Flame-retardancy cellulosic triboelectric materials enabled by hydroxyl ionization

  • Xin Wang ,
  • Huancheng Huang ,
  • Fanchao Yu ,
  • Pinle Zhang ,
  • Xinliang Liu
Expand
  • Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
xinliang.liu@hotmail.com

Received date: 26 Jan 2024

Accepted date: 08 Apr 2024

Copyright

2024 Higher Education Press

Abstract

Triboelectric nanogenerators (TENGs) are among the most promising available energy harvesting methods. Cellulose-based TENGs are flexible, renewable, and degradable. However, the flammability of cellulose prevents it from being used in open-flame environments. In this study, the lattice of cellulose was adjusted by the hydroxyl ionization of cellulose molecules, and Na+ was introduced to enhance the flame retardancy of cellulose nanofibers (CNFs). The experimental results showed that the amount of hydrogen bonding between cellulose molecules increased with the introduction of Na+ and that the limiting oxygen index reached 36.4%. The lattice spacing of cellulose increased from 0.276 to 0.286 nm, and the change in lattice structure exposed more hydroxyl groups, which changed the polarity of cellulose. The surface potential of the fibers increased from 239 to 323 mV, the maximum open-circuit voltage was 25 V·cm–2, the short-circuit current was 2.10 μA, and the output power density was 4.56 μW·cm–2. Compared with those of CNFs, the output voltage, current, and transferred charge increased by 96.8%, 517%, and 23%, respectively, and showed good stability and reliability during cyclic exposure. This study provides a valuable strategy for improving the performance of cellulose-based TENGs.

Cite this article

Xin Wang , Huancheng Huang , Fanchao Yu , Pinle Zhang , Xinliang Liu . Flame-retardancy cellulosic triboelectric materials enabled by hydroxyl ionization[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(10) : 113 . DOI: 10.1007/s11705-024-2464-7

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 32060328).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2464-7 and is accessible for authorized users.
1
He K , Cheng X , Yao Y , Shi L , Yang H , Cong W . Characteristics of multiple pool fires in a tunnel with natural ventilation. Journal of Hazardous Materials, 2019, 369: 261–267

DOI

2
Ma L , Wu R , Liu S , Patil A , Gong H , Yi J , Sheng F , Zhang Y , Wang J , Wang J . . A machine-fabricated 3D honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescue. Advanced Materials, 2020, 32(38): 2003897

DOI

3
Zhou J , Zhou N , Liu M , Tan H , Wang Z , Zhang X , Su Z . NiTiO3/Bi2O3/MoS2 double Z-type heterojunction catalysts realize dual-function applications of photocatalytic fuel cells and lactic acid sensing. Applied Surface Science, 2024, 649: 159095

DOI

4
Fan F R , Tian Z Q , Lin Wang Z . Flexible triboelectric generator. Nano Energy, 2012, 1(2): 328–334

DOI

5
Chen X , Xie X , Liu Y , Zhao C , Wen M , Wen Z . Advances in healthcare electronics enabled by triboelectric nanogenerators. Advanced Functional Materials, 2020, 30(43): 2004673

DOI

6
Gao C , Zhang W , Liu T , Luo B , Cai C , Chi M , Zhang S , Liu Y , Wang J , Zhao J . . Hierarchical porous triboelectric aerogels enabled by heterointerface engineering. Nano Energy, 2024, 121: 109223

DOI

7
An S , Pu X , Zhou S , Wu Y , Li G , Xing P , Zhang Y , Hu C . Deep learning enabled neck motion detection using a triboelectric nanogenerator. ACS Nano, 2022, 16(6): 9359–9367

DOI

8
Yin M , Lu X , Qiao G , Xu Y , Wang Y , Cheng T , Wang Z L . Mechanical regulation triboelectric nanogenerator with controllable output performance for random energy harvesting. Advanced Energy Materials, 2020, 10(22): 2000627

DOI

9
Li X , Wang J , Liu Y , Zhao T , Luo B , Liu T , Zhang S , Chi M , Cai C , Wei Z . . Lightweight and strong cellulosic triboelectric materials enabled by cell wall nanoengineering. Nano Letters, 2024, 24(10): 3273–3281

DOI

10
Wang X , Yao C , Wang F , Li Z . Cellulose-based nanomaterials for energy applications. Small, 2017, 13(42): 1702240

DOI

11
Liao H , Na J , Zhou W , Hur S , Chien P M , Wang C , Wang L , Yamauchi Y , Yuan Z . Enhancing energy harvesting performance and sustainability of cellulose-based triboelectric nanogenerators: strategies for performance enhancement. Nano Energy, 2023, 116: 108769

DOI

12
He J , Liu Y , Wu C , Liu S , Lu Y , Wu Q . Pre-oxidation of cellulose controlled by the nitrogen-phosphorus compound catalyst to prepare fibers with ultra-high flame retardancy. Industrial Crops and Products, 2023, 195: 116355

DOI

13
Cordner A , Mulcahy M , Brown P . Chemical regulation on fire: rapid policy advances on flame retardants. Environmental Science & Technology, 2013, 47(13): 7067–7076

DOI

14
Guo L C , Lv Z , Zhu T , He G , Hu J , Xiao J , Liu T , Yu S , Zhang J , Zhang H . . Associations between serum polychlorinated biphenyls, halogen flame retardants, and renal function indexes in residents of an e-waste recycling area. Science of the Total Environment, 2023, 858: 159746

DOI

15
Duan Q , Zhang Z , Zhao J , He J , Peng W , Zhang Y , Liu T , Wang S , Nie S . Fire-retardant hydroxyapatite/cellulosic triboelectric materials for energy harvesting and sensing at extreme conditions. Nano Energy, 2023, 117: 108851

DOI

16
Wang R , Ma J , Ma S , Zhang Q , Li N , Ji M , Jiao T , Cao X . A biodegradable cellulose-based flame-retardant triboelectric nanogenerator for fire warning. Chemical Engineering Journal, 2022, 450: 137985

DOI

17
Li Y C , Mannen S , Morgan A B , Chang S , Yang Y H , Condon B , Grunlan J C . Intumescent all-polymer multilayer nanocoating capable of extinguishing flame on fabric. Advanced Materials, 2011, 23(34): 3926–3931

DOI

18
Zheng Y , Miao J , Maeda N , Frey D , Linhardt R J , Simmons T J . Uniform nanoparticle coating of cellulose fibers during wet electrospinning. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(36): 15029–15034

DOI

19
Schindler D W , Carpenter S R , Chapra S C , Hecky R E , Orihel D M . Reducing phosphorus to curb lake eutrophication is a success. Environmental Science & Technology, 2016, 50(17): 8923–8929

DOI

20
Yiga V A , Lubwama M , Olupot P W . Thermal stability of unmodified and alkali-modified rice husks for flame retardant fiber-reinforced PLA composites. Journal of Thermal Analysis and Calorimetry, 2022, 147(20): 11049–11075

DOI

21
Shi R , Tan L , Zong L , Ji Q , Li X , Zhang K , Cheng L , Xia Y . Influence of Na+ and Ca2+ on flame retardancy, thermal degradation, and pyrolysis behavior of cellulose fibers. Carbohydrate Polymers, 2017, 157: 1594–1603

DOI

22
Liu X , Zhang Q , Peng B , Ren Y , Cheng B , Ding C , Su X , He J , Lin S . Flame retardant cellulosic fabrics via layer-by-layer self-assembly double coating with egg white protein and phytic acid. Journal of Cleaner Production, 2020, 243: 118641

DOI

23
Zhu S , Liu Y , Du G , Shao Y , Wei Z , Wang J , Luo B , Cai C , Meng X , Zhang S . . Customizing temperature-resistant cellulosic triboelectric materials for energy harvesting and emerging applications. Nano Energy, 2024, 124: 109449

DOI

24
Pöhler T , Widsten P , Hakkarainen T . Improved fire retardancy of cellulose fibres via deposition of nitrogen-modified biopolyphenols. Molecules, 2022, 27(12): 3741

DOI

25
Kim H , Youn J R , Song Y S . Eco-friendly flame retardant nanocrystalline cellulose prepared via silylation. Nanotechnology, 2018, 29(45): 455702

DOI

26
Karaj-Abad S G , Abbasian M , Jaymand M . Grafting of poly[(methyl methacrylate)-block-styrene] onto cellulose via nitroxide-mediated polymerization, and its polymer/clay nanocomposite. Carbohydrate Polymers, 2016, 152: 297–305

DOI

27
Van Hai L , Zhai L , Kim H C , Kim J W , Choi E S , Kim J . Cellulose nanofibers isolated by TEMPO-oxidation and aqueous counter collision methods. Carbohydrate Polymers, 2018, 191: 65–70

DOI

28
Du S , Li T , Wang X , Zhang L , Yang Z , Lin R , Zhu T . Molecular simulation on mechanism of thiophene hydrodesulfurization on surface of Ni2P. Energy Exploration & Exploitation, 2021, 39(3): 975–992

DOI

29
Peter Z . Order in cellulosics: historical review of crystal structure research on cellulose. Carbohydrate Polymers, 2021, 254: 117417

DOI

30
Zhang Y H , Shao Y , Luo C , Ma H Z , Yu H , Liu X , Yin B , Wu J L , Yang M B . Preparation of a high-performance chitosan-based triboelectric nanogenerator by regulating the surface microstructure and dielectric constant. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2022, 11(1): 260–268

DOI

31
Thakur A , Jangra M , Dam S , Hussain S . Impedance studies of free-standing, flexible thin films of PVDF filled with gallium nitride nanoparticles. Journal of Materials Science Materials in Electronics, 2022, 33(23): 18658–18672

DOI

32
Du G , Wang J , Liu Y , Yuan J , Liu T , Cai C , Luo B , Zhu S , Wei Z , Wang S . . Fabrication of advanced cellulosic triboelectric materials via dielectric modulation. Advanced Science, 2023, 10(15): 2206243

DOI

33
Zhang R , Hummelgård M , Örtegren J , Andersson H , Olsen M , Chen D , Li J , Eivazi A , Dahlström C , Norgren M . . Triboelectric nanogenerators with ultrahigh current density enhanced by hydrogen bonding between nylon and graphene oxide. Nano Energy, 2023, 115: 108737

DOI

34
Lee H , Sundaram J , Zhu L , Zhao Y , Mani S . Improved thermal stability of cellulose nanofibrils using low-concentration alkaline pretreatment. Carbohydrate Polymers, 2018, 181: 506–513

DOI

35
YueY. A comparative study of cellulose I and II and fibers and nanocrystals. LSU Digital Commons. Dissertation for the Master of Science Degree. Baton Rouge: Louisiana State University, 2011, 57–58

36
Liu Y , Hu H . X-ray diffraction study of bamboo fibers treated with NaOH. Fibers and Polymers, 2008, 9(6): 735–739

DOI

37
Kathirselvam M , Kumaravel A , Arthanarieswaran V P , Saravanakumar S S . Characterization of cellulose fibers in thespesia populnea barks: influence of alkali treatment. Carbohydrate Polymers, 2019, 217: 178–189

DOI

38
Lin Q , Liu S , Wang X , Huang Y , Yu W . Preparation of ultra-conductive bamboo cellulose fiber via a facile pretreatment. Applied Surface Science, 2022, 575: 151700

DOI

39
Li Z , Chen C , Xie H , Yao Y , Zhang X , Brozena A , Li J , Ding Y , Zhao X , Hong M . . Sustainable high-strength macrofibres extracted from natural bamboo. Nature Sustainability, 2021, 5(3): 235–244

DOI

40
Hishikawa Y , Togawa E , Kondo T . Characterization of individual hydrogen bonds in crystalline regenerated cellulose using resolved polarized FTIR spectra. ACS Omega, 2017, 2(4): 1469–1476

DOI

41
Lu Z , Zhang H , Liu L , Cao H , Cheng Z , Liu H , An X . Study on cellulose nanofibers (CNF) distribution behaviors and their roles in improving paper property. Industrial Crops and Products, 2023, 201: 116897

DOI

42
Yang H , Yan R , Chen H , Lee D H , Zheng C . Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 2007, 86(12-13): 1781–1788

DOI

43
Ge L , Zhao C , Zuo M , Du Y , Tang J , Chu H , Wang Y , Xu C . Effects of Fe addition on pyrolysis characteristics of lignin, cellulose and hemicellulose. Journal of the Energy Institute, 2023, 107: 101177

DOI

44
Chen D , Cen K , Zhuang X , Gan Z , Zhou J , Zhang Y , Zhang H . Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio-oil. Combustion and Flame, 2022, 242: 112142

DOI

45
Xu D , Ji Q , Tan L , Tian G , Quan F , Xia Y . Influence of alkaline metal ions on flame retardancy and thermal degradation of cellulose fibers. Fibers and Polymers, 2014, 15(2): 220–225

DOI

46
Shen W , Wang H , Liu Y , Guo Q , Zhang Y . Oxidization activated carbon fiber through nitrocellulose combustion. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2007, 308(1–3): 20–24

DOI

47
Sonnier R , Otazaghine B , Ferry L , Lopez-Cuesta J M . Study of the combustion efficiency of polymers using a pyrolysis-combustion flow calorimeter. Combustion and Flame, 2013, 160(10): 2182–2193

DOI

48
Lin C , Sun L , Meng X , Yuan X , Cui C X , Qiao H , Chen P , Cui S , Zhai L , Mi L . Covalent organic frameworks with tailored functionalities for modulating surface potentials in triboelectric nanogenerators. Angewandte Chemie International Edition, 2022, 61(42): e202211601

DOI

49
Wang Y M , Zhang X , Yang D , Wu L , Zhang J , Lei T , Yang R . Highly stable metal-organic framework UiO-66-NH2 for high-performance triboelectric nanogenerators. Nanotechnology, 2022, 33(6): 065402

DOI

Outlines

/