Advances in catalysts and reaction systems for electro/photocatalytic ammonia production

  • Shenshen Zheng 1,2 ,
  • Fengying Zhang , 1,2 ,
  • Yuman Jiang 2 ,
  • Tao Xu 2 ,
  • Han Li 2 ,
  • Heng Guo 1,2 ,
  • Ying Zhou , 1,2
Expand
  • 1. National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
  • 2. School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
zhangfy@swpu.edu.cn
yzhou@swpu.edu.cn

Received date: 26 Jan 2024

Accepted date: 04 Apr 2024

Copyright

2024 Higher Education Press

Abstract

Ammonia is a vital component in the fertilizer and chemical industries, as well as serving as a significant carrier of renewable hydrogen energy. Compared with the industry’s principal technique, the Haber-Bosch method, for ammonia synthesis, electro/photocatalytic ammonia synthesis is increasingly recognized as a viable and eco-friendly alternative. This method enables distributed small-scale deployment and can be powered by sustainable renewable energy sources. However, the efficiency of electro/photocatalytic nitrogen reduction reaction is hindered by the challenges in activating the N≡N bond and nitrogen’s low solubility, thereby limiting its large-scale industrial applications. In this review, recent advancements in electro/photocatalytic nitrogen reduction are summarized, encompassing the complex reaction mechanisms, as well as the effective strategies for developing electro/photocatalytic catalysts and advanced reaction systems. Furthermore, the energy efficiency and economic analysis of electro/photocatalytic nitrogen fixation are deeply discussed. Finally, some unsolved challenges and potential opportunities are discussed for the future development of electro/photocatalytic ammonia synthesis.

Cite this article

Shenshen Zheng , Fengying Zhang , Yuman Jiang , Tao Xu , Han Li , Heng Guo , Ying Zhou . Advances in catalysts and reaction systems for electro/photocatalytic ammonia production[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(10) : 112 . DOI: 10.1007/s11705-024-2463-8

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by the National Key R&D Project of China (Grant No. 2020YFA0710000), the National Natural Science Foundation of China (Grant Nos. 22309152, 22311530118, and 22109132), the Provincial Key Research and Development Project of Sichuan (Grant No. 24SYSX0175), the International Science and Technology Cooperation Project of Chengdu (Grant No. 2021-GH02-00052-HZ), the Technology Innovation R&D Project of Chengdu (Grant No. 2022-YF05-00978-SN), and the Scientific Research Starting Project of SWPU (Grant No. 2021QHZ028), Production-Education Integration Demonstration Project of Sichuan Province “Photovoltaic Industry Production-Education Integration Comprehensive Demonstration Base of Sichuan Province (Sichuan Financial Education [2022] No. 106)”, Research and Innovation Fund for Graduate Students of Southwest Petroleum University (No. 2022KYCX115).
1
Medford A J , Hatzell M C . Photon-driven nitrogen fixation: current progress, thermodynamic considerations, and future outlook. ACS Catalysis, 2017, 7(4): 2624–2643

DOI

2
Van der Ham C J M , Koper M T M , Hetterscheid D G H . Challenges in reduction of dinitrogen by proton and electron transfer. Chemical Society Reviews, 2014, 43(15): 5183–5191

DOI

3
Gruber N , Galloway J N . An earth-system perspective of the global nitrogen cycle. Nature, 2008, 451(7176): 293–296

DOI

4
Green ammonia synthesis. Nature Synthesis, 2023, 2(7): 581–582

5
Lazouski N , Chung M , Williams K , Gala M L , Manthiram K . Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen. Nature Catalysis, 2020, 3(5): 463–469

DOI

6
Kitano M , Inoue Y , Yamazaki Y , Hayashi F , Kanbara S , Matsuishi S , Yokoyama T , Kim S W , Hara M , Hosono H . Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nature Chemistry, 2012, 4(11): 934–940

DOI

7
Oshikiri T , Ueno K , Misawa H . Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation. Angewandte Chemie International Edition, 2016, 55(12): 3942–3946

DOI

8
Van Tamelen E E , Seeley D A . Catalytic fixation of molecular nitrogen by electrolytic and chemical reduction. Journal of the American Chemical Society, 1969, 91(18): 5194–5194

DOI

9
Schrauzer G N , Guth T D . Photolysis of water and photoreduction of nitrogen on titanium dioxide. Journal of the American Chemical Society, 1977, 99(22): 7189–7193

DOI

10
Wan Y , Xu J , Lv R . Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Materials Today, 2019, 27: 69–90

DOI

11
Wang S , Ichihara F , Pang H , Chen H , Ye J . Nitrogen fixation reaction derived from nanostructured catalytic materials. Advanced Functional Materials, 2018, 28(50): 1803309

DOI

12
Li J , Guo X , Gan L , Huang Z F , Pan L , Shi C , Zhang X , Yang G , Zou J J . Fundamentals and advances in emerging crystalline porous materials for photocatalytic and electrocatalytic nitrogen fixation. ACS Applied Energy Materials, 2022, 5(8): 9241–9265

DOI

13
Cui X , Tang C , Zhang Q . A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Advanced Energy Materials, 2018, 8(22): 1800369

DOI

14
Cheng H , Cui P , Wang F , Ding L X , Wang H . High efficiency electrochemical nitrogen fixation achieved with a lower pressure reaction system by changing the chemical equilibrium. Angewandte Chemie International Edition, 2019, 58(43): 15541–15547

DOI

15
Liu D , Chen M , Du X , Ai H , Lo K H , Wang S , Chen S , Xing G , Wang X , Pan H . Development of electrocatalysts for efficient nitrogen reduction reaction under ambient condition. Advanced Functional Materials, 2021, 31(11): 2008983

DOI

16
Jia H P , Quadrelli E A . Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chemical Society Reviews, 2014, 43(2): 547–564

DOI

17
Qing G , Ghazfar R , Jackowski S T , Habibzadeh F , Ashtiani M M , Chen C P , Smith M R III , Hamann T W . Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chemical Reviews, 2020, 120(12): 5437–5516

DOI

18
Abghoui Y , Skúlason E . Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts. Catalysis Today, 2017, 286: 69–77

DOI

19
Chebrolu V T , Jang D , Rani G M , Lim C , Yong K , Kim W B . Overview of emerging catalytic materials for electrochemical green ammonia synthesis and process. Carbon Energy, 2023, 5(12): e361

DOI

20
Liu S , Wang M , Ji H , Shen X , Yan C , Qian T . Altering the rate-determining step over cobalt single clusters leading to highly efficient ammonia synthesis. National Science Review, 2021, 8(5): 136

DOI

21
Shipman M A , Symes M D . Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catalysis Today, 2017, 286: 57–68

DOI

22
Abghoui Y , Garden A L , Howalt J G , Vegge T , Skúlason E . Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: a DFT guide for experiments. ACS Catalysis, 2016, 6(2): 635–646

DOI

23
Ling C , Zhang Y , Li Q , Bai X , Shi L , Wang J . New mechanism for N2 reduction: the essential role of surface hydrogenation. Journal of the American Chemical Society, 2019, 141(45): 18264–18270

DOI

24
Yan Z , Ji M , Xia J , Zhu H . Recent advanced materials for electrochemical and photoelectrochemical synthesis of ammonia from dinitrogen: one step closer to a sustainable energy future. Advanced Energy Materials, 2020, 10(11): 1902020

DOI

25
Medford A J , Vojvodic A , Hummelshøj J S , Voss J , Abild-Pedersen F , Studt F , Bligaard T , Nilsson A , Nørskov J K . From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis, 2015, 328: 36–42

DOI

26
Skúlason E , Bligaard T , Gudmundsdóttir S , Studt F , Rossmeisl J , Abild Pedersen F , Vegge T , Jónsson H , Nørskov J K . A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Physical Chemistry Chemical Physics, 2012, 14(3): 1235–1245

DOI

27
Montoya J H , Tsai C , Vojvodic A , Nørskov J K . The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. ChemSusChem, 2015, 8(13): 2180–2186

DOI

28
Yao Y , Wang H , Yuan X Z , Li H , Shao M . Electrochemical nitrogen reduction reaction on ruthenium. ACS Energy Letters, 2019, 4(6): 1336–1341

DOI

29
Zhao Y , Li F , Li W , Li Y , Liu C , Zhao Z , Shan Y , Ji Y , Sun L . Identification of M-NH2-NH2 intermediate and rate determining step for nitrogen reduction with bioinspired sulfur-bonded FeW catalyst. Angewandte Chemie International Edition, 2021, 60(37): 20331–20341

DOI

30
Liao W , Xie K , Liu L , Wang X , Luo Y , Liang S , Liu F , Jiang L . Triggering in-plane defect cluster on MoS2 for accelerated dinitrogen electroreduction to ammonia. Journal of Energy Chemistry, 2021, 62: 359–366

DOI

31
Xue X , Chen R , Yan C , Zhao P , Hu Y , Zhang W , Yang S , Jin Z . Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: advances, challenges and perspectives. Nano Research, 2019, 12(6): 1229–1249

DOI

32
Yu S , Xiang T , Alharbi N S , Alaidaroos B A , Chen C . Recent development of catalytic strategies for sustainable ammonia production. Chinese Journal of Chemical Engineering, 2023, 62: 65–113

DOI

33
Shi M M , Bao D , Li S J , Wulan B R , Yan J M , Jiang Q . Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Advanced Energy Materials, 2018, 8(21): 1800124

DOI

34
Tao H , Choi C , Ding L X , Jiang Z , Han Z , Jia M , Fan Q , Gao Y , Wang H , Robertson A W . . Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem, 2019, 5(1): 204–214

DOI

35
Li L , Tang C , Xia B , Jin H , Zheng Y , Qiao S Z . Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catalysis, 2019, 9(4): 2902–2908

DOI

36
Ye T N , Park S W , Lu Y , Li J , Sasase M , Kitano M , Tada T , Hosono H . Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature, 2020, 583(7816): 391–395

DOI

37
Han J , Ji X , Ren X , Cui G , Li L , Xie F , Wang H , Li B , Sun X . MoO3 nanosheets for efficient electrocatalytic N2 fixation to NH3. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(27): 12974–12977

DOI

38
Zhao W , Zhang J , Zhu X , Zhang M , Tang J , Tan M , Wang Y . Enhanced nitrogen photofixation on Fe-doped TiO2 with highly exposed (101) facets in the presence of ethanol as scavenger. Applied Catalysis B: Environmental, 2014, 144: 468–477

DOI

39
Chu K , Liu Y P , Li Y B , Zhang H , Tian Y . Efficient electrocatalytic N2 reduction on CoO quantum dots. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(9): 4389–4394

DOI

40
Wang P , Nong W , Li Y , Cui H , Wang C . Strengthening nitrogen affinity on CuAu@Cu core-shell nanoparticles with ultrathin Cu skin via strain engineering and ligand effect for boosting nitrogen reduction reaction. Applied Catalysis B: Environmental, 2021, 288: 119999

DOI

41
Yang B , Ding W , Zhang H , Zhang S . Recent progress in electrochemical synthesis of ammonia from nitrogen: strategies to improve the catalytic activity and selectivity. Energy & Environmental Science, 2021, 14(2): 672–687

DOI

42
Zhao R , Xie H , Chang L , Zhang X , Zhu X , Tong X , Wang T , Luo Y , Wei P , Wang Z . . Recent progress in the electrochemical ammonia synthesis under ambient conditions. EnergyChem, 2019, 1(2): 100011

DOI

43
Tian Y , Xu D , Chu K , Wei Z , Liu W . Metal-free N, S co-doped graphene for efficient and durable nitrogen reduction reaction. Journal of Materials Science, 2019, 54(12): 9088–9097

DOI

44
Zhou S , Yang X , Xu X , Dou S X , Du Y , Zhao J . Boron nitride nanotubes for ammonia synthesis: activation by filling transition metals. Journal of the American Chemical Society, 2020, 142(1): 308–317

DOI

45
Wei Z , Zhang Y , Wang S , Wang C , Ma J . Fe-doped phosphorene for the nitrogen reduction reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(28): 13790–13796

DOI

46
Zhang L , Ding L X , Chen G F , Yang X , Wang H . Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angewandte Chemie International Edition, 2019, 58(9): 2612–2616

DOI

47
LaiJLiuHDingL XWangJChenG FWangH. Black phosphorene with removable aluminum ion protection for enhanced electrochemical nitrogen fixation. Advanced Energy Materials, Jan 9, 2024. https://doi.org/10.1002/aenm.202303963

48
Liu Y G , Tian M , Hou J , Jiang H Y . Research progress and perspectives on active sites of photo- and electrocatalytic nitrogen reduction. Energy & Fuels, 2022, 36(19): 11323–11358

DOI

49
Li J X , Yu Y , Xu S , Yan W , Mu S , Zhang J N . Function of electron spin effect in electrocatalysts. Wuli Huaxue Xuebao, 2023, 39(12): 2302049

DOI

50
Li T , Tang C , Guo H , Wu H , Duan C , Wang H , Zhang F , Cao Y , Yang G , Zhou Y . In situ growth of Fe2O3 nanorod arrays on carbon cloth with rapid charge transfer for efficient nitrate electroreduction to ammonia. ACS Applied Materials & Interfaces, 2022, 14(44): 49765–49773

DOI

51
Nazemi M , Panikkanvalappil S R , El Sayed M A . Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages. Nano Energy, 2018, 49: 316–323

DOI

52
Zhao J , Wang B , Zhou Q , Wang H , Li X , Chen H , Wei Q , Wu D , Luo Y , You J . . Efficient electrohydrogenation of N2 to NH3 by oxidized carbon nanotubes under ambient conditions. Chemical Communications, 2019, 55(34): 4997–5000

DOI

53
Wang Z , Zheng K , Liu S , Dai Z , Xu Y , Li X , Wang H , Wang L . Electrocatalytic nitrogen reduction to ammonia by Fe2O3 nanorod array on carbon cloth. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11754–11759

DOI

54
Luo Y , Chen G F , Ding L , Chen X , Ding L X , Wang H . Efficient electrocatalytic N2 fixation with MXene under ambient conditions. Joule, 2019, 3(1): 279–289

DOI

55
Zhang S , Zhao Y , Shi R , Zhou C , Waterhouse G I N , Wu L Z , Tung C H , Zhang T . Efficient photocatalytic nitrogen fixation over Cuδ+-modified defective ZnAl-layered double hydroxide nanosheets. Advanced Energy Materials, 2020, 10(8): 1901973

DOI

56
Bao D , Zhang Q , Meng F L , Zhong H X , Shi M M , Zhang Y , Yan J M , Jiang Q , Zhang X B . Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Advanced Materials, 2017, 29(3): 1604799

DOI

57
Zhang W , Shen Y , Pang F , Quek D , Niu W , Wang W , Chen P . Facet-dependent catalytic performance of Au nanocrystals for electrochemical nitrogen reduction. ACS Applied Materials & Interfaces, 2020, 12(37): 41613–41619

DOI

58
Yang D , Chen T , Wang Z . Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(36): 18967–18971

DOI

59
Bai Y , Ye L , Chen T , Wang L , Shi X , Zhang X , Chen D . Facet-dependent photocatalytic N2 fixation of bismuth-rich Bi5O7I nanosheets. ACS Applied Materials & Interfaces, 2016, 8(41): 27661–27668

DOI

60
Jin M , Zhang X , Han M , Wang H , Wang G , Zhang H . Efficient electrochemical N2 fixation by doped-oxygen-induced phosphorus vacancy defects on copper phosphide nanosheets. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(12): 5936–5942

DOI

61
Jin H , Li L , Liu X , Tang C , Xu W , Chen S , Song L , Zheng Y , Qiao S Z . Nitrogen vacancies on 2D layered W2N3: a stable and efficient active site for nitrogen reduction reaction. Advanced Materials, 2019, 31(32): 1902709

DOI

62
Yang X , Ling F , Su J , Zi X , Zhang H , Zhang H , Li J , Zhou M , Wang Y . Insights into the role of cation vacancy for significantly enhanced electrochemical nitrogen reduction. Applied Catalysis B: Environmental, 2020, 264: 118477

DOI

63
Mao C , Wang J , Zou Y , Li H , Zhan G , Li J , Zhao J , Zhang L . Anion (O, N, C, and S) vacancies promoted photocatalytic nitrogen fixation. Green Chemistry, 2019, 21(11): 2852–2867

DOI

64
GuoHYangPYangYWuHZhangFHuangZ FYangGZhouY. Vacancy-mediated control of local electronic structure for high-efficiency electrocatalytic conversion of N2 to NH3. Small, Nov 30, 2023. https://doi.org/110.1002/small.202309007

65
Lv C , Yan C , Chen G , Ding Y , Sun J , Zhou Y , Yu G . Back cover: an amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angewandte Chemie International Edition, 2018, 57(21): 6354–6354

DOI

66
Liu Y , Kong X , Guo X , Li Q , Ke J , Wang R , Li Q , Geng Z , Zeng J . Enhanced N2 electroreduction over LaCoO3 by introducing oxygen vacancies. ACS Catalysis, 2020, 10(2): 1077–1085

DOI

67
Lv C , Yan C , Chen G , Ding Y , Sun J , Zhou Y , Yu G . An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angewandte Chemie International Edition, 2018, 57(21): 6073–6076

DOI

68
Yang P , Guo H , Wu H , Zhang F , Liu J , Li M , Yang Y , Cao Y , Yang G , Zhou Y . Boosting charge-transfer in tuned Au nanoparticles on defect-rich TiO2 nanosheets for enhancing nitrogen electroreduction to ammonia production. Journal of Colloid and Interface Science, 2023, 636: 184–193

DOI

69
Xiong J , Song P , Di J , Li H . Atomic-level active sites steering in ultrathin photocatalysts to trigger high efficiency nitrogen fixation. Chemical Engineering Journal, 2020, 402: 126208

DOI

70
Ji M , Liu N , Li K , Xu Q , Liu G , Wang B , Di J , Li H , Xia J . Oxygen defect modulating the charge behavior in titanium dioxide for boosting photocatalytic nitrogen fixation performance. Materials Reports: Energy, 2023, 3(4): 100231

DOI

71
Jia H , Du A , Zhang H , Yang J , Jiang R , Wang J , Zhang C Y . Site-selective growth of crystalline ceria with oxygen vacancies on gold nanocrystals for near-infrared nitrogen photofixation. Journal of the American Chemical Society, 2019, 141(13): 5083–5086

DOI

72
Li P , Zhou Z , Wang Q , Guo M , Chen S , Low J , Long R , Liu W , Ding P , Wu Y . . Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: enhanced performance by oxygen vacancies. Journal of the American Chemical Society, 2020, 142(28): 12430–12439

DOI

73
Dong G , Ho W , Wang C . Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(46): 23435–23441

DOI

74
Ying Z , Chen S , Peng T , Li R , Zhang J . Fabrication of an Fe-doped SrTiO3 photocatalyst with enhanced dinitrogen photofixation performance. European Journal of Inorganic Chemistry, 2019, 2019(16): 2182–2192

DOI

75
Wang H B , Wang J Q , Zhang R , Cheng C Q , Qiu K W , Yang Y , Mao J , Liu H , Du M , Dong C K . . Bionic design of a Mo(IV)-doped FeS2 catalyst for electroreduction of dinitrogen to ammonia. ACS Catalysis, 2020, 10(9): 4914–4921

DOI

76
Wu T , Kong W , Zhang Y , Xing Z , Zhao J , Wang T , Shi X , Luo Y , Sun X . Greatly enhanced electrocatalytic N2 eeduction on TiO2 via V doping. Small Methods, 2019, 3(11): 1900356

DOI

77
Yu X , Han P , Wei Z , Huang L , Gu Z , Peng S , Ma J , Zheng G . Boron-doped graphene for electrocatalytic N2 reduction. Joule, 2018, 2(8): 1610–1622

DOI

78
Chen X , Burda C . The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. Journal of the American Chemical Society, 2008, 130(15): 5018–5019

DOI

79
Li X , Huang X , Xi S , Miao S , Ding J , Cai W , Liu S , Yang X , Yang H , Gao J . . Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis. Journal of the American Chemical Society, 2018, 140(39): 12469–12475

DOI

80
Kang Y , Wu X , Gao Q . Plasmonic-enhanced near-infrared photocatalytic activity of F-doped (NH4)0.33WO3 nanorods. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 4210–4219

DOI

81
Guo W , Zhang K , Liang Z , Zou R , Xu Q . Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design. Chemical Society Reviews, 2019, 48(24): 5658–5716

DOI

82
Chen C , Yan D , Wang Y , Zhou Y , Zou Y , Li Y , Wang S . B-N pairs enriched defective carbon nanosheets for ammonia synthesis with high efficiency. Small, 2019, 15(7): 1805029

DOI

83
Liu Y , Li Q , Guo X , Kong X , Ke J , Chi M , Li Q , Geng Z , Zeng J . A highly efficient metal-free electrocatalyst of F-doped porous carbon toward N2 electroreduction. Advanced Materials, 2020, 32(24): 1907690

DOI

84
Tang M , Jiang X , He M , Jiang N , Zheng Q , Lin D B . (boron), O (oxygen) dual-doped carbon spheres as a high-efficiency electrocatalyst for nitrogen reduction. International Journal of Hydrogen Energy, 2021, 46(1): 439–448

DOI

85
Lee J , Tan L L , Chai S P . Heterojunction photocatalysts for artificial nitrogen fixation: fundamentals, latest advances and future perspectives. Nanoscale, 2021, 13(15): 7011–7033

DOI

86
Zhang L , Hou S , Wang T , Liu S , Gao X , Wang C , Wang G . Recent advances in application of graphitic carbon nitride-based catalysts for photocatalytic nitrogen fixation. Small, 2022, 18(28): 2202252

DOI

87
Xu H , Wang Y , Dong X , Zheng N , Ma H , Zhang X . Fabrication of In2O3/In2S3 microsphere heterostructures for efficient and stable photocatalytic nitrogen fixation. Applied Catalysis B: Environmental, 2019, 257: 117932

DOI

88
Hu J , Al Salihy A , Wang J , Li X , Fu Y , Li Z , Han X , Song B , Xu P . Improved interface charge transfer and redistribution in CuO-CoOOH p-n heterojunction nanoarray electrocatalyst for enhanced oxygen evolution reaction. Advanced Science, 2021, 8(22): 2103314

DOI

89
Xue X , Chen R , Yan C , Hu Y , Zhang W , Yang S , Ma L , Zhu G , Jin Z . Efficient photocatalytic nitrogen fixation under ambient conditions enabled by the heterojunctions of n-type Bi2MoO6 and oxygen-vacancy-rich p-type BiOBr. Nanoscale, 2019, 11(21): 10439–10445

DOI

90
ZhangWMohamedA ROngW J. Z-scheme photocatalytic systems for carbon dioxide reduction: Where are we now? Angewandte Chemie International Edition, 2020, 59(51): 22894–22915

91
Liang H , Zou H , Hu S . Preparation of the W18O49/g-C3N4 heterojunction catalyst with full-spectrum-driven photocatalytic N2 photofixation ability from the UV to near infrared region. New Journal of Chemistry, 2017, 41(17): 8920–8926

DOI

92
Zhang L , Zhang J , Yu H , Yu J . Emerging S-scheme photocatalyst. Advanced Materials, 2022, 34(11): 2107668

DOI

93
Zhang Y , Di J , Zhu X , Ji M , Chen C , Liu Y , Li L , Wei T , Li H , Xia J . Chemical bonding interface in Bi2Sn2O7/BiOBr S-scheme heterojunction triggering efficient N2 photofixation. Applied Catalysis B: Environmental, 2023, 323: 122148

DOI

94
Garagounis I , Kyriakou V , Skodra A , Vasileiou E , Stoukides M . Electrochemical synthesis of ammonia in solid electrolyte cells. Frontiers in Energy Research, 2014, 2: 1–10

DOI

95
Lan R , Tao S . Electrochemical synthesis of ammonia directly from air and water using a Li+/H+/NH4+ mixed conducting electrolyte. RSC Advances, 2013, 3(39): 18016–18021

DOI

96
Köleli F , Röpke T . Electrochemical hydrogenation of dinitrogen to ammonia on a polyaniline electrode. Applied Catalysis B: Environmental, 2006, 62(3): 306–310

DOI

97
Kordali V , Kyriacou G , Lambrou C . Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chemical Communications, 2000, (17): 1673–1674

DOI

98
Liu R , Xu G . Comparison of electrochemical synthesis of ammonia by using sulfonated polysulfone and nafion membrane with Sm1.5Sr0.5NiO4. Chinese Journal of Chemistry, 2010, 28(2): 139–142

DOI

99
Xie H , Wang H , Geng Q , Xing Z , Wang W , Chen J , Ji L , Chang L , Wang Z , Mao J . Oxygen vacancies of Cr-doped CeO2 nanorods that efficiently enhance the performance of electrocatalytic N2 fixation to NH3 under ambient conditions. Inorganic Chemistry, 2019, 58(9): 5423–5427

DOI

100
Zou H , Rong W , Wei S , Ji Y , Duan L . Regulating kinetics and thermodynamics of electrochemical nitrogen reduction with metal single-atom catalysts in a pressurized electrolyser. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(47): 29462–29468

DOI

101
Lazouski N , Schiffer Z J , Williams K , Manthiram K . Understanding continuous lithium-mediated electrochemical nitrogen reduction. Joule, 2019, 3(4): 1127–1139

DOI

102
Steinberg K , Yuan X , Klein C K , Lazouski N , Mecklenburg M , Manthiram K , Li Y . Imaging of nitrogen fixation at lithium solid electrolyte interphases via cryo-electron microscopy. Nature Energy, 2023, 8(2): 138–148

DOI

103
Fu X , Pedersen J B , Zhou Y , Saccoccio M , Li S , Sažinas R , Li K , Andersen S Z , Xu A , Deissler N H . . Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science, 2023, 379(6633): 707–712

DOI

104
Guan Y , Wen H , Cui K , Wang Q , Gao W , Cai Y , Cheng Z , Pei Q , Li Z , Cao H . . Light-driven ammonia synthesis under mild conditions using lithium hydride. Nature Chemistry, 2024, 16(3): 373–379

DOI

105
Tsuneto A , Kudo A , Sakata T . Lithium-mediated electrochemical reduction of high pressure N2 to NH3. Journal of Electroanalytical Chemistry, 1994, 367(1): 183–188

DOI

106
Li K , Andersen S Z , Statt M J , Saccoccio M , Bukas V J , Krempl K , Sažinas R , Pedersen J B , Shadravan V , Zhou Y . . Enhancement of lithium-mediated ammonia synthesis by addition of oxygen. Science, 2021, 374(6575): 1593–1597

DOI

107
Du H L , Chatti M , Hodgetts R Y , Cherepanov P V , Nguyen C K , Matuszek K , MacFarlane D R , Simonov A N . Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency. Nature, 2022, 609(7928): 722–727

DOI

108
Chen G F , Savateev A , Song Z , Wu H , Markushyna Y , Zhang L , Wang H , Antonietti M . Saving the energy loss in lithium-mediated nitrogen fixation by using a highly reactive Li3N intermediate for C–N coupling reactions. Angewandte Chemie International Edition, 2022, 61(27): e202203170

DOI

109
Hao Y C , Guo Y , Chen L W , Shu M , Wang X Y , Bu T A , Gao W Y , Zhang N , Su X , Feng X . . Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nature Catalysis, 2019, 2(5): 448–456

DOI

110
Hu L , Xing Z , Feng X . Understanding the electrocatalytic interface for ambient ammonia synthesis. ACS Energy Letters, 2020, 5(2): 430–436

DOI

111
Mahmood S , Wang H , Chen F , Zhong Y , Hu Y . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2023, 35(4): 108550

DOI

112
Wang J , Yu L , Hu L , Chen G , Xin H , Feng X . Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nature Communications, 2018, 9(1): 1795

DOI

113
Kim K , Lee N , Yoo C Y , Kim J N , Yoon H C , Han J I . Communication-electrochemical reduction of nitrogen to ammonia in 2-propanol under ambient temperature and pressure. Journal of the Electrochemical Society, 2016, 163(7): F610–F612

DOI

114
Singh A R , Rohr B A , Schwalbe J A , Cargnello M , Chan K , Jaramillo T F , Chorkendorff I , Nørskov J K . Electrochemical ammonia synthesis-the selectivity challenge. ACS Catalysis, 2017, 7(1): 706–709

DOI

115
Zhou F , Azofra L M , Ali M , Kar M , Simonov A N , McDonnell Worth C , Sun C , Zhang X , MacFarlane D R . Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy & Environmental Science, 2017, 10(12): 2516–2520

DOI

116
Kim K , Yoo C Y , Kim J N , Yoon H C , Han J I . Electrochemical synthesis of ammonia from water and nitrogen catalyzed by nano-Fe2O3 and CoFe2O4 suspended in a molten LiCl-KCl-CsCl electrolyte. Korean Journal of Chemical Engineering, 2016, 33(6): 1777–1780

DOI

117
Katayama A , Inomata T , Ozawa T , Masuda H . Electrochemical conversion of dinitrogen to ammonia induced by a metal complex-supported ionic liquid. Electrochemistry Communications, 2016, 67: 6–10

DOI

118
Marnellos G , Stoukides M . Ammonia synthesis at atmospheric pressure. Science, 1998, 282(5386): 98–100

DOI

119
Wang L , Yan X , Si W , Liu D , Hou X , Li D , Hou F , Dou S X , Liang J . Photoelectrochemical nitrogen reduction: a step toward achieving sustainable ammonia synthesis. Chinese Journal of Catalysis, 2022, 43(7): 1761–1773

DOI

120
Chen L W , Hao Y C , Guo Y , Zhang Q , Li J , Gao W Y , Ren L , Su X , Hu L , Zhang N . . Metal-organic framework membranes encapsulating gold nanoparticles for direct plasmonic photocatalytic nitrogen fixation. Journal of the American Chemical Society, 2021, 143(15): 5727–5736

DOI

121
Ye L , Li H , Xie K . Sustainable ammonia production enabled by membrane reactor. Nature Sustainability, 2022, 5(9): 787–794

DOI

122
Liu D , Wang J , Bian S , Liu Q , Gao Y , Wang X , Chu P K , Yu X F . Photoelectrochemical ammonia synthesis: photoelectrochemical synthesis of ammonia with black phosphorus. Advanced Functional Materials, 2020, 30(24): 2070156

DOI

123
Liu J , Zhang F , Wu H , Jiang Y , Yang P , Zhang W , Guo H , Cao Y , Yang G , Zhou Y . Efficient carrier transfer induced by Au nanoparticles for photoelectrochemical nitrogen reduction. Sustainable Energy & Fuels, 2023, 7(3): 883–889

DOI

124
Oshikiri T , Ueno K , Misawa H . Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation. Angewandte Chemie International Edition, 2014, 53(37): 9802–9805

DOI

125
Ali M , Zhou F , Chen K , Kotzur C , Xiao C , Bourgeois L , Zhang X , MacFarlane D R . Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nature Communications, 2016, 7(1): 11335

DOI

126
Zhang J , Chen H , Duan X , Sun H , Wang S . Photothermal catalysis: from fundamentals to practical applications. Materials Today, 2023, 68: 234–253

DOI

127
Wang S , Yu W , Xu S , Han K , Wang F . Ammonia from photothermal N2 hydrogenation over Ni/TiO2 catalysts under mild conditions. ACS Sustainable Chemistry & Engineering, 2022, 10(1): 115–123

DOI

128
Mao C , Yu L , Li J , Zhao J , Zhang L . Energy-confined solar thermal ammonia synthesis with K/Ru/TiO2-xHx. Applied Catalysis B: Environmental, 2018, 224: 612–620

DOI

129
Mao C , Wang J , Zou Y , Shi Y , Viasus C J , Loh J Y Y , Xia M , Ji S , Li M , Shang H . . Photochemical acceleration of ammonia production by Pt1-Ptn-TiN reduction and N2 activation. Journal of the American Chemical Society, 2023, 145(24): 13134–13146

DOI

130
Zheng J , Lu L , Lebedev K , Wu S , Zhao P , McPherson I J , Wu T S , Kato R , Li Y , Ho P L . . Fe on molecular-layer MoS2 as inorganic Fe-S2-Mo motifs for light-driven nitrogen fixation to ammonia at elevated temperatures. Chem Catalysis, 2021, 1(1): 162–182

DOI

131
Ye D , Tsang S C E . Prospects and challenges of green ammonia synthesis. Nature Synthesis, 2023, 2(7): 612–623

DOI

132
Wang L , Xia M , Wang H , Huang K , Qian C , Maravelias C T , Ozin G A . Greening ammonia toward the solar ammonia refinery. Joule, 2018, 2(6): 1055–1074

DOI

133
WangMKhanM AMohsinIWicksJIpA HSumonK ZDinhC TSargentE HGatesI DKibriaM G. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber-Bosch processes? Energy & Environmental Science, 2021, 14(5): 2535–2548

134
Smith C , Hill A K , Torrente Murciano L . Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape. Energy & Environmental Science, 2020, 13(2): 331–344

DOI

135
Hochman G , Goldman A S , Felder F A , Mayer J M , Miller A J M , Holland P L , Goldman L A , Manocha P , Song Z , Aleti S . Potential economic feasibility of direct electrochemical nitrogen reduction as a route to ammonia. ACS Sustainable Chemistry & Engineering, 2020, 8(24): 8938–8948

DOI

136
Arnaiz del Pozo C , Cloete S . Techno-economic assessment of blue and green ammonia as energy carriers in a low-carbon future. Energy Conversion and Management, 2022, 255: 115312

DOI

137
Parkinson B , Balcombe P , Speirs J F , Hawkes A D , Hellgardt K . Levelized cost of CO2 mitigation from hydrogen production routes. Energy & Environmental Science, 2019, 12(1): 19–40

DOI

138
MacFarlane D R , Cherepanov P V , Choi J , Suryanto B H R , Hodgetts R Y , Bakker J M , Ferrero Vallana F M , Simonov A N . A roadmap to the ammonia economy. Joule, 2020, 4(6): 1186–1205

DOI

139
Zhang S , Zhao Y , Shi R , Waterhouse G I N , Zhang T . Photocatalytic ammonia synthesis: recent progress and future. EnergyChem, 2019, 1(2): 100013

DOI

140
Lin B , Wiesner T , Malmali M . Performance of a small-scale haber process: a techno-economic analysis. ACS Sustainable Chemistry & Engineering, 2020, 8(41): 15517–15531

DOI

141
Liu X , Shen Z , Peng X , Tian L , Hao R , Wang L , Xu Y , Liu Y , Maravelias C T , Li W . . A photo-assisted electrochemical-based demonstrator for green ammonia synthesis. Journal of Energy Chemistry, 2022, 68: 826–834

DOI

Outlines

/