Zeolites for the separation of ethylene, ethane, and ethyne

  • Binyu Wang 1 ,
  • Qiang Li 1 ,
  • Haoyang Zhang 1 ,
  • Jia-Nan Zhang 2 ,
  • Qinhe Pan 3 ,
  • Wenfu Yan , 1
Expand
  • 1. State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
  • 2. Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450012, China
  • 3. Key Laboratory of Advanced Materials of Tropical Island Resources (Ministry of Education), School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
yanw@jlu.edu.cn

Received date: 05 Feb 2024

Accepted date: 02 Apr 2024

Copyright

2024 Higher Education Press

Abstract

The cost-effective separation of ethylene (C2H4), ethyne (C2H2), and ethane (C2H6) poses a significant challenge in the contemporary chemical industry. In contrast to the energy-intensive high-pressure cryogenic distillation process, zeolite-based adsorptive separation offers a low-energy alternative. This review provides a concise overview of recent advancements in the adsorptive separation of C2H4, C2H2, and C2H6 using zeolites or zeolite-based adsorbents. It commences with an examination of the industrial significance of these compounds and the associated separation challenges. Subsequently, it systematically examines the utilization of various types of zeolites with diverse cationic species in such separation processes. And then it explores how different zeolitic structures impact adsorption and separation capabilities, considering principles such as cation-π interaction, π-complexation, and steric separation concerning C2H4, C2H2, and C2H6 molecules. Furthermore, it discusses methods to enhance the separation performance of zeolites and zeolite-based adsorbents, encompassing structural design, modifications, and ion exchange processes. Finally, it summarizes current research trends and future directions, highlighting the potential application value of zeolitic materials in the field of C2H4, C2H2, and C2H6 separation and offering recommendations for further investigation.

Cite this article

Binyu Wang , Qiang Li , Haoyang Zhang , Jia-Nan Zhang , Qinhe Pan , Wenfu Yan . Zeolites for the separation of ethylene, ethane, and ethyne[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(9) : 108 . DOI: 10.1007/s11705-024-2459-4

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

We acknowledge the financial support from the National Key Research and Development Program of China (Grant Nos. 2021YFA1500401, 2021YFA1501202, and 2022YFB3504000), the National Natural Science Foundation of China (Grant No. 22288101), the 111 Project (Grant No. B17020), the Innovation Platform for Academicians of Hainan Province, and the Specific Research Fund of the Innovation Platform for Academicians of Hainan Province (Grant No. YSPTZX202321).
1
Miller E V. The story of ethylene. Scientific Monthly, 1947, 65(4): 335–342

2
Bakshi A, Shemansky J M, Chang C, Binder B M. History of research on the plant hormone ethylene. Journal of Plant Growth Regulation, 2015, 34(4): 809–827

DOI

3
GarsideM. Production capacity of ethylene worldwide from 2018 to 2022. Available at statista website

4
Sholl D S, Lively R P. Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437

DOI

5
Chauhan R, Sartape R, Minocha N, Goyal I, Singh M R. Advancements in environmentally sustainable technologies for ethylene production. Energy & Fuels, 2023, 37(17): 12589–12622

DOI

6
Sadrameli S M. Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins: a state-of-the-art review II: catalytic cracking review. Fuel, 2016, 173: 285–297

DOI

7
Cui X, Chen K, Xing H, Yang Q, Krishna R, Bao Z, Wu H, Zhou W, Dong X, Han Y. . Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science, 2016, 353(6295): 141–144

DOI

8
Zhou Y, Zhang J, Wang L, Cui X, Liu X, Wong S, An H, Yan N, Xie J, Yu C. . Self-assembled iron-containing mordenite monolith for carbon dioxide sieving. Science, 2021, 373(6552): 315–320

DOI

9
Chen Z, Li P, Anderson R, Wang X, Zhang X, Robison L, Redfern L R, Moribe S, Islamoglu T, Gomezgualdron D A. . Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science, 2020, 368(6488): 297–303

DOI

10
Li L, Lin R B, Krishna R, Li H, Xiang S, Wu H, Li J, Zhou W, Chen B. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science, 2018, 362(6413): 443–446

DOI

11
Zhu B, Cao J W, Mukherjee S, Pham T, Zhang T, Wang T, Jiang X, Forrest K A, Zaworotko M J, Chen K J. Pore engineering for one-step ethylene purification from a three-component hydrocarbon mixture. Journal of the American Chemical Society, 2021, 143(3): 1485–1492

DOI

12
Bai R, Song X, Yan W, Yu J. Low-energy adsorptive separation by zeolites. National Science Review, 2022, 9(9): nwac064

DOI

13
YangR. Adsorbents: Fundamentals and Applications. New Jersey: John Wiley & Sons, 2003

14
Li Y, Shen J, Peng S, Zhang J, Wu J, Liu X, Sun L. Enhancing oxidation resistance of Cu(I) by tailoring microenvironment in zeolites for efficient adsorptive desulfurization. Nature Communications, 2020, 11(1): 3206

DOI

15
Yang R T, Kikkinides E S. New sorbents for olefin/paraffin separations by adsorption via π-complexation. AIChE Journal. American Institute of Chemical Engineers, 1995, 41(3): 509–517

DOI

16
Padin J, Yang R, Munson C. New sorbents for olefin/paraffin separations and olefin purification for C4 hydrocarbons. Industrial & Engineering Chemistry Research, 1999, 38(10): 3614–3621

DOI

17
Aguado S, Bergeret G, Daniel C, Farrusseng D. Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A. Journal of the American Chemical Society, 2012, 134(36): 14635–14637

DOI

18
MiltenburgA VZhuWKapteijnF MoulijnJ A. Adsorptive separation of light olefin/paraffin mixtures. Chemical Engineering Research & Design, 2006, 84(5 A5): 350–354

19
Cen P L. Adsorption uptake curves of ethylene on Cu(I)-NaY zeolite. AIChE Journal. American Institute of Chemical Engineers, 1990, 36(5): 789–793

DOI

20
Pérez-Botella E, Valencia S, Rey F. Zeolites in adsorption processes: state of the art and future prospects. Chemical Reviews, 2022, 122(24): 17647–17695

DOI

21
Liang J, Fu W, Liu C, Li X, Wang Y, Ma D, Li Y, Wang Z, Yang W. Synthesis of FER zeolite using 4-(aminomethyl) pyridine as structure-directing agent. Chemical Research in Chinese Universities, 2022, 38(1): 243–249

DOI

22
BaerlocherCMccusker L B. Database of Zeolite Structures. Available at iza-structure website

23
XuRPangW YuJHuoQ ChenJ. Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure. Singapore: John Wiley & Sons (Asia) Pte Ltd., 2007

24
CejkaJCorma AZonesS I. Zeolites and Catalysis—Synthesis, Reactions and Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010

25
KulprathipanjaS. Zeolites in Industrial Separation and Catalysis. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010

26
XiaoFMeng X. Zeolites in Sustainable Chemistry: Synthesis, Characterization and Catalytic Applications. Heidelberg: Springer, 2016

27
Li Y, Simon A O, Jiao C, Zhang M, Yan W, Rao H, Liu J, Zhang J. Rapid removal of Sr2+, Cs+ and UO22+ from solution with surfactant and amino acid modified zeolite Y. Microporous and Mesoporous Materials, 2020, 302: 110244

DOI

28
Bai R, Song Y, Tian G, Wang F, Corma A, Yu J. Titanium-rich TS-1 zeolite for highly efficient oxidative desulfurization. Green Energy & Environment, 2023, 8(1): 163–172

DOI

29
Pang H, Yang G, Li L, Yu J. Efficient transesterification over two-dimensional zeolites for sustainable biodiesel production. Green Energy & Environment, 2020, 5(4): 405–413

DOI

30
Wu R, Han J, Wang Y, Chen M, Tian P, Zhou X, Xu J, Zhang J N, Yan W. Exclusive SAPO-seeded synthesis of ZK-5 zeolite for selective synthesis of methylamines. Inorganic Chemistry Frontiers, 2022, 9(22): 5766–5773

DOI

31
Wang X, Yan N, Xie M, Liu P, Bai P, Su H, Wang B, Wang Y, Li L, Cheng T. . The inorganic cation-tailored “trapdoor” effect of silicoaluminophosphate zeolite for highly selective CO2 separation. Chemical Science, 2021, 12(25): 8803–8810

DOI

32
LiebauF. Structural Chemistry of Silicates: Structure, Bonding and Classification. Berlin: Springer-Verlag, 1985

33
Wang B, Li L, Li J, Jin K, Zhang S, Zhang J, Yan W. Recent progresses on the synthesis of zeolites from the industrial solid wastes. Chemical Journal of Chinese Universities, 2021, 42(1): 40–59

34
Wang B, Li J, Zhou X, Hao W, Zhang S, Lan C, Wang X, Wang Z, Xu J, Zhang J N. . Facile activation of lithium slag for the hydrothermal synthesis of zeolite A with commercial quality and high removal efficiency for the isotope of radioactive 90Sr. Inorganic Chemistry Frontiers, 2022, 9(3): 468–477

DOI

35
Wragg D, Morris R, Burton A. Pure silica zeolite-type frameworks: a structural analysis. Chemistry of Materials, 2008, 20(4): 1561–1570

DOI

36
KerryF G. Industrial Gas Handbook: Gas Separation and Purification. Boca Raton: CRC Press, 2007

37
Li J, Kuppler R J, Zhou H. Selective gas adsorption and separation in metal-organic frameworks. Chemical Society Reviews, 2009, 38(5): 1477–1504

DOI

38
Sircar S. Pressure swing adsorption. Industrial & Engineering Chemistry Research, 2002, 41(6): 1389–1392

DOI

39
Fu X P, Wang Y L, Liu Q Y. Metal-organic frameworks for C2H2/CO2 separation. Dalton Transactions, 2020, 49(46): 16598–16607

DOI

40
Ding Q, Zhang S. Recent advances in the development of metal-organic frameworks for propylene and propane separation. Energy & Fuels, 2022, 36(14): 7337–7361

DOI

41
Lin X, Yang Y, Wang X, Lin S, Bao Z, Zhang Z, Xiang S. Functionalized metal-organic and hydrogen-bonded organic frameworks for C2H4/C2H6 separation. Separation and Purification Technology, 2024, 330: 125252

DOI

42
SircarSMyers A L. Gas Separation by Zeolites in Handbook of Zeolite Science and Technology. Boca Raton: CRC Press, 2003

43
LideD R. CRC Handbook of Chemistry and Physics. Boca Raton: CRC Press, 2016

44
BläkerCMauerVPaselC DreisbachFBathen D. Adsorption mechanisms of ethane, ethene and ethyne on calcium exchanged LTA and FAU zeolites. Adsorption, July 11, 2023. https://doi.org/10.1007/s10450-023-00392-0

45
Chung K, Park D, Kim K M, Lee C H. Adsorption equilibria and kinetics of ethane and ethylene on zeolite 13X pellets. Microporous and Mesoporous Materials, 2022, 343: 112199

DOI

46
Liu S, Chen Y, Yue B, Nie Y, Chai Y, Wu G, Li J, Han X, Day S J, Thompson S P. . Cascade adsorptive separation of light hydrocarbons by commercial zeolites. Journal of Energy Chemistry, 2022, 72: 299–305

DOI

47
Seabra R, Martins V F D, Ribeiro A M, Rodrigues A E, Ferreira A P. Ethylene/ethane separation by gas-phase SMB in binderfree zeolite 13X monoliths. Chemical Engineering Science, 2021, 229: 116006

DOI

48
Romero-Perez A, Aguilar-Armenta G. Adsorption kinetics and equilibria of carbon dioxide, ethylene, and ethane on 4A(CECA) zeolite. Journal of Chemical & Engineering Data, 2010, 55(9): 3625–3630

DOI

49
Mi Z, Lu T, Zhang J N, Xu R, Yan W. Synthesis of pure silica zeolites. Chemical Research in Chinese Universities, 2022, 38(1): 9–17

DOI

50
Bereciartua P J, Cantín Á, Corma A, Jordá J L, Palomino M, Rey F, Valencia S, Corcoran E W Jr, Kortunov P, Ravikovitch P I. . Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science, 2017, 358(6366): 1068–1071

DOI

51
Park J, Cho K H, Kim J C, Ryoo R, Park J, Lee Y, Choi M. Design of olefin-phobic zeolites for efficient ethane and ethylene separation. Chemistry of Materials, 2023, 35(5): 2078–2087

DOI

52
Karetina I V, Zemljanova G J, Khvoshchev S S. Calorimetric study of C2H4 adsorption on synthetic zeolites with Na+ and Ca2+ cations. Studies in Surface Science and Catalysis, 2002, 142: 1627–1630

DOI

53
Nam G M, Jeong B M, Kang S H, Lee B K, Choi D K. Equilibrium isotherms of CH4, C2H6, C2H4, N2, and H2 on zeolite 5A using a static volumetric method. Journal of Chemical & Engineering Data, 2005, 50(1): 72–76

DOI

54
Bian Q, Xin M, Xu G, Chen S, Zou K, Shi Y. Effect of zeolite 5A particle size on its performance for adsorptive separation of ethylene/ethane. China Petroleum Processing and Petrochemical Technology, 2019, 21(4): 36–41

55
Roehnert M, Pasel C, Bläker C, Bathen D. Influence of temperature on the binary adsorption of ethane and ethene on FAU zeolites. Journal of Chemical & Engineering Data, 2023, 68(4): 1031–1042

DOI

56
Liu C, Xin M, Wang C, Zhao W, Xiang Y, Zhang X, Qiu L, Xu G. Ag2O nanoparticles encapsulated in Ag-exchanged LTA zeolites for highly selective separation of ethylene/ethane. ACS Applied Nano Materials, 2023, 6(7): 5374–5383

DOI

57
Monzón J D, Pereyra A M, Gonzalez M R, Legnoverde M S, Moreno M S, Gargiulo N, Peluso A, Aprea P, Caputo D, Basaldella E I. Ethylene adsorption onto thermally treated AgA-Zeolite. Applied Surface Science, 2021, 542: 148748

DOI

58
Liu Y, Wu Y, Liang W, Peng J, Li Z, Wang H, Janik M J, Xiao J. Bimetallic ions regulate pore size and chemistry of zeolites for selective adsorption of ethylene from ethane. Chemical Engineering Science, 2020, 220: 115636

DOI

59
Sakai M, Sasaki Y, Tomono T, Seshimo M, Matsukata M. Olefin selective Ag-exchanged X-type zeolite membrane for propylene/propane and ethylene/ethane separation. ACS Applied Materials & Interfaces, 2019, 11(4): 4145–4151

DOI

60
Min J G, Kemp K C, Hong S B. Silver ZK-5 zeolites for selective ethylene/ethane separation. Separation and Purification Technology, 2020, 250: 117146

DOI

61
Zhou J, Zhang Y, Guo X, Zhang A, Fei X. Removal of C2H4 from a CO2 stream by using AgNO3-modified Y-zeolites. Industrial & Engineering Chemistry Research, 2006, 45(18): 6236–6242

DOI

62
Abdi H, Maghsoudi H, Akhoundi V. Adsorption properties of ion-exchanged SSZ-13 zeolite for ethylene/ethane separation. Fluid Phase Equilibria, 2021, 546: 113171

DOI

63
Golipour H, Mokhtarani B, Mafi M, Moradi A, Godini H R. Experimental measurement for adsorption of ethylene and ethane gases on copper-exchanged zeolites 13X and 5A. Journal of Chemical & Engineering Data, 2020, 65(8): 3920–3932

DOI

64
Li G, Wang H, Li Q, Zhang X, Qin Y, Bi Y, Song L. Regulation of the nature and sites of copper species in CuNaY zeolites for ethylene and ethane separation. New Journal of Chemistry, 2023, 47(12): 5650–5658

DOI

65
Liu S, Han X, Chai Y, Wu G, Li W, Li J, Da Silva I, Manuel P, Cheng Y, Daemen L L. . Efficient separation of acetylene and carbon dioxide in a decorated zeolite. Angewandte Chemie International Edition, 2021, 60(12): 6526–6532

DOI

66
Chai Y, Han X, Li W, Liu S, Yao S, Wang C, Shi W, Da-Silva I, Manuel P, Cheng Y. . Control of zeolite pore interior for chemoselective alkyne/olefin separations. Science, 2020, 368(6494): 1002–1006

DOI

Outlines

/