RESEARCH ARTICLE

Polysulfone and zirconia composite separators for alkaline water electrolysis

  • Li XU , 1,2 ,
  • Wei LI 1,2 ,
  • Yan YOU 1,2 ,
  • Shaoxing ZHANG 3 ,
  • Yingchun ZHAO 3
Expand
  • 1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • 2. Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, China
  • 3. Research and Development Dept, Tianjin Mainland Hydrogen Equipment Co. Ltd., Tianjin 301609, China

Received date: 27 Dec 2012

Accepted date: 26 Mar 2013

Published date: 05 Jun 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The novel composite separators composed of polysulfone and zirconia were prepared by phase inversion precipitation technique. This technique allows pre-evaporation time and extraction temperature to be varied in order to obtain optimal performances of the separators. In order to evaluate practical applicability of those composite separators, a small-scale electrolysis experimental apparatus was used to investigate the changes of cell voltage, gas purity and separator stability. The results revealed a decreased cell voltage compared to the conventional asbestos separators, and the gas purity and separator stability met the requirements for industrial use.

Cite this article

Li XU , Wei LI , Yan YOU , Shaoxing ZHANG , Yingchun ZHAO . Polysulfone and zirconia composite separators for alkaline water electrolysis[J]. Frontiers of Chemical Science and Engineering, 2013 , 7(2) : 154 -161 . DOI: 10.1007/s11705-013-1331-8

1
Kazim A, Veziroglu T N. Utilization of solar-hydrogen energy in the UAE to maintain its Share in the world energy market for the 21st century. Renewable Energy, 2001, 24(2): 259-274

DOI

2
Rosa V M, Santos M B F, Da Silva E P. New materials for water electrolysis diaphragms. International Journal of Hydrogen Energy, 1995, 20(9): 697-700

DOI

3
Vermeiren P H, Adriansens W, Moreels J P, Leysen R. Evaluation of the Zirfon® separator for use in alkaline water electrolysis and Ni-H2 batteries. International Journal of Hydrogen Energy, 1998, 23(5): 321-324

DOI

4
Vermeiren P H, Adriansens W, Leysen R. Zirfon: a new separator for Ni-H2 batteries and alkaline fuel cells. International Journal of Hydrogen Energy, 1996, 21(8): 679-684

DOI

5
Wendt H, Hofmann H. Cermet diaphragms and integrated electrode-diaphragm units for advanced alkaline water electrolysis. International Journal of Hydrogen Energy, 1985, 10(6): 375-381

DOI

6
Fischer J, Hofmann H, Luft G, Wendt H. Fundamentals and technological aspects of medium temperature (MT) high pressure (HP) water electrolysis, in Hydrogen as an Energy Vector: Its Production, Use and Transportation. In: ECC Report EU6085. Brussels: October1978, 4(23): 277-278

7
Irving L R. Treadwell Corp (US). US Patent, <patent>4707228</patent>, 1986-<month>11</month>-<day>17</day>

8
Luigi G, Giovanni M, Alberto P, Giancarlo I, Fratelli Testori S P A. US Patent, <patent>4895634</patent>. 1990-<month>01</month>-<day>23</day>

9
Vermeiren P H, Leysen R, Beckers H, Moreels J P, Claes A. The influence of manufacturing parameters on the properties of macroporous Zirfon® separators. Journal of Porous Materials, 2008, 15(3): 259-264

DOI

10
Wienk I M, Boom R M, Beerlage M A M, Bulte A M W, Smolders C A, Strathmann H. Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers. Journal of Membrane Science, 1996, 113(2): 361-371

DOI

11
Masson J C, Brandrup J, Immergut E H. Polymer Handbook. 3rd ed. New York: John Wiley,1989, p.II-295

12
Smolders C A, Reuvers A J, Boom R M, Wienk I M. Microstructures in phase-inversion membranes. Journal of Membrane Science, 1992, 73(2): 259-275

DOI

13
Paulsen F G, Shojaie S S, Krantz W B. Effect of evaporation step on macrovoid formation in wet-cast polymeric membranes. Journal of Membrane Science, 1994, 91(3): 265-282

DOI

14
Chou W L, Yang M C. Effect of coagulation temperature and composition on surface morphology and mass transfer properties of cellulose acetate hollow fiber membranes. Polymers for Advanced Technologies, 2005, 16(7): 524-532

DOI

15
Tsai H A, Wang D M, Lai J Y. Effect of temperature and span series surfactant on the structure of polysulfone membranes. Journal of Applied Polymer Science, 2002, 86(1): 166-173

DOI

16
Conesa A, Gumi T, Palet C. Membrane thickness and preparation temperature as key parameters for controlling the macrovoid structure of chiral activated membranes (CAM). Journal of Membrane Science, 2007, 287(1): 29-40

DOI

Outlines

/