RESEARCH ARTICLE

Reduction of CeO2 in composites with transition metal complex oxides under hydrogen containing atmosphere and its correlation with catalytic activity

  • Elena Yu. KONYSHEVA , 1,2
Expand
  • 1. School of Chemistry, University of St Andrews, KY169ST, St Andrews, Fife, UK
  • 2. Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China

Received date: 01 Dec 2012

Accepted date: 07 May 2013

Published date: 05 Sep 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Reduction behavior of pure and doped CeO2, the multi-phase La0.6Sr0.4CoO3xCeO2, La0.8Sr0.2MnO3xCeO2, and La0.95Ni0.6Fe0.4O3xCeO2 composites, was studied under hydrogen containing atmosphere to address issues related to the improvement of electrochemical and catalytic performance of electrodes in fuel cells. The enhanced reduction of cerium oxide was observed initially at 800°C in all composites in spite of the presence of highly reducible transition metal cations that could lead to the increase in surface concentration of oxygen vacancies and generation of the electron enriched surface. Due to continuous reduction of cerium oxide in La0.6Sr0.4CoO3xCeO2 and La0.8Sr0.2MnO3xCeO2 (up to 10 h) composites the redox activity of the Ce4+/Ce3+ pair could be suppressed and additional measures are required for reversible spontaneous regeneration of Ce4+. After 3 h exposure to H2-Ar at 800°C the reduction of cerium oxides and perovskite phases in La0.95Ni0.6Fe0.4O3xCeO2 composites was diminished. The extent of cerium oxide involvement in the reduction process varies with time, and depends on its initial deviation from oxygen stoichiometry (that results in the larger lattice parameter and the longer pathway for O2- transport through the fluorite lattice), chemical origin of transition metal cations in the perovskite, and phase diversity in multi-phase composites.

Cite this article

Elena Yu. KONYSHEVA . Reduction of CeO2 in composites with transition metal complex oxides under hydrogen containing atmosphere and its correlation with catalytic activity[J]. Frontiers of Chemical Science and Engineering, 2013 , 7(3) : 249 -261 . DOI: 10.1007/s11705-013-1333-6

Acknowledgments

The authors gratefully acknowledge Dr. S. M. Frances for XPS measurements and Prof. J. T. S. Irvine for his kind support.
1
Voorhoeve R J H, Remeika J P, Freeland P E, Matthias B T. Rare-earth oxides of manganese and cobalt rival platinum for the treatment of carbon monoxide in auto exhaust. Science, 1972, 177(4046): 353–354

DOI

2
Trovarelli A. Catalytic properties of ceria and CeO2-containing materials. Catalysis Reviews. Science and Engineering, 1996, 38(4): 439–520

DOI

3
Lombardo E A, Ulla M A. Perovskite oxides in catalysis: past, present and future. Research on Chemical Intermediates, 1998, 24(5): 581–592

DOI

4
Sin A, Kopnin E, Dubitsky Y, Zaopo A, Aricò A S, Gullo L R, La Rosa D, Antonucci V J. Stabilisation of composite LSFCO-CGO based anodes for methane oxidation in solid oxide fuel cells. Journal of Power Sources, 2005, 145(1): 68–73

DOI

5
Ferri D. NO reduction by H2 over perovskite-like mixed oxides. Catal. B: Environmental, 1998, 16(4): 339–345

DOI

6
Falcon H, Carbonio R E, Fierro J L G. Correlation of Oxidation States in LaFexNi1-xO3+δ oxides with catalytic activity for H2O2 decomposition. Catalysis, 2001, 203(2): 264–272

DOI

7
Petunchi J O, Nicastro J L, Lombardo E A J. Ethylene hydrogenation over LaCoO3 perovskite. Journal of the Chemical Society. Chemical Communications, 1980, 1980(11): 467–468

DOI

8
Cheng D G, Chong M, Chen F, Zhan X. XPS Characterization of CeO2 catalyst for hydrogenation of benzoic acid to benzaldehyde. Catalysis Letters, 2008, 120(1): 82–85

DOI

9
Gross M D, Vohs J M, Gorte R J. A strategy for achieving high performance with SOFC ceramic anodes. Electrochemical and Solid-State Letters, 2007, 10(4): B65–B69

DOI

10
Gross M D, Vohs J M, Gorte R J. An examination of SOFC anode functional layers based on ceria in YSZ. Journal of the Electrochemical Society, 2007, 154(7): B694–B699

DOI

11
Wang S, Kato T, Nagata S, Honda T, Kaneko T, Iwashita N, Dokiya M. Ni/Ceria cermet as anode of reduced-temperature solid oxide fuel cells. Journal of the Electrochemical Society, 2002, 149(7): A927–A933

DOI

12
Huang Y H, Dass R I, Xing Z L, Goodenough J B. Double perovskites as anode materials for solid-oxide fuel cells. Science, 2006, 312(5771): 254–257

DOI

13
Tao S W, Irvine J T S. A redox-stable efficient anode for solid-oxide fuel cells. Nature Materials, 2003, 2(5): 320–323

DOI

14
Kim G, Corre G, Irvine J T S, Vohs J M, Gorte R J. Engineering composite oxide SOFC anodes for efficient oxidation of methane. Electrochemical and Solid-State Letters, 2008, 11(2): B16–B19

DOI

15
Cordatos H, Gorte R J C O. NO, and H2 adsorption on ceria-supported Pd. Catalysis, 1996, 159(1): 112–118

DOI

16
Nakamura T, Petzow G, Gauckler L J. Stability of the perovskite phase LaBO3 (B= V, Cr, Mn, Fe, Co, Ni) in reducing atmosphere I. Experimental results. Materials Research Bulletin, 1979, 14(5): 649–659

DOI

17
Radovic M, Speakman S A, Allard L F, Payzant E A, Lara-Curzio E, Kriven W M, Lloyd J, Fegely L, Orlovskaya N. Thermal, mechanical and phase stability of LaCoO3 in reducing and oxidizing environments. Journal of Power Sources, 2008, 184(1): 77–83

DOI

18
Konysheva E, Irvine J T S. Evolution of conductivity, structure and thermochemical stability of lanthanum manganese iron nickelate perovskites. Journal of Materials Chemistry, 2008, 18(42): 5147–5154

DOI

19
Konysheva E, Irvine J T S. Thermochemical and structural stability of A- and B-site-substituted perovskites in hydrogen-containing atmosphere. Chemistry of Materials, 2009, 21(8): 1514–1523

DOI

20
Konysheva E, Suard E, Irvine J T S. Effect of oxygen non stoichiometry and oxidation state of transition elements on high-temperature phase transition in a-site deficient La0.95Ni0.6Fe0.4O3-δ perovskite. Chemistry of Materials, 2009, 21(21): 5307–5318

DOI

21
Konysheva E, Irvine J T S. In situ high-temperature neutron diffraction study of A-site deficient perovskites with transition metals on the B-sublattice and structure-conductivity correlation. Chemistry of Materials, 2011, 23(7): 1841–1850

DOI

22
Teraoka Y, Nobunaga T, Okamoto K, Miura N, Yamazoe N. Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability. Solid State Ionics, 1991, 48(3-4): 207–212

DOI

23
Ishigaki T, Yamauchi S, Mizusaki J, Fueki K, Tamura H. Tracer diffusion coefficient of oxide ions in LaCoO3 single crystal. Journal of Solid State Chemistry, 1984, 54(1): 100–107

DOI

24
Ishigaki T, Yamauchi S, Kishio K, Mizusaki J, Fueki K. Diffusion of oxide ion vacancies in perovskite-type oxides. Journal of Solid State Chemistry, 1988, 73(1): 179–187

DOI

25
Hayward M A, Cussen E J, Claridge J B, Bieringer M, Rosseinsky M J, Kiely C J, Blundell S J, Marshall I M, Pratt F L. The hydride anion in an extended transition metal oxide array: LaSrCoO3H0.7. Science, 2002, 295(5561): 1882–1884

DOI

26
Bridges C A, Darling G R, Hayward M A, Rosseinsky M J. Electronic structure, magnetic ordering, and formation pathway of the transition metal oxide hydride LaSrCoO3H0.7. Journal of the American Chemical Society, 2005, 127(16): 5996–6011

DOI

27
Rietveld H M. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 1969, 2(2): 65–71

DOI

28
Sayle T X T, Parker S C, Catlow C R A. Surface oxygen vacancy formation on CeO2 and its role in the oxidation of carbon monoxide. Journal of the Chemical Society. Chemical Communications, 1992, 1992(14): 977–978

DOI

29
Yang Z, Yu X, Lu Z, Li S, Hermansson K. Oxygen vacancy pairs on CeO2 (110): A DFT+U study. Physics Letters. [Part A], 2009, 373(31): 2786–2792

DOI

30
Tuller H L, Nowick A S. Small polaron electron transport in reduced CeO2 single crystals. Journal of Physics and Chemistry of Solids, 1977, 38(8): 859–867

DOI

31
Tuller H L, Nowick A S. Defect structure and electrical properties of nonstoichiometric CeO2 single crystals. Journal of the Electrochemical Society, 1979, 126(2): 209–217

DOI

32
Blumental R N, Sharma R K. Electronic conductivity in nonstoichiometric cerium dioxide. Journal of Solid State Chemistry, 1975, 13(4): 360–364

DOI

33
Hull S, Norberg S T, Ahmed I, Eriksson S G, Marrocchelli D, Madden P A. Oxygen vacancy ordering within anion-deficient ceria. Journal of Solid State Chemistry, 2009, 182(10): 2815–2821

DOI

34
Tschöpe A, Sommer E, Birringer R. Grain size-dependent electrical conductivity of polycrystalline cerium oxide. I. Experiments. Solid State Ionics, 2001, 139(3-4): 255–265

DOI

35
Tschöpe A, Birringer R. Grain size dependence of electrical conductivity in polycrystalline cerium oxide. Journal of Electroceramics, 2001, 7(3): 169–177

DOI

36
Gao P, Kang Z, Fu W, Wang W, Bai X, Wang E. Electrically driven redox process in cerium oxides. Journal of the American Chemical Society, 2010, 132(12): 4197–4201

DOI

37
Laachir A, Perrichon V, Badri A, Lamotte J, Catherine E, Lavalley J C, Fallah J E, Hilaire L, Normand F L, Quéméré E, Sauvion G N, Touret O. Reduction of CeO2 by hydrogen. Magnetic susceptibility and fourier-transform infrared, ultraviolet and X-ray photoelectron spectroscopy measurements. Journal of the Chemical Society, Faraday Transactions, 1991, 87(10): 1601–1609

DOI

38
Konysheva E, Irvine J T S. Transport properties of multi-cations doped cerium oxide. Solid State Ionics, 2011, 184(1): 27–30

DOI

39
Šatava V, Škvara F. Mechanism and kinetics of the decomposition of solids by a thermogravimetric method. Journal of the American Ceramic Society, 1969, 52(11): 591–595

DOI

40
Khawam A, Flanagan D R. Solid-state kinetic models: Basics and mathematical fundamentals. Journal of Physical Chemistry B, 2006, 110(35): 17315–17328

DOI

41
Yamamura H, Katoh E, Ichikawa M, Kakinuma K, Mori T, Haneda H. Multiple doping effect on the electrical conductivity in the (Ce1-x-yLaxMy)O2-δ (M= Ca, Sr) system. Electrochemistry, 2000, 68(6): 455–459

42
Zuev A, Singheiser L, Hilpert K. Oxygen vacancy formation and defect structure of Cu-doped lanthanum chromite LaCr0.79Cu0.05Al0.16O3-δ. Solid State Ionics, 2005, 176(3-4): 417–421

DOI

43
Petrov A N, Zuev A Yu, Vylkov A I, Tsvetkov D S. Defect structure and charge transfer in undoped and doped lanthanum cobaltites. Journal of Materials Science, 2007, 42(6): 1909–1914

DOI

44
Zhang F, Wang P, Koberstein J, Khalid S, Chan S W. Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy. Surface Science, 2004, 563(1): 74–82

DOI

45
Konysheva E Yu, Francis S M. Identification of surface composition and chemical states in composites comprised of phases with fluorite and perovskite structures by X-ray photoelectron spectroscopy. Applied Surface Science, 2013, 268(1): 278–287

DOI

46
Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica. Section A, Foundations of Crystallography, 1976, 32(5): 751–767

DOI

47
Konysheva E Yu, Francis S M, Irvine J T S, Rolle A, Vannier R N. Red-ox behaviour in the La0.6Sr0.4CoO3±δ-CeO2 system. Journal of Materials Chemistry, 2011, 21(39): 15511–15520

DOI

48
JCPDS, International Centre for Diffraction Data, file No. 34-0394

49
Konysheva E, Francis S M, Irvine J T S. Crystal structure, oxygen nonstoichiometry, and conductivity of mixed ionic-electronic conducting perovskite composites with CeO2. Journal of the Electrochemical Society, 2010, 157(1): B159–B165

DOI

50
Konysheva E, Irvine J T S, Besmehn A. Crystal structure, thermochemical stability, electrical and magnetic properties of the two-phase composites in the La0.8Sr0.2MnO3±δ-CeO2 system. Solid State Ionics, 2009, 180(11-13): 778–783

DOI

51
Poulsen F W. Defect chemistry modelling of oxygen-stoichiometry, vacancy concentrations, and conductivity of (La1-xSrx)MnO3±δ. Solid State Ionics, 2000, 129(1-4): 145–162

DOI

52
Konysheva E, Irvine J T S. The La0.95Ni0.6Fe0.4O3-CeO2 system: phase equilibria, crystal structure of components and transport properties. Journal of Solid State Chemistry, 2011, 184(6): 1499–1504

DOI

53
Pound B G. The characterization of doped CeO2 electrodes in solid oxide fuel cells. Solid State Ionics, 1992, 52(1): 183–188

DOI

54
Belov B F, Goroh A V, Demchuk V P, Dorschenko N A, Somojlenko Z A. Inorganic Materials, 1983, 19(3): 231–234

55
Robbins M, Wertheim G K, Menth A, Sherwood R C. Preparation and properties of polycrystalline cerium orthoferrite (CeFeO3). Journal of Physics and Chemistry of Solids, 1969, 30(7): 1823–1825

DOI

Outlines

/