
Polysulfone and zirconia composite separators for alkaline water electrolysis
Li XU, Wei LI, Yan YOU, Shaoxing ZHANG, Yingchun ZHAO
Front. Chem. Sci. Eng. ›› 2013, Vol. 7 ›› Issue (2) : 154-161.
Polysulfone and zirconia composite separators for alkaline water electrolysis
The novel composite separators composed of polysulfone and zirconia were prepared by phase inversion precipitation technique. This technique allows pre-evaporation time and extraction temperature to be varied in order to obtain optimal performances of the separators. In order to evaluate practical applicability of those composite separators, a small-scale electrolysis experimental apparatus was used to investigate the changes of cell voltage, gas purity and separator stability. The results revealed a decreased cell voltage compared to the conventional asbestos separators, and the gas purity and separator stability met the requirements for industrial use.
phase inversion / separator / alkaline water electrolysis / mechanical and chemical stability
[1] |
Kazim A, Veziroglu T N. Utilization of solar-hydrogen energy in the UAE to maintain its Share in the world energy market for the 21st century. Renewable Energy, 2001, 24(2): 259-274
CrossRef
Google scholar
|
[2] |
Rosa V M, Santos M B F, Da Silva E P. New materials for water electrolysis diaphragms. International Journal of Hydrogen Energy, 1995, 20(9): 697-700
CrossRef
Google scholar
|
[3] |
Vermeiren P H, Adriansens W, Moreels J P, Leysen R. Evaluation of the Zirfon® separator for use in alkaline water electrolysis and Ni-H2 batteries. International Journal of Hydrogen Energy, 1998, 23(5): 321-324
CrossRef
Google scholar
|
[4] |
Vermeiren P H, Adriansens W, Leysen R. Zirfon: a new separator for Ni-H2 batteries and alkaline fuel cells. International Journal of Hydrogen Energy, 1996, 21(8): 679-684
CrossRef
Google scholar
|
[5] |
Wendt H, Hofmann H. Cermet diaphragms and integrated electrode-diaphragm units for advanced alkaline water electrolysis. International Journal of Hydrogen Energy, 1985, 10(6): 375-381
CrossRef
Google scholar
|
[6] |
Fischer J, Hofmann H, Luft G, Wendt H. Fundamentals and technological aspects of medium temperature (MT) high pressure (HP) water electrolysis, in Hydrogen as an Energy Vector: Its Production, Use and Transportation. In: ECC Report EU6085. Brussels: October1978, 4(23): 277-278
|
[7] |
Irving L R. Treadwell Corp (US). US Patent, <patent>4707228</patent>, 1986-<month>11</month>-<day>17</day>
|
[8] |
Luigi G, Giovanni M, Alberto P, Giancarlo I, Fratelli Testori S P A. US Patent, <patent>4895634</patent>. 1990-<month>01</month>-<day>23</day>
|
[9] |
Vermeiren P H, Leysen R, Beckers H, Moreels J P, Claes A. The influence of manufacturing parameters on the properties of macroporous Zirfon® separators. Journal of Porous Materials, 2008, 15(3): 259-264
CrossRef
Google scholar
|
[10] |
Wienk I M, Boom R M, Beerlage M A M, Bulte A M W, Smolders C A, Strathmann H. Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers. Journal of Membrane Science, 1996, 113(2): 361-371
CrossRef
Google scholar
|
[11] |
Masson J C, Brandrup J, Immergut E H. Polymer Handbook. 3rd ed. New York: John Wiley,1989, p.II-295
|
[12] |
Smolders C A, Reuvers A J, Boom R M, Wienk I M. Microstructures in phase-inversion membranes. Journal of Membrane Science, 1992, 73(2): 259-275
CrossRef
Google scholar
|
[13] |
Paulsen F G, Shojaie S S, Krantz W B. Effect of evaporation step on macrovoid formation in wet-cast polymeric membranes. Journal of Membrane Science, 1994, 91(3): 265-282
CrossRef
Google scholar
|
[14] |
Chou W L, Yang M C. Effect of coagulation temperature and composition on surface morphology and mass transfer properties of cellulose acetate hollow fiber membranes. Polymers for Advanced Technologies, 2005, 16(7): 524-532
CrossRef
Google scholar
|
[15] |
Tsai H A, Wang D M, Lai J Y. Effect of temperature and span series surfactant on the structure of polysulfone membranes. Journal of Applied Polymer Science, 2002, 86(1): 166-173
CrossRef
Google scholar
|
[16] |
Conesa A, Gumi T, Palet C. Membrane thickness and preparation temperature as key parameters for controlling the macrovoid structure of chiral activated membranes (CAM). Journal of Membrane Science, 2007, 287(1): 29-40
CrossRef
Google scholar
|
/
〈 |
|
〉 |