Rhodium complex-anchored and supramolecular polymer-grafted CdS nanoflower for enhanced photosynthesis of H2O2 and photobiocatalytic C–H bond oxyfunctionalization
Received date: 11 Nov 2023
Accepted date: 05 Apr 2024
Copyright
Unspecific peroxygenases exhibit high activity for the selective oxyfunctionalization of inert C(sp3)–H bonds using only H2O2 as a clean oxidant, while also exhibiting sensitivity to H2O2 concentration. CdS-based semiconductors are promising for the photosynthesis of H2O2 owing to their adequately negative potential for oxygen reduction reaction via a proton-coupled electron transfer process, however, they suffer from fast H2O2 decomposition on the surface of pristine CdS. Therefore, [Cp*Rh(bpy)H2O]2+, a highly selective proton-coupled electron transfer catalyst, was anchored onto a supramolecular polymer-grafted CdS nanoflower to construct an efficient integrated photocatalyst for generating H2O2, mitigating the surface issue of pristine CdS, increasing light absorption, accelerating photonic carrier separation, and enhancing oxygen reduction reaction selectivity to H2O2. This photocatalyst promoted the light driven H2O2 generation rate up to 1345 μmol·L–1·g–1·h–1, which was 2.4 times that of pristine CdS. The constructed heterojunction photocatalyst could supply H2O2 in situ for nonspecific peroxygenases to catalyze the C–H oxyfunctionalization of ethylbenzene, achieving a yield of 81% and an ee value of 99% under optimum conditions. A wide range of substrates were converted to the corresponding chiral alcohols using this photo-enzyme catalytic system, achieving the corresponding chiral alcohols in good yield (51%–88%) and excellent enantioselectivity (90%–99% ee).
Hongwei Jia , Xiaoyang Yue , Yuying Hou , Fei Huang , Cuiyao Cao , Feifei Jia , Guanhua Liu , Xiaobing Zheng , Yunting Liu , Yanjun Jiang . Rhodium complex-anchored and supramolecular polymer-grafted CdS nanoflower for enhanced photosynthesis of H2O2 and photobiocatalytic C–H bond oxyfunctionalization[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(10) : 114 . DOI: 10.1007/s11705-024-2465-6
1 |
Yamaguchi J , Yamaguchi A D , Itami K . Itami K. C–H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angewandte Chemie International Edition, 2012, 51(36): 8960–9009
|
2 |
Guillemard L , Kaplaneris N , Ackermann L , Johansson M J . Late-stage C–H functionalization offers new opportunities in drug discovery. Nature Reviews. Chemistry, 2021, 5(8): 522–545
|
3 |
Sinha S K , Guin S , Maiti S , Biswas J P , Porey S , Maiti D . Toolbox for distal C–H bond functionalizations in organic molecules. Chemical Reviews, 2022, 122(6): 5682–5841
|
4 |
Holmberg-Douglas N , Nicewicz D A . Photoredox-catalyzed C–H functionalization reactions. Chemical Reviews, 2022, 122(2): 1925–2016
|
5 |
Zhang L , Ritter T . A perspective on late-stage aromatic C–H bond functionalization. Journal of the American Chemical Society, 2022, 144(6): 2399–2414
|
6 |
Lam N Y S , Wu K , Yu J Q . Advancing the logic of chemical synthesis: C−H activation as strategic and tactical disconnections for C−C bond construction. Angewandte Chemie International Edition, 2021, 60(29): 15767–15790
|
7 |
Heath R S , Turner N J . Recent advances in oxidase biocatalysts: enzyme discovery, cascade reactions and scale up. Current Opinion in Green and Sustainable Chemistry, 2022, 38: 100693
|
8 |
Hobisch M , Holtmann D , Gomez de Santos P , Alcalde M , Hollmann F , Kara S . Recent developments in the use of peroxygenases—exploring their high potential in selective oxyfunctionalisations. Biotechnology Advances, 2021, 51: 107615
|
9 |
Beltrán-Nogal A , Sánchez-Moreno I , Méndez-Sánchez D , Gómez de Santos P , Hollmann F , Alcalde M . Surfing the wave of oxyfunctionalization chemistry by engineering fungal unspecific peroxygenases. Current Opinion in Structural Biology, 2022, 73: 102342
|
10 |
MonterreyD TMenés-RubioAKeserMGonzalez-PerezDAlcaldeM. Unspecific peroxygenases: the pot of gold at the end of the oxyfunctionalization rainbow? Current Opinion in Green and Sustainable Chemistry, 2023, 41: 100786
|
11 |
Grogan G . Hemoprotein catalyzed oxygenations: P450s, UPOs, and progress toward scalable reactions. JACS Au, 2021, 1(9): 1312–1329
|
12 |
Schmermund L , Reischauer S , Bierbaumer S , Winkler C K , Diaz-Rodriguez A , Edwards L J , Kara S , Mielke T , Cartwright J , Grogan G .
|
13 |
YuWHuCBaiLTianNZhangYHuangH. Photocatalytic hydrogen peroxide evolution: what is the most effective strategy? Nano Energy, 2022, 104: 107906
|
14 |
Lee J H , Cho H , Park S O , Hwang J M , Hong Y , Sharma P , Jeon W C , Cho Y , Yang C , Kwak S K .
|
15 |
Thakur S , Kshetri T , Kim N H , Lee J H . Sunlight-driven sustainable production of hydrogen peroxide using a CdS-graphene hybrid photocatalyst. Journal of Catalysis, 2017, 345: 78–86
|
16 |
Zhang E , Zhu Q , Huang J , Liu J , Tan G , Sun C , Li T , Liu S , Li Y , Wang H .
|
17 |
Lai C , Xu M , Xu F , Li B , Ma D , Li Y , Li L , Zhang M , Huang D , Tang L .
|
18 |
Zhu B , Liu J , Sun J , Xie F , Tan H , Cheng B , Zhang J . CdS decorated resorcinol-formaldehyde spheres as an inorganic/organic S-scheme photocatalyst for enhanced H2O2 production. Journal of Materials Science and Technology, 2023, 162: 90–98
|
19 |
Wei Z , Zhao S , Li W , Zhao X , Chen C , Phillips D L , Zhu Y , Choi W . Artificial photosynthesis of H2O2 through reversible photoredox transformation between catechol and o-benzoquinone on polydopamine-coated CdS. ACS Catalysis, 2022, 12(18): 11436–11443
|
20 |
Zhang G , Li X , Chen D , Li N , Xu Q , Li H , Lu J . Internal electric field and adsorption effect synergistically boost carbon dioxide conversion on cadmium sulfide@covalent triazine frameworks core-shell photocatalyst. Advanced Functional Materials, 2023, 33(51): 2308553
|
21 |
Mengele A K , Rau S . Product selectivity in homogeneous artificial photosynthesis using [(bpy)Rh(Cp*)X]n+-based catalysts. Inorganics, 2017, 5(2): 35
|
22 |
Ogo S , Yatabe T , Tome T , Takenaka R , Shiota Y , Kato K . Safe, one-pot, homogeneous direct synthesis of H2O2. Journal of the American Chemical Society, 2023, 145(8): 4384–4388
|
23 |
Lee C H , Kim J , Park C B . Park C B. Z-Schematic artificial leaf structure for biosolar oxyfunctionalization of hydrocarbons. ACS Energy Letters, 2023, 8(6): 2513–2521
|
24 |
Deng X , Zheng X , Jia F , Cao C , Song H , Jiang Y , Liu Y , Liu G , Li S , Wang L . Unspecific peroxygenases immobilized on Pd-loaded three-dimensional ordered macroporous (3DOM) titania photocatalyst for photo-enzyme integrated catalysis. Applied Catalysis B: Environment and Energy, 2023, 330: 122622
|
25 |
Jia F , Liu Y , Deng X , Cao X , Zheng X , Zhou L , Gao J , Jiang Y . Immobilization of enzymes on cyclodextrin-anchored dehiscent mesoporous TiO2 for efficient photoenzymatic hydroxylation. ACS Applied Materials & Interfaces, 2023, 15(6): 7928–7938
|
26 |
Zhang L , Ran J , Qiao S Z , Jaroniec M . Characterization of semiconductor photocatalysts. Chemical Society Reviews, 2019, 48(20): 5184–5206
|
27 |
Xiang Q , Yu J , Jaroniec M . Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. Journal of the American Chemical Society, 2012, 134(15): 6575–6578
|
28 |
Xiang Q , Cheng B , Yu J . Hierarchical porous CdS nanosheet-assembled flowers with enhanced visible-light photocatalytic H2-production performance. Applied Catalysis B: Environment and Energy, 2013, 138: 299–303
|
29 |
Chen Y , Zhong W , Chen F , Wang P , Fan J , Yu H . Photoinduced self-stability mechanism of CdS photocatalyst: the dependence of photocorrosion and H2-evolution performance. Journal of Materials Science and Technology, 2022, 121: 19–27
|
30 |
Xue X , Dong W , Luan Q , Gao H , Wang G . Novel interfacial lateral electron migration pathway formed by constructing metallized CoP2/CdS interface for excellent photocatalytic hydrogen production. Applied Catalysis B: Environment and Energy, 2023, 334: 122860
|
31 |
Xie L , Huang X , Huang Y , Yang K , Jiang P . Core-shell structured hyperbranched aromatic polyamide/BaTiO3 hybrid filler for poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) nanocomposites with the dielectric constant comparable to that of percolative composites. ACS Applied Materials & Interfaces, 2013, 5(5): 1747–1756
|
32 |
Xia M , Zhang W , Xu Y , Lin H , Jiao Y , Shen L , Li R , Zhang M , Hong H . Polyamide membranes with a ZIF-8@Tannic acid core-shell nanoparticles interlayer to enhance nanofiltration performance. Desalination, 2022, 541: 116042
|
33 |
Li C Q , Du X , Jiang S , Liu Y , Niu Z L , Liu Z Y , Yi S S , Yue X Z . Constructing direct Z-scheme heterostructure by enwrapping ZnIn2S4 on CdS hollow cube for efficient photocatalytic H2 generation. Advanced Science, 2022, 9(24): 2201773
|
34 |
Mu Q , Su Y , Wei Z , Sun H , Lian Y , Dong Y , Qi P , Deng Z , Peng Y . Dissecting the interfaces of MOF-coated CdS on synergized charge transfer for enhanced photocatalytic CO2 reduction. Journal of Catalysis, 2021, 397: 128–136
|
35 |
Liu J , Ren X , Li C , Wang M , Li H , Yang Q . Assembly of COFs layer and electron mediator on silica for visible light driven photocatalytic NADH regeneration. Applied Catalysis B: Environment and Energy, 2022, 310: 121314
|
36 |
Wang D , Zeng H , Xiong X , Wu M F , Xia M , Xie M , Zou J , Luo S L . Highly efficient charge transfer in CdS-covalent organic framework nanocomposites for stable photocatalytic hydrogen evolution under visible light. Science Bulletin, 2020, 65(2): 113–122
|
37 |
Sun L , Li L , Yang J , Fan J , Xu Q . Fabricating covalent organic framework/CdS S-scheme heterojunctions for improved solar hydrogen generation. Chinese Journal of Catalysis, 2022, 43(2): 350–358
|
38 |
Zou L , Sa R , Zhong H , Lv H , Wang X , Wang R . Photoelectron transfer mediated by the interfacial electron effects for boosting visible-light-driven CO2 reduction. ACS Catalysis, 2022, 12(6): 3550–3557
|
39 |
Gao R , Bai J , Shen R , Hao L , Huang C , Wang L , Liang G , Zhang P , Li X . 2D/2D covalent organic framework/CdS Z-scheme heterojunction for enhanced photocatalytic H2 evolution: insights into interfacial charge transfer mechanism. Journal of Materials Science and Technology, 2023, 137: 223–231
|
/
〈 | 〉 |