocarbons from methane condensation mediated by HBr. Journal of Molecular Catalysis, 2007, 273(1-2): 14–20
CrossRef
Google scholar
|
[18] |
Lin R, Ding Y, Gong L, Dong W, Wang J, Zhang T. Efficient and stable silica-supported iron phosphate catalysts for oxidative bromination of methane. Journal of Catalysis, 2010, 272(1): 65–73
CrossRef
Google scholar
|
[19] |
Degirmenci V, Yilmaz A, Uner D. Selective methane bromination over sulfated zirconia in SBA-15 catalysts. Catalysis Today, 2009, 142(1-2): 30–33
CrossRef
Google scholar
|
[20] |
Peringer E, Podkolzin S G, Jones M E, Olindo R, Lercher J A. LaCl3-based catalysts for oxidative chlorination of CH4. Topics in Catalysis, 2006, 38(1-3): 211–220
CrossRef
Google scholar
|
[21] |
Podkolzin S G, Stangland E E, Jones M E, Peringer E, Lercher J A. Methyl chloride production from methane over lantanium-based catalysts. Journal of the American Chemical Society, 2007, 129(9): 2569–2576
CrossRef
Google scholar
|
[22] |
Peringer E, Salzinger M, Hutt M, Lemonidou A A, Lercher J A. Modified lantanum catalysts for oxidative chlorination of methane. Topics in Catalysis, 2009, 52(9): 1220–1231
CrossRef
Google scholar
|
[23] |
He J, Xu T, Wang Z, Zhang Q, Deng W, Wang Y. Tranformation of methane to propylene: A two-step reaction route catalyzed by modified CeO2 nanocrystals and zeolites. Angewandte Chemie International Edition, 2012, 51(10): 2438–2442
CrossRef
Google scholar
|
[24] |
Xu T, Zhang Q, Song H, Wang Y. Fluoride-treated H-ZSM-5 as a highly selective and stable catalyst for the production of propylene from methyl halides. Journal of Catalysis, 2012, 295: 232–241
|
[25] |
Bal’zhinimaev B S, Paukshtis E A, Lapina O B, Suknev A P, Kirillov V L, Mikenin P E, Zagoruiko A N. Glass fiber materials as a new generation of structured catalysts. Studies in Surface Science and Catalysis, 2010, 175: 43–50
CrossRef
Google scholar
|
[26] |
Crihan D, Knapp M, Zweidinger S, Lundgren E, Weststrate C J, Andersen J N, Seitsonen A P, Over H. Stable deacon process for HCl oxidation over RuO2. Angewandte Chemie International Edition, 2008, 120(11): 2161–2164
CrossRef
Google scholar
|
[27] |
Hevia M A G, Amrute A P, Schmidt T, Pйrez-Ramнrez J. Transient mechanistic study of the gas-phase HCl oxidation to Cl2 on bulk and supported RuO2 catalysts. Journal of Catalysis, 2010, 276(1): 141–151
CrossRef
Google scholar
|
[28] |
Borello E, Zecchina A, Morterra C. Journal of Physical Chemistry, 1967, 71(9): 2938–2945Infrared study of methanol adsorption on Aerosil. I. Chemisorption at room temperature
CrossRef
Google scholar
|
[29] |
Murray D K, Chang J W, Haw J F. Conversion of methyl halides to hydrocarbons on basic zeolites: A discovery by in situ NMR. Journal of the American Chemical Society, 1993, 115(11): 4732–4741
CrossRef
Google scholar
|
[30] |
Murray D K, Howard T, Goguen P W, Krawietz T R, Haw J F. Methyl halide reactions on multifunctional metal-exchanged zeolite catalysts. Journal of the American Chemical Society, 1994, 116(14): 6354–6360
CrossRef
Google scholar
|
[31] |
Paes L W, Faria R B, Machuca-Herrera J O, Machado S P. The linear μ-oxo-bis[pentachlororuthenate(IV)] anion. Molecular orbital calculaions. Inorganica Chimica Acta, 2001, 321(1-2): 22–26
CrossRef
Google scholar
|
[32] |
Gazsi A, Koysa A, Bansagi T, Solymosi F. Adsorption and decomposition of ethanol on supported Au catalysts. Catalysis Today, 2011, 160(1): 70–78
CrossRef
Google scholar
|
[33] |
Hauchecorne B, Tytgat T, Verbruggen S W, Hauchecorne D, Terrens D, Smits M, Vinken K, Lenaerts S. Photocatalytic degradation of ethylene: An FTIR in situ study under atmospheric conditions. App Catal B Environ, 2011, 105(1-2): 111–116
|
[34] |
Singh M, Zhou N, Paul D K, Klabunde K J. IR spectral evidence of aldol condensation: Acetaldehyde adsorption over TiO2 surface. Journal of Catalysis, 2008, 260(2): 371–379
CrossRef
Google scholar
|
[35] |
Opre Z, Ferri D, Krumeich F, Mallat T, Baiker A. Insight into the nature of active redox sites in Ru-containing hydroxyapatite by DRIFT spectroscopy. Journal of Catalysis, 2007, 251(1): 48–58
CrossRef
Google scholar
|
[36] |
Wu W C, Chuang C C, Lin J L. Bonding geometry and reactivity of methoxy and ethoxy groups adsorbed on powdered TiO2. Journal of Physical Chemistry B, 2000, 104(36): 8719–8724
CrossRef
Google scholar
|
[37] |
Bhattacharyya K, Varma S, Tripathi A K, Bharadwaj S R, Tyagi A K. Mechanistic insight by in situ FTIR for the gas phase photo-oxidation of ethylene by V-doped titania and nano titania. Journal of Physical Chemistry B, 2009, 113(17): 5917–5928
CrossRef
Google scholar
|
[38] |
Bal’zhinimaev B S, Paukshtis E A, Vanag S V, Suknev A P, Zagoruiko A N. Glass Fiber Catalysts: Novel oxidation catalysts and catalytic technologies for environmental protection. Catalysis Today, 2010, 151(1-2): 195–199
CrossRef
Google scholar
|
[39] |
Gulyaeva Yu K, Suknev A P, Paukshtis E A, Bal’zhinimaev B S. Gas phase nitridation of silicate fiber glass materials with ammonia. Journal of Non-Crystalline Solids, 2011, 357(18): 3338–3344
CrossRef
Google scholar
|
/
〈 | 〉 |