Zeolites for the separation of ethylene, ethane, and ethyne
Received date: 05 Feb 2024
Accepted date: 02 Apr 2024
Copyright
The cost-effective separation of ethylene (C2H4), ethyne (C2H2), and ethane (C2H6) poses a significant challenge in the contemporary chemical industry. In contrast to the energy-intensive high-pressure cryogenic distillation process, zeolite-based adsorptive separation offers a low-energy alternative. This review provides a concise overview of recent advancements in the adsorptive separation of C2H4, C2H2, and C2H6 using zeolites or zeolite-based adsorbents. It commences with an examination of the industrial significance of these compounds and the associated separation challenges. Subsequently, it systematically examines the utilization of various types of zeolites with diverse cationic species in such separation processes. And then it explores how different zeolitic structures impact adsorption and separation capabilities, considering principles such as cation-π interaction, π-complexation, and steric separation concerning C2H4, C2H2, and C2H6 molecules. Furthermore, it discusses methods to enhance the separation performance of zeolites and zeolite-based adsorbents, encompassing structural design, modifications, and ion exchange processes. Finally, it summarizes current research trends and future directions, highlighting the potential application value of zeolitic materials in the field of C2H4, C2H2, and C2H6 separation and offering recommendations for further investigation.
Key words: zeolite; ethylene; ethane; cation-π interaction; π-complexation
Binyu Wang , Qiang Li , Haoyang Zhang , Jia-Nan Zhang , Qinhe Pan , Wenfu Yan . Zeolites for the separation of ethylene, ethane, and ethyne[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(9) : 108 . DOI: 10.1007/s11705-024-2459-4
1 |
Miller E V. The story of ethylene. Scientific Monthly, 1947, 65(4): 335–342
|
2 |
Bakshi A, Shemansky J M, Chang C, Binder B M. History of research on the plant hormone ethylene. Journal of Plant Growth Regulation, 2015, 34(4): 809–827
|
3 |
GarsideM. Production capacity of ethylene worldwide from 2018 to 2022. Available at statista website
|
4 |
Sholl D S, Lively R P. Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437
|
5 |
Chauhan R, Sartape R, Minocha N, Goyal I, Singh M R. Advancements in environmentally sustainable technologies for ethylene production. Energy & Fuels, 2023, 37(17): 12589–12622
|
6 |
Sadrameli S M. Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins: a state-of-the-art review II: catalytic cracking review. Fuel, 2016, 173: 285–297
|
7 |
Cui X, Chen K, Xing H, Yang Q, Krishna R, Bao Z, Wu H, Zhou W, Dong X, Han Y.
|
8 |
Zhou Y, Zhang J, Wang L, Cui X, Liu X, Wong S, An H, Yan N, Xie J, Yu C.
|
9 |
Chen Z, Li P, Anderson R, Wang X, Zhang X, Robison L, Redfern L R, Moribe S, Islamoglu T, Gomezgualdron D A.
|
10 |
Li L, Lin R B, Krishna R, Li H, Xiang S, Wu H, Li J, Zhou W, Chen B. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science, 2018, 362(6413): 443–446
|
11 |
Zhu B, Cao J W, Mukherjee S, Pham T, Zhang T, Wang T, Jiang X, Forrest K A, Zaworotko M J, Chen K J. Pore engineering for one-step ethylene purification from a three-component hydrocarbon mixture. Journal of the American Chemical Society, 2021, 143(3): 1485–1492
|
12 |
Bai R, Song X, Yan W, Yu J. Low-energy adsorptive separation by zeolites. National Science Review, 2022, 9(9): nwac064
|
13 |
YangR. Adsorbents: Fundamentals and Applications. New Jersey: John Wiley & Sons, 2003
|
14 |
Li Y, Shen J, Peng S, Zhang J, Wu J, Liu X, Sun L. Enhancing oxidation resistance of Cu(I) by tailoring microenvironment in zeolites for efficient adsorptive desulfurization. Nature Communications, 2020, 11(1): 3206
|
15 |
Yang R T, Kikkinides E S. New sorbents for olefin/paraffin separations by adsorption via π-complexation. AIChE Journal. American Institute of Chemical Engineers, 1995, 41(3): 509–517
|
16 |
Padin J, Yang R, Munson C. New sorbents for olefin/paraffin separations and olefin purification for C4 hydrocarbons. Industrial & Engineering Chemistry Research, 1999, 38(10): 3614–3621
|
17 |
Aguado S, Bergeret G, Daniel C, Farrusseng D. Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A. Journal of the American Chemical Society, 2012, 134(36): 14635–14637
|
18 |
MiltenburgA VZhuWKapteijnF MoulijnJ A. Adsorptive separation of light olefin/paraffin mixtures. Chemical Engineering Research & Design, 2006, 84(5 A5): 350–354
|
19 |
Cen P L. Adsorption uptake curves of ethylene on Cu(I)-NaY zeolite. AIChE Journal. American Institute of Chemical Engineers, 1990, 36(5): 789–793
|
20 |
Pérez-Botella E, Valencia S, Rey F. Zeolites in adsorption processes: state of the art and future prospects. Chemical Reviews, 2022, 122(24): 17647–17695
|
21 |
Liang J, Fu W, Liu C, Li X, Wang Y, Ma D, Li Y, Wang Z, Yang W. Synthesis of FER zeolite using 4-(aminomethyl) pyridine as structure-directing agent. Chemical Research in Chinese Universities, 2022, 38(1): 243–249
|
22 |
BaerlocherCMccusker L B. Database of Zeolite Structures. Available at iza-structure website
|
23 |
XuRPangW YuJHuoQ ChenJ. Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure. Singapore: John Wiley & Sons (Asia) Pte Ltd., 2007
|
24 |
CejkaJCorma AZonesS I. Zeolites and Catalysis—Synthesis, Reactions and Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010
|
25 |
KulprathipanjaS. Zeolites in Industrial Separation and Catalysis. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010
|
26 |
XiaoFMeng X. Zeolites in Sustainable Chemistry: Synthesis, Characterization and Catalytic Applications. Heidelberg: Springer, 2016
|
27 |
Li Y, Simon A O, Jiao C, Zhang M, Yan W, Rao H, Liu J, Zhang J. Rapid removal of Sr2+, Cs+ and UO22+ from solution with surfactant and amino acid modified zeolite Y. Microporous and Mesoporous Materials, 2020, 302: 110244
|
28 |
Bai R, Song Y, Tian G, Wang F, Corma A, Yu J. Titanium-rich TS-1 zeolite for highly efficient oxidative desulfurization. Green Energy & Environment, 2023, 8(1): 163–172
|
29 |
Pang H, Yang G, Li L, Yu J. Efficient transesterification over two-dimensional zeolites for sustainable biodiesel production. Green Energy & Environment, 2020, 5(4): 405–413
|
30 |
Wu R, Han J, Wang Y, Chen M, Tian P, Zhou X, Xu J, Zhang J N, Yan W. Exclusive SAPO-seeded synthesis of ZK-5 zeolite for selective synthesis of methylamines. Inorganic Chemistry Frontiers, 2022, 9(22): 5766–5773
|
31 |
Wang X, Yan N, Xie M, Liu P, Bai P, Su H, Wang B, Wang Y, Li L, Cheng T.
|
32 |
LiebauF. Structural Chemistry of Silicates: Structure, Bonding and Classification. Berlin: Springer-Verlag, 1985
|
33 |
Wang B, Li L, Li J, Jin K, Zhang S, Zhang J, Yan W. Recent progresses on the synthesis of zeolites from the industrial solid wastes. Chemical Journal of Chinese Universities, 2021, 42(1): 40–59
|
34 |
Wang B, Li J, Zhou X, Hao W, Zhang S, Lan C, Wang X, Wang Z, Xu J, Zhang J N.
|
35 |
Wragg D, Morris R, Burton A. Pure silica zeolite-type frameworks: a structural analysis. Chemistry of Materials, 2008, 20(4): 1561–1570
|
36 |
KerryF G. Industrial Gas Handbook: Gas Separation and Purification. Boca Raton: CRC Press, 2007
|
37 |
Li J, Kuppler R J, Zhou H. Selective gas adsorption and separation in metal-organic frameworks. Chemical Society Reviews, 2009, 38(5): 1477–1504
|
38 |
Sircar S. Pressure swing adsorption. Industrial & Engineering Chemistry Research, 2002, 41(6): 1389–1392
|
39 |
Fu X P, Wang Y L, Liu Q Y. Metal-organic frameworks for C2H2/CO2 separation. Dalton Transactions, 2020, 49(46): 16598–16607
|
40 |
Ding Q, Zhang S. Recent advances in the development of metal-organic frameworks for propylene and propane separation. Energy & Fuels, 2022, 36(14): 7337–7361
|
41 |
Lin X, Yang Y, Wang X, Lin S, Bao Z, Zhang Z, Xiang S. Functionalized metal-organic and hydrogen-bonded organic frameworks for C2H4/C2H6 separation. Separation and Purification Technology, 2024, 330: 125252
|
42 |
SircarSMyers A L. Gas Separation by Zeolites in Handbook of Zeolite Science and Technology. Boca Raton: CRC Press, 2003
|
43 |
LideD R. CRC Handbook of Chemistry and Physics. Boca Raton: CRC Press, 2016
|
44 |
BläkerCMauerVPaselC DreisbachFBathen D. Adsorption mechanisms of ethane, ethene and ethyne on calcium exchanged LTA and FAU zeolites. Adsorption, July 11, 2023. https://doi.org/10.1007/s10450-023-00392-0
|
45 |
Chung K, Park D, Kim K M, Lee C H. Adsorption equilibria and kinetics of ethane and ethylene on zeolite 13X pellets. Microporous and Mesoporous Materials, 2022, 343: 112199
|
46 |
Liu S, Chen Y, Yue B, Nie Y, Chai Y, Wu G, Li J, Han X, Day S J, Thompson S P.
|
47 |
Seabra R, Martins V F D, Ribeiro A M, Rodrigues A E, Ferreira A P. Ethylene/ethane separation by gas-phase SMB in binderfree zeolite 13X monoliths. Chemical Engineering Science, 2021, 229: 116006
|
48 |
Romero-Perez A, Aguilar-Armenta G. Adsorption kinetics and equilibria of carbon dioxide, ethylene, and ethane on 4A(CECA) zeolite. Journal of Chemical & Engineering Data, 2010, 55(9): 3625–3630
|
49 |
Mi Z, Lu T, Zhang J N, Xu R, Yan W. Synthesis of pure silica zeolites. Chemical Research in Chinese Universities, 2022, 38(1): 9–17
|
50 |
Bereciartua P J, Cantín Á, Corma A, Jordá J L, Palomino M, Rey F, Valencia S, Corcoran E W Jr, Kortunov P, Ravikovitch P I.
|
51 |
Park J, Cho K H, Kim J C, Ryoo R, Park J, Lee Y, Choi M. Design of olefin-phobic zeolites for efficient ethane and ethylene separation. Chemistry of Materials, 2023, 35(5): 2078–2087
|
52 |
Karetina I V, Zemljanova G J, Khvoshchev S S. Calorimetric study of C2H4 adsorption on synthetic zeolites with Na+ and Ca2+ cations. Studies in Surface Science and Catalysis, 2002, 142: 1627–1630
|
53 |
Nam G M, Jeong B M, Kang S H, Lee B K, Choi D K. Equilibrium isotherms of CH4, C2H6, C2H4, N2, and H2 on zeolite 5A using a static volumetric method. Journal of Chemical & Engineering Data, 2005, 50(1): 72–76
|
54 |
Bian Q, Xin M, Xu G, Chen S, Zou K, Shi Y. Effect of zeolite 5A particle size on its performance for adsorptive separation of ethylene/ethane. China Petroleum Processing and Petrochemical Technology, 2019, 21(4): 36–41
|
55 |
Roehnert M, Pasel C, Bläker C, Bathen D. Influence of temperature on the binary adsorption of ethane and ethene on FAU zeolites. Journal of Chemical & Engineering Data, 2023, 68(4): 1031–1042
|
56 |
Liu C, Xin M, Wang C, Zhao W, Xiang Y, Zhang X, Qiu L, Xu G. Ag2O nanoparticles encapsulated in Ag-exchanged LTA zeolites for highly selective separation of ethylene/ethane. ACS Applied Nano Materials, 2023, 6(7): 5374–5383
|
57 |
Monzón J D, Pereyra A M, Gonzalez M R, Legnoverde M S, Moreno M S, Gargiulo N, Peluso A, Aprea P, Caputo D, Basaldella E I. Ethylene adsorption onto thermally treated AgA-Zeolite. Applied Surface Science, 2021, 542: 148748
|
58 |
Liu Y, Wu Y, Liang W, Peng J, Li Z, Wang H, Janik M J, Xiao J. Bimetallic ions regulate pore size and chemistry of zeolites for selective adsorption of ethylene from ethane. Chemical Engineering Science, 2020, 220: 115636
|
59 |
Sakai M, Sasaki Y, Tomono T, Seshimo M, Matsukata M. Olefin selective Ag-exchanged X-type zeolite membrane for propylene/propane and ethylene/ethane separation. ACS Applied Materials & Interfaces, 2019, 11(4): 4145–4151
|
60 |
Min J G, Kemp K C, Hong S B. Silver ZK-5 zeolites for selective ethylene/ethane separation. Separation and Purification Technology, 2020, 250: 117146
|
61 |
Zhou J, Zhang Y, Guo X, Zhang A, Fei X. Removal of C2H4 from a CO2 stream by using AgNO3-modified Y-zeolites. Industrial & Engineering Chemistry Research, 2006, 45(18): 6236–6242
|
62 |
Abdi H, Maghsoudi H, Akhoundi V. Adsorption properties of ion-exchanged SSZ-13 zeolite for ethylene/ethane separation. Fluid Phase Equilibria, 2021, 546: 113171
|
63 |
Golipour H, Mokhtarani B, Mafi M, Moradi A, Godini H R. Experimental measurement for adsorption of ethylene and ethane gases on copper-exchanged zeolites 13X and 5A. Journal of Chemical & Engineering Data, 2020, 65(8): 3920–3932
|
64 |
Li G, Wang H, Li Q, Zhang X, Qin Y, Bi Y, Song L. Regulation of the nature and sites of copper species in CuNaY zeolites for ethylene and ethane separation. New Journal of Chemistry, 2023, 47(12): 5650–5658
|
65 |
Liu S, Han X, Chai Y, Wu G, Li W, Li J, Da Silva I, Manuel P, Cheng Y, Daemen L L.
|
66 |
Chai Y, Han X, Li W, Liu S, Yao S, Wang C, Shi W, Da-Silva I, Manuel P, Cheng Y.
|
/
〈 | 〉 |