Polysulfone and zirconia composite separators for alkaline water electrolysis

Li XU, Wei LI, Yan YOU, Shaoxing ZHANG, Yingchun ZHAO

PDF(450 KB)
PDF(450 KB)
Front. Chem. Sci. Eng. ›› 2013, Vol. 7 ›› Issue (2) : 154-161. DOI: 10.1007/s11705-013-1331-8
RESEARCH ARTICLE

Polysulfone and zirconia composite separators for alkaline water electrolysis

Author information +
History +

Abstract

The novel composite separators composed of polysulfone and zirconia were prepared by phase inversion precipitation technique. This technique allows pre-evaporation time and extraction temperature to be varied in order to obtain optimal performances of the separators. In order to evaluate practical applicability of those composite separators, a small-scale electrolysis experimental apparatus was used to investigate the changes of cell voltage, gas purity and separator stability. The results revealed a decreased cell voltage compared to the conventional asbestos separators, and the gas purity and separator stability met the requirements for industrial use.

Keywords

phase inversion / separator / alkaline water electrolysis / mechanical and chemical stability

Cite this article

Download citation ▾
Li XU, Wei LI, Yan YOU, Shaoxing ZHANG, Yingchun ZHAO. Polysulfone and zirconia composite separators for alkaline water electrolysis. Front Chem Sci Eng, 2013, 7(2): 154‒161 https://doi.org/10.1007/s11705-013-1331-8

References

[1]
Kazim A, Veziroglu T N. Utilization of solar-hydrogen energy in the UAE to maintain its Share in the world energy market for the 21st century. Renewable Energy, 2001, 24(2): 259-274
CrossRef Google scholar
[2]
Rosa V M, Santos M B F, Da Silva E P. New materials for water electrolysis diaphragms. International Journal of Hydrogen Energy, 1995, 20(9): 697-700
CrossRef Google scholar
[3]
Vermeiren P H, Adriansens W, Moreels J P, Leysen R. Evaluation of the Zirfon® separator for use in alkaline water electrolysis and Ni-H2 batteries. International Journal of Hydrogen Energy, 1998, 23(5): 321-324
CrossRef Google scholar
[4]
Vermeiren P H, Adriansens W, Leysen R. Zirfon: a new separator for Ni-H2 batteries and alkaline fuel cells. International Journal of Hydrogen Energy, 1996, 21(8): 679-684
CrossRef Google scholar
[5]
Wendt H, Hofmann H. Cermet diaphragms and integrated electrode-diaphragm units for advanced alkaline water electrolysis. International Journal of Hydrogen Energy, 1985, 10(6): 375-381
CrossRef Google scholar
[6]
Fischer J, Hofmann H, Luft G, Wendt H. Fundamentals and technological aspects of medium temperature (MT) high pressure (HP) water electrolysis, in Hydrogen as an Energy Vector: Its Production, Use and Transportation. In: ECC Report EU6085. Brussels: October1978, 4(23): 277-278
[7]
Irving L R. Treadwell Corp (US). US Patent, <patent>4707228</patent>, 1986-<month>11</month>-<day>17</day>
[8]
Luigi G, Giovanni M, Alberto P, Giancarlo I, Fratelli Testori S P A. US Patent, <patent>4895634</patent>. 1990-<month>01</month>-<day>23</day>
[9]
Vermeiren P H, Leysen R, Beckers H, Moreels J P, Claes A. The influence of manufacturing parameters on the properties of macroporous Zirfon® separators. Journal of Porous Materials, 2008, 15(3): 259-264
CrossRef Google scholar
[10]
Wienk I M, Boom R M, Beerlage M A M, Bulte A M W, Smolders C A, Strathmann H. Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers. Journal of Membrane Science, 1996, 113(2): 361-371
CrossRef Google scholar
[11]
Masson J C, Brandrup J, Immergut E H. Polymer Handbook. 3rd ed. New York: John Wiley,1989, p.II-295
[12]
Smolders C A, Reuvers A J, Boom R M, Wienk I M. Microstructures in phase-inversion membranes. Journal of Membrane Science, 1992, 73(2): 259-275
CrossRef Google scholar
[13]
Paulsen F G, Shojaie S S, Krantz W B. Effect of evaporation step on macrovoid formation in wet-cast polymeric membranes. Journal of Membrane Science, 1994, 91(3): 265-282
CrossRef Google scholar
[14]
Chou W L, Yang M C. Effect of coagulation temperature and composition on surface morphology and mass transfer properties of cellulose acetate hollow fiber membranes. Polymers for Advanced Technologies, 2005, 16(7): 524-532
CrossRef Google scholar
[15]
Tsai H A, Wang D M, Lai J Y. Effect of temperature and span series surfactant on the structure of polysulfone membranes. Journal of Applied Polymer Science, 2002, 86(1): 166-173
CrossRef Google scholar
[16]
Conesa A, Gumi T, Palet C. Membrane thickness and preparation temperature as key parameters for controlling the macrovoid structure of chiral activated membranes (CAM). Journal of Membrane Science, 2007, 287(1): 29-40
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(450 KB)

Accesses

Citations

Detail

Sections
Recommended

/