Reduction of CeO2 in composites with transition metal complex oxides under hydrogen containing atmosphere and its correlation with catalytic activity

Elena Yu. KONYSHEVA

PDF(592 KB)
PDF(592 KB)
Front. Chem. Sci. Eng. ›› 2013, Vol. 7 ›› Issue (3) : 249-261. DOI: 10.1007/s11705-013-1333-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Reduction of CeO2 in composites with transition metal complex oxides under hydrogen containing atmosphere and its correlation with catalytic activity

Author information +
History +

Abstract

Reduction behavior of pure and doped CeO2, the multi-phase La0.6Sr0.4CoO3xCeO2, La0.8Sr0.2MnO3xCeO2, and La0.95Ni0.6Fe0.4O3xCeO2 composites, was studied under hydrogen containing atmosphere to address issues related to the improvement of electrochemical and catalytic performance of electrodes in fuel cells. The enhanced reduction of cerium oxide was observed initially at 800°C in all composites in spite of the presence of highly reducible transition metal cations that could lead to the increase in surface concentration of oxygen vacancies and generation of the electron enriched surface. Due to continuous reduction of cerium oxide in La0.6Sr0.4CoO3xCeO2 and La0.8Sr0.2MnO3xCeO2 (up to 10 h) composites the redox activity of the Ce4+/Ce3+ pair could be suppressed and additional measures are required for reversible spontaneous regeneration of Ce4+. After 3 h exposure to H2-Ar at 800°C the reduction of cerium oxides and perovskite phases in La0.95Ni0.6Fe0.4O3xCeO2 composites was diminished. The extent of cerium oxide involvement in the reduction process varies with time, and depends on its initial deviation from oxygen stoichiometry (that results in the larger lattice parameter and the longer pathway for O2- transport through the fluorite lattice), chemical origin of transition metal cations in the perovskite, and phase diversity in multi-phase composites.

Keywords

reduction of cerium oxide / composites / perovskites / catalyst under hydrogen containing atmosphere

Cite this article

Download citation ▾
Elena Yu. KONYSHEVA. Reduction of CeO2 in composites with transition metal complex oxides under hydrogen containing atmosphere and its correlation with catalytic activity. Front Chem Sci Eng, 2013, 7(3): 249‒261 https://doi.org/10.1007/s11705-013-1333-6

References

[1]
Voorhoeve R J H, Remeika J P, Freeland P E, Matthias B T. Rare-earth oxides of manganese and cobalt rival platinum for the treatment of carbon monoxide in auto exhaust. Science, 1972, 177(4046): 353–354
CrossRef Google scholar
[2]
Trovarelli A. Catalytic properties of ceria and CeO2-containing materials. Catalysis Reviews. Science and Engineering, 1996, 38(4): 439–520
CrossRef Google scholar
[3]
Lombardo E A, Ulla M A. Perovskite oxides in catalysis: past, present and future. Research on Chemical Intermediates, 1998, 24(5): 581–592
CrossRef Google scholar
[4]
Sin A, Kopnin E, Dubitsky Y, Zaopo A, Aricò A S, Gullo L R, La Rosa D, Antonucci V J. Stabilisation of composite LSFCO-CGO based anodes for methane oxidation in solid oxide fuel cells. Journal of Power Sources, 2005, 145(1): 68–73
CrossRef Google scholar
[5]
Ferri D. NO reduction by H2 over perovskite-like mixed oxides. Catal. B: Environmental, 1998, 16(4): 339–345
CrossRef Google scholar
[6]
Falcon H, Carbonio R E, Fierro J L G. Correlation of Oxidation States in LaFexNi1-xO3+δ oxides with catalytic activity for H2O2 decomposition. Catalysis, 2001, 203(2): 264–272
CrossRef Google scholar
[7]
Petunchi J O, Nicastro J L, Lombardo E A J. Ethylene hydrogenation over LaCoO3 perovskite. Journal of the Chemical Society. Chemical Communications, 1980, 1980(11): 467–468
CrossRef Google scholar
[8]
Cheng D G, Chong M, Chen F, Zhan X. XPS Characterization of CeO2 catalyst for hydrogenation of benzoic acid to benzaldehyde. Catalysis Letters, 2008, 120(1): 82–85
CrossRef Google scholar
[9]
Gross M D, Vohs J M, Gorte R J. A strategy for achieving high performance with SOFC ceramic anodes. Electrochemical and Solid-State Letters, 2007, 10(4): B65–B69
CrossRef Google scholar
[10]
Gross M D, Vohs J M, Gorte R J. An examination of SOFC anode functional layers based on ceria in YSZ. Journal of the Electrochemical Society, 2007, 154(7): B694–B699
CrossRef Google scholar
[11]
Wang S, Kato T, Nagata S, Honda T, Kaneko T, Iwashita N, Dokiya M. Ni/Ceria cermet as anode of reduced-temperature solid oxide fuel cells. Journal of the Electrochemical Society, 2002, 149(7): A927–A933
CrossRef Google scholar
[12]
Huang Y H, Dass R I, Xing Z L, Goodenough J B. Double perovskites as anode materials for solid-oxide fuel cells. Science, 2006, 312(5771): 254–257
CrossRef Google scholar
[13]
Tao S W, Irvine J T S. A redox-stable efficient anode for solid-oxide fuel cells. Nature Materials, 2003, 2(5): 320–323
CrossRef Google scholar
[14]
Kim G, Corre G, Irvine J T S, Vohs J M, Gorte R J. Engineering composite oxide SOFC anodes for efficient oxidation of methane. Electrochemical and Solid-State Letters, 2008, 11(2): B16–B19
CrossRef Google scholar
[15]
Cordatos H, Gorte R J C O. NO, and H2 adsorption on ceria-supported Pd. Catalysis, 1996, 159(1): 112–118
CrossRef Google scholar
[16]
Nakamura T, Petzow G, Gauckler L J. Stability of the perovskite phase LaBO3 (B= V, Cr, Mn, Fe, Co, Ni) in reducing atmosphere I. Experimental results. Materials Research Bulletin, 1979, 14(5): 649–659
CrossRef Google scholar
[17]
Radovic M, Speakman S A, Allard L F, Payzant E A, Lara-Curzio E, Kriven W M, Lloyd J, Fegely L, Orlovskaya N. Thermal, mechanical and phase stability of LaCoO3 in reducing and oxidizing environments. Journal of Power Sources, 2008, 184(1): 77–83
CrossRef Google scholar
[18]
Konysheva E, Irvine J T S. Evolution of conductivity, structure and thermochemical stability of lanthanum manganese iron nickelate perovskites. Journal of Materials Chemistry, 2008, 18(42): 5147–5154
CrossRef Google scholar
[19]
Konysheva E, Irvine J T S. Thermochemical and structural stability of A- and B-site-substituted perovskites in hydrogen-containing atmosphere. Chemistry of Materials, 2009, 21(8): 1514–1523
CrossRef Google scholar
[20]
Konysheva E, Suard E, Irvine J T S. Effect of oxygen non stoichiometry and oxidation state of transition elements on high-temperature phase transition in a-site deficient La0.95Ni0.6Fe0.4O3-δ perovskite. Chemistry of Materials, 2009, 21(21): 5307–5318
CrossRef Google scholar
[21]
Konysheva E, Irvine J T S. In situ high-temperature neutron diffraction study of A-site deficient perovskites with transition metals on the B-sublattice and structure-conductivity correlation. Chemistry of Materials, 2011, 23(7): 1841–1850
CrossRef Google scholar
[22]
Teraoka Y, Nobunaga T, Okamoto K, Miura N, Yamazoe N. Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability. Solid State Ionics, 1991, 48(3-4): 207–212
CrossRef Google scholar
[23]
Ishigaki T, Yamauchi S, Mizusaki J, Fueki K, Tamura H. Tracer diffusion coefficient of oxide ions in LaCoO3 single crystal. Journal of Solid State Chemistry, 1984, 54(1): 100–107
CrossRef Google scholar
[24]
Ishigaki T, Yamauchi S, Kishio K, Mizusaki J, Fueki K. Diffusion of oxide ion vacancies in perovskite-type oxides. Journal of Solid State Chemistry, 1988, 73(1): 179–187
CrossRef Google scholar
[25]
Hayward M A, Cussen E J, Claridge J B, Bieringer M, Rosseinsky M J, Kiely C J, Blundell S J, Marshall I M, Pratt F L. The hydride anion in an extended transition metal oxide array: LaSrCoO3H0.7. Science, 2002, 295(5561): 1882–1884
CrossRef Google scholar
[26]
Bridges C A, Darling G R, Hayward M A, Rosseinsky M J. Electronic structure, magnetic ordering, and formation pathway of the transition metal oxide hydride LaSrCoO3H0.7. Journal of the American Chemical Society, 2005, 127(16): 5996–6011
CrossRef Google scholar
[27]
Rietveld H M. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 1969, 2(2): 65–71
CrossRef Google scholar
[28]
Sayle T X T, Parker S C, Catlow C R A. Surface oxygen vacancy formation on CeO2 and its role in the oxidation of carbon monoxide. Journal of the Chemical Society. Chemical Communications, 1992, 1992(14): 977–978
CrossRef Google scholar
[29]
Yang Z, Yu X, Lu Z, Li S, Hermansson K. Oxygen vacancy pairs on CeO2 (110): A DFT+U study. Physics Letters. [Part A], 2009, 373(31): 2786–2792
CrossRef Google scholar
[30]
Tuller H L, Nowick A S. Small polaron electron transport in reduced CeO2 single crystals. Journal of Physics and Chemistry of Solids, 1977, 38(8): 859–867
CrossRef Google scholar
[31]
Tuller H L, Nowick A S. Defect structure and electrical properties of nonstoichiometric CeO2 single crystals. Journal of the Electrochemical Society, 1979, 126(2): 209–217
CrossRef Google scholar
[32]
Blumental R N, Sharma R K. Electronic conductivity in nonstoichiometric cerium dioxide. Journal of Solid State Chemistry, 1975, 13(4): 360–364
CrossRef Google scholar
[33]
Hull S, Norberg S T, Ahmed I, Eriksson S G, Marrocchelli D, Madden P A. Oxygen vacancy ordering within anion-deficient ceria. Journal of Solid State Chemistry, 2009, 182(10): 2815–2821
CrossRef Google scholar
[34]
Tschöpe A, Sommer E, Birringer R. Grain size-dependent electrical conductivity of polycrystalline cerium oxide. I. Experiments. Solid State Ionics, 2001, 139(3-4): 255–265
CrossRef Google scholar
[35]
Tschöpe A, Birringer R. Grain size dependence of electrical conductivity in polycrystalline cerium oxide. Journal of Electroceramics, 2001, 7(3): 169–177
CrossRef Google scholar
[36]
Gao P, Kang Z, Fu W, Wang W, Bai X, Wang E. Electrically driven redox process in cerium oxides. Journal of the American Chemical Society, 2010, 132(12): 4197–4201
CrossRef Google scholar
[37]
Laachir A, Perrichon V, Badri A, Lamotte J, Catherine E, Lavalley J C, Fallah J E, Hilaire L, Normand F L, Quéméré E, Sauvion G N, Touret O. Reduction of CeO2 by hydrogen. Magnetic susceptibility and fourier-transform infrared, ultraviolet and X-ray photoelectron spectroscopy measurements. Journal of the Chemical Society, Faraday Transactions, 1991, 87(10): 1601–1609
CrossRef Google scholar
[38]
Konysheva E, Irvine J T S. Transport properties of multi-cations doped cerium oxide. Solid State Ionics, 2011, 184(1): 27–30
CrossRef Google scholar
[39]
Šatava V, Škvara F. Mechanism and kinetics of the decomposition of solids by a thermogravimetric method. Journal of the American Ceramic Society, 1969, 52(11): 591–595
CrossRef Google scholar
[40]
Khawam A, Flanagan D R. Solid-state kinetic models: Basics and mathematical fundamentals. Journal of Physical Chemistry B, 2006, 110(35): 17315–17328
CrossRef Google scholar
[41]
Yamamura H, Katoh E, Ichikawa M, Kakinuma K, Mori T, Haneda H. Multiple doping effect on the electrical conductivity in the (Ce1-x-yLaxMy)O2-δ (M= Ca, Sr) system. Electrochemistry, 2000, 68(6): 455–459
[42]
Zuev A, Singheiser L, Hilpert K. Oxygen vacancy formation and defect structure of Cu-doped lanthanum chromite LaCr0.79Cu0.05Al0.16O3-δ. Solid State Ionics, 2005, 176(3-4): 417–421
CrossRef Google scholar
[43]
Petrov A N, Zuev A Yu, Vylkov A I, Tsvetkov D S. Defect structure and charge transfer in undoped and doped lanthanum cobaltites. Journal of Materials Science, 2007, 42(6): 1909–1914
CrossRef Google scholar
[44]
Zhang F, Wang P, Koberstein J, Khalid S, Chan S W. Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy. Surface Science, 2004, 563(1): 74–82
CrossRef Google scholar
[45]
Konysheva E Yu, Francis S M. Identification of surface composition and chemical states in composites comprised of phases with fluorite and perovskite structures by X-ray photoelectron spectroscopy. Applied Surface Science, 2013, 268(1): 278–287
CrossRef Google scholar
[46]
Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica. Section A, Foundations of Crystallography, 1976, 32(5): 751–767
CrossRef Google scholar
[47]
Konysheva E Yu, Francis S M, Irvine J T S, Rolle A, Vannier R N. Red-ox behaviour in the La0.6Sr0.4CoO3±δ-CeO2 system. Journal of Materials Chemistry, 2011, 21(39): 15511–15520
CrossRef Google scholar
[48]
JCPDS, International Centre for Diffraction Data, file No. 34-0394
[49]
Konysheva E, Francis S M, Irvine J T S. Crystal structure, oxygen nonstoichiometry, and conductivity of mixed ionic-electronic conducting perovskite composites with CeO2. Journal of the Electrochemical Society, 2010, 157(1): B159–B165
CrossRef Google scholar
[50]
Konysheva E, Irvine J T S, Besmehn A. Crystal structure, thermochemical stability, electrical and magnetic properties of the two-phase composites in the La0.8Sr0.2MnO3±δ-CeO2 system. Solid State Ionics, 2009, 180(11-13): 778–783
CrossRef Google scholar
[51]
Poulsen F W. Defect chemistry modelling of oxygen-stoichiometry, vacancy concentrations, and conductivity of (La1-xSrx)MnO3±δ. Solid State Ionics, 2000, 129(1-4): 145–162
CrossRef Google scholar
[52]
Konysheva E, Irvine J T S. The La0.95Ni0.6Fe0.4O3-CeO2 system: phase equilibria, crystal structure of components and transport properties. Journal of Solid State Chemistry, 2011, 184(6): 1499–1504
CrossRef Google scholar
[53]
Pound B G. The characterization of doped CeO2 electrodes in solid oxide fuel cells. Solid State Ionics, 1992, 52(1): 183–188
CrossRef Google scholar
[54]
Belov B F, Goroh A V, Demchuk V P, Dorschenko N A, Somojlenko Z A. Inorganic Materials, 1983, 19(3): 231–234
[55]
Robbins M, Wertheim G K, Menth A, Sherwood R C. Preparation and properties of polycrystalline cerium orthoferrite (CeFeO3). Journal of Physics and Chemistry of Solids, 1969, 30(7): 1823–1825
CrossRef Google scholar

Acknowledgments

The authors gratefully acknowledge Dr. S. M. Frances for XPS measurements and Prof. J. T. S. Irvine for his kind support.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(592 KB)

Accesses

Citations

Detail

Sections
Recommended

/