Rhodium complex-anchored and supramolecular polymer-grafted CdS nanoflower for enhanced photosynthesis of H2O2 and photobiocatalytic C–H bond oxyfunctionalization
Hongwei Jia , Xiaoyang Yue , Yuying Hou , Fei Huang , Cuiyao Cao , Feifei Jia , Guanhua Liu , Xiaobing Zheng , Yunting Liu , Yanjun Jiang
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (10) : 114
Rhodium complex-anchored and supramolecular polymer-grafted CdS nanoflower for enhanced photosynthesis of H2O2 and photobiocatalytic C–H bond oxyfunctionalization
Unspecific peroxygenases exhibit high activity for the selective oxyfunctionalization of inert C(sp3)–H bonds using only H2O2 as a clean oxidant, while also exhibiting sensitivity to H2O2 concentration. CdS-based semiconductors are promising for the photosynthesis of H2O2 owing to their adequately negative potential for oxygen reduction reaction via a proton-coupled electron transfer process, however, they suffer from fast H2O2 decomposition on the surface of pristine CdS. Therefore, [Cp*Rh(bpy)H2O]2+, a highly selective proton-coupled electron transfer catalyst, was anchored onto a supramolecular polymer-grafted CdS nanoflower to construct an efficient integrated photocatalyst for generating H2O2, mitigating the surface issue of pristine CdS, increasing light absorption, accelerating photonic carrier separation, and enhancing oxygen reduction reaction selectivity to H2O2. This photocatalyst promoted the light driven H2O2 generation rate up to 1345 μmol·L–1·g–1·h–1, which was 2.4 times that of pristine CdS. The constructed heterojunction photocatalyst could supply H2O2 in situ for nonspecific peroxygenases to catalyze the C–H oxyfunctionalization of ethylbenzene, achieving a yield of 81% and an ee value of 99% under optimum conditions. A wide range of substrates were converted to the corresponding chiral alcohols using this photo-enzyme catalytic system, achieving the corresponding chiral alcohols in good yield (51%–88%) and excellent enantioselectivity (90%–99% ee).
cadmium sulfide / unspecific peroxygenases / photobiocatalysis / hydrogen peroxide / oxyfunctionalization
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
Higher Education Press
Supplementary files
/
| 〈 |
|
〉 |