Zeolites for the separation of ethylene, ethane, and ethyne
Binyu Wang, Qiang Li, Haoyang Zhang, Jia-Nan Zhang, Qinhe Pan, Wenfu Yan
Zeolites for the separation of ethylene, ethane, and ethyne
The cost-effective separation of ethylene (C2H4), ethyne (C2H2), and ethane (C2H6) poses a significant challenge in the contemporary chemical industry. In contrast to the energy-intensive high-pressure cryogenic distillation process, zeolite-based adsorptive separation offers a low-energy alternative. This review provides a concise overview of recent advancements in the adsorptive separation of C2H4, C2H2, and C2H6 using zeolites or zeolite-based adsorbents. It commences with an examination of the industrial significance of these compounds and the associated separation challenges. Subsequently, it systematically examines the utilization of various types of zeolites with diverse cationic species in such separation processes. And then it explores how different zeolitic structures impact adsorption and separation capabilities, considering principles such as cation-π interaction, π-complexation, and steric separation concerning C2H4, C2H2, and C2H6 molecules. Furthermore, it discusses methods to enhance the separation performance of zeolites and zeolite-based adsorbents, encompassing structural design, modifications, and ion exchange processes. Finally, it summarizes current research trends and future directions, highlighting the potential application value of zeolitic materials in the field of C2H4, C2H2, and C2H6 separation and offering recommendations for further investigation.
zeolite / ethylene / ethane / cation-π interaction / π-complexation
[1] |
Miller E V. The story of ethylene. Scientific Monthly, 1947, 65(4): 335–342
|
[2] |
Bakshi A, Shemansky J M, Chang C, Binder B M. History of research on the plant hormone ethylene. Journal of Plant Growth Regulation, 2015, 34(4): 809–827
CrossRef
Google scholar
|
[3] |
GarsideM. Production capacity of ethylene worldwide from 2018 to 2022. Available at statista website
|
[4] |
Sholl D S, Lively R P. Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437
CrossRef
Google scholar
|
[5] |
Chauhan R, Sartape R, Minocha N, Goyal I, Singh M R. Advancements in environmentally sustainable technologies for ethylene production. Energy & Fuels, 2023, 37(17): 12589–12622
CrossRef
Google scholar
|
[6] |
Sadrameli S M. Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins: a state-of-the-art review II: catalytic cracking review. Fuel, 2016, 173: 285–297
CrossRef
Google scholar
|
[7] |
Cui X, Chen K, Xing H, Yang Q, Krishna R, Bao Z, Wu H, Zhou W, Dong X, Han Y.
CrossRef
Google scholar
|
[8] |
Zhou Y, Zhang J, Wang L, Cui X, Liu X, Wong S, An H, Yan N, Xie J, Yu C.
CrossRef
Google scholar
|
[9] |
Chen Z, Li P, Anderson R, Wang X, Zhang X, Robison L, Redfern L R, Moribe S, Islamoglu T, Gomezgualdron D A.
CrossRef
Google scholar
|
[10] |
Li L, Lin R B, Krishna R, Li H, Xiang S, Wu H, Li J, Zhou W, Chen B. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science, 2018, 362(6413): 443–446
CrossRef
Google scholar
|
[11] |
Zhu B, Cao J W, Mukherjee S, Pham T, Zhang T, Wang T, Jiang X, Forrest K A, Zaworotko M J, Chen K J. Pore engineering for one-step ethylene purification from a three-component hydrocarbon mixture. Journal of the American Chemical Society, 2021, 143(3): 1485–1492
CrossRef
Google scholar
|
[12] |
Bai R, Song X, Yan W, Yu J. Low-energy adsorptive separation by zeolites. National Science Review, 2022, 9(9): nwac064
CrossRef
Google scholar
|
[13] |
YangR. Adsorbents: Fundamentals and Applications. New Jersey: John Wiley & Sons, 2003
|
[14] |
Li Y, Shen J, Peng S, Zhang J, Wu J, Liu X, Sun L. Enhancing oxidation resistance of Cu(I) by tailoring microenvironment in zeolites for efficient adsorptive desulfurization. Nature Communications, 2020, 11(1): 3206
CrossRef
Google scholar
|
[15] |
Yang R T, Kikkinides E S. New sorbents for olefin/paraffin separations by adsorption via π-complexation. AIChE Journal. American Institute of Chemical Engineers, 1995, 41(3): 509–517
CrossRef
Google scholar
|
[16] |
Padin J, Yang R, Munson C. New sorbents for olefin/paraffin separations and olefin purification for C4 hydrocarbons. Industrial & Engineering Chemistry Research, 1999, 38(10): 3614–3621
CrossRef
Google scholar
|
[17] |
Aguado S, Bergeret G, Daniel C, Farrusseng D. Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A. Journal of the American Chemical Society, 2012, 134(36): 14635–14637
CrossRef
Google scholar
|
[18] |
MiltenburgA VZhuWKapteijnF MoulijnJ A. Adsorptive separation of light olefin/paraffin mixtures. Chemical Engineering Research & Design, 2006, 84(5 A5): 350–354
|
[19] |
Cen P L. Adsorption uptake curves of ethylene on Cu(I)-NaY zeolite. AIChE Journal. American Institute of Chemical Engineers, 1990, 36(5): 789–793
CrossRef
Google scholar
|
[20] |
Pérez-Botella E, Valencia S, Rey F. Zeolites in adsorption processes: state of the art and future prospects. Chemical Reviews, 2022, 122(24): 17647–17695
CrossRef
Google scholar
|
[21] |
Liang J, Fu W, Liu C, Li X, Wang Y, Ma D, Li Y, Wang Z, Yang W. Synthesis of FER zeolite using 4-(aminomethyl) pyridine as structure-directing agent. Chemical Research in Chinese Universities, 2022, 38(1): 243–249
CrossRef
Google scholar
|
[22] |
BaerlocherCMccusker L B. Database of Zeolite Structures. Available at iza-structure website
|
[23] |
XuRPangW YuJHuoQ ChenJ. Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure. Singapore: John Wiley & Sons (Asia) Pte Ltd., 2007
|
[24] |
CejkaJCorma AZonesS I. Zeolites and Catalysis—Synthesis, Reactions and Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010
|
[25] |
KulprathipanjaS. Zeolites in Industrial Separation and Catalysis. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010
|
[26] |
XiaoFMeng X. Zeolites in Sustainable Chemistry: Synthesis, Characterization and Catalytic Applications. Heidelberg: Springer, 2016
|
[27] |
Li Y, Simon A O, Jiao C, Zhang M, Yan W, Rao H, Liu J, Zhang J. Rapid removal of Sr2+, Cs+ and UO22+ from solution with surfactant and amino acid modified zeolite Y. Microporous and Mesoporous Materials, 2020, 302: 110244
CrossRef
Google scholar
|
[28] |
Bai R, Song Y, Tian G, Wang F, Corma A, Yu J. Titanium-rich TS-1 zeolite for highly efficient oxidative desulfurization. Green Energy & Environment, 2023, 8(1): 163–172
CrossRef
Google scholar
|
[29] |
Pang H, Yang G, Li L, Yu J. Efficient transesterification over two-dimensional zeolites for sustainable biodiesel production. Green Energy & Environment, 2020, 5(4): 405–413
CrossRef
Google scholar
|
[30] |
Wu R, Han J, Wang Y, Chen M, Tian P, Zhou X, Xu J, Zhang J N, Yan W. Exclusive SAPO-seeded synthesis of ZK-5 zeolite for selective synthesis of methylamines. Inorganic Chemistry Frontiers, 2022, 9(22): 5766–5773
CrossRef
Google scholar
|
[31] |
Wang X, Yan N, Xie M, Liu P, Bai P, Su H, Wang B, Wang Y, Li L, Cheng T.
CrossRef
Google scholar
|
[32] |
LiebauF. Structural Chemistry of Silicates: Structure, Bonding and Classification. Berlin: Springer-Verlag, 1985
|
[33] |
Wang B, Li L, Li J, Jin K, Zhang S, Zhang J, Yan W. Recent progresses on the synthesis of zeolites from the industrial solid wastes. Chemical Journal of Chinese Universities, 2021, 42(1): 40–59
|
[34] |
Wang B, Li J, Zhou X, Hao W, Zhang S, Lan C, Wang X, Wang Z, Xu J, Zhang J N.
CrossRef
Google scholar
|
[35] |
Wragg D, Morris R, Burton A. Pure silica zeolite-type frameworks: a structural analysis. Chemistry of Materials, 2008, 20(4): 1561–1570
CrossRef
Google scholar
|
[36] |
KerryF G. Industrial Gas Handbook: Gas Separation and Purification. Boca Raton: CRC Press, 2007
|
[37] |
Li J, Kuppler R J, Zhou H. Selective gas adsorption and separation in metal-organic frameworks. Chemical Society Reviews, 2009, 38(5): 1477–1504
CrossRef
Google scholar
|
[38] |
Sircar S. Pressure swing adsorption. Industrial & Engineering Chemistry Research, 2002, 41(6): 1389–1392
CrossRef
Google scholar
|
[39] |
Fu X P, Wang Y L, Liu Q Y. Metal-organic frameworks for C2H2/CO2 separation. Dalton Transactions, 2020, 49(46): 16598–16607
CrossRef
Google scholar
|
[40] |
Ding Q, Zhang S. Recent advances in the development of metal-organic frameworks for propylene and propane separation. Energy & Fuels, 2022, 36(14): 7337–7361
CrossRef
Google scholar
|
[41] |
Lin X, Yang Y, Wang X, Lin S, Bao Z, Zhang Z, Xiang S. Functionalized metal-organic and hydrogen-bonded organic frameworks for C2H4/C2H6 separation. Separation and Purification Technology, 2024, 330: 125252
CrossRef
Google scholar
|
[42] |
SircarSMyers A L. Gas Separation by Zeolites in Handbook of Zeolite Science and Technology. Boca Raton: CRC Press, 2003
|
[43] |
LideD R. CRC Handbook of Chemistry and Physics. Boca Raton: CRC Press, 2016
|
[44] |
BläkerCMauerVPaselC DreisbachFBathen D. Adsorption mechanisms of ethane, ethene and ethyne on calcium exchanged LTA and FAU zeolites. Adsorption, July 11, 2023. https://doi.org/10.1007/s10450-023-00392-0
|
[45] |
Chung K, Park D, Kim K M, Lee C H. Adsorption equilibria and kinetics of ethane and ethylene on zeolite 13X pellets. Microporous and Mesoporous Materials, 2022, 343: 112199
CrossRef
Google scholar
|
[46] |
Liu S, Chen Y, Yue B, Nie Y, Chai Y, Wu G, Li J, Han X, Day S J, Thompson S P.
CrossRef
Google scholar
|
[47] |
Seabra R, Martins V F D, Ribeiro A M, Rodrigues A E, Ferreira A P. Ethylene/ethane separation by gas-phase SMB in binderfree zeolite 13X monoliths. Chemical Engineering Science, 2021, 229: 116006
CrossRef
Google scholar
|
[48] |
Romero-Perez A, Aguilar-Armenta G. Adsorption kinetics and equilibria of carbon dioxide, ethylene, and ethane on 4A(CECA) zeolite. Journal of Chemical & Engineering Data, 2010, 55(9): 3625–3630
CrossRef
Google scholar
|
[49] |
Mi Z, Lu T, Zhang J N, Xu R, Yan W. Synthesis of pure silica zeolites. Chemical Research in Chinese Universities, 2022, 38(1): 9–17
CrossRef
Google scholar
|
[50] |
Bereciartua P J, Cantín Á, Corma A, Jordá J L, Palomino M, Rey F, Valencia S, Corcoran E W Jr, Kortunov P, Ravikovitch P I.
CrossRef
Google scholar
|
[51] |
Park J, Cho K H, Kim J C, Ryoo R, Park J, Lee Y, Choi M. Design of olefin-phobic zeolites for efficient ethane and ethylene separation. Chemistry of Materials, 2023, 35(5): 2078–2087
CrossRef
Google scholar
|
[52] |
Karetina I V, Zemljanova G J, Khvoshchev S S. Calorimetric study of C2H4 adsorption on synthetic zeolites with Na+ and Ca2+ cations. Studies in Surface Science and Catalysis, 2002, 142: 1627–1630
CrossRef
Google scholar
|
[53] |
Nam G M, Jeong B M, Kang S H, Lee B K, Choi D K. Equilibrium isotherms of CH4, C2H6, C2H4, N2, and H2 on zeolite 5A using a static volumetric method. Journal of Chemical & Engineering Data, 2005, 50(1): 72–76
CrossRef
Google scholar
|
[54] |
Bian Q, Xin M, Xu G, Chen S, Zou K, Shi Y. Effect of zeolite 5A particle size on its performance for adsorptive separation of ethylene/ethane. China Petroleum Processing and Petrochemical Technology, 2019, 21(4): 36–41
|
[55] |
Roehnert M, Pasel C, Bläker C, Bathen D. Influence of temperature on the binary adsorption of ethane and ethene on FAU zeolites. Journal of Chemical & Engineering Data, 2023, 68(4): 1031–1042
CrossRef
Google scholar
|
[56] |
Liu C, Xin M, Wang C, Zhao W, Xiang Y, Zhang X, Qiu L, Xu G. Ag2O nanoparticles encapsulated in Ag-exchanged LTA zeolites for highly selective separation of ethylene/ethane. ACS Applied Nano Materials, 2023, 6(7): 5374–5383
CrossRef
Google scholar
|
[57] |
Monzón J D, Pereyra A M, Gonzalez M R, Legnoverde M S, Moreno M S, Gargiulo N, Peluso A, Aprea P, Caputo D, Basaldella E I. Ethylene adsorption onto thermally treated AgA-Zeolite. Applied Surface Science, 2021, 542: 148748
CrossRef
Google scholar
|
[58] |
Liu Y, Wu Y, Liang W, Peng J, Li Z, Wang H, Janik M J, Xiao J. Bimetallic ions regulate pore size and chemistry of zeolites for selective adsorption of ethylene from ethane. Chemical Engineering Science, 2020, 220: 115636
CrossRef
Google scholar
|
[59] |
Sakai M, Sasaki Y, Tomono T, Seshimo M, Matsukata M. Olefin selective Ag-exchanged X-type zeolite membrane for propylene/propane and ethylene/ethane separation. ACS Applied Materials & Interfaces, 2019, 11(4): 4145–4151
CrossRef
Google scholar
|
[60] |
Min J G, Kemp K C, Hong S B. Silver ZK-5 zeolites for selective ethylene/ethane separation. Separation and Purification Technology, 2020, 250: 117146
CrossRef
Google scholar
|
[61] |
Zhou J, Zhang Y, Guo X, Zhang A, Fei X. Removal of C2H4 from a CO2 stream by using AgNO3-modified Y-zeolites. Industrial & Engineering Chemistry Research, 2006, 45(18): 6236–6242
CrossRef
Google scholar
|
[62] |
Abdi H, Maghsoudi H, Akhoundi V. Adsorption properties of ion-exchanged SSZ-13 zeolite for ethylene/ethane separation. Fluid Phase Equilibria, 2021, 546: 113171
CrossRef
Google scholar
|
[63] |
Golipour H, Mokhtarani B, Mafi M, Moradi A, Godini H R. Experimental measurement for adsorption of ethylene and ethane gases on copper-exchanged zeolites 13X and 5A. Journal of Chemical & Engineering Data, 2020, 65(8): 3920–3932
CrossRef
Google scholar
|
[64] |
Li G, Wang H, Li Q, Zhang X, Qin Y, Bi Y, Song L. Regulation of the nature and sites of copper species in CuNaY zeolites for ethylene and ethane separation. New Journal of Chemistry, 2023, 47(12): 5650–5658
CrossRef
Google scholar
|
[65] |
Liu S, Han X, Chai Y, Wu G, Li W, Li J, Da Silva I, Manuel P, Cheng Y, Daemen L L.
CrossRef
Google scholar
|
[66] |
Chai Y, Han X, Li W, Liu S, Yao S, Wang C, Shi W, Da-Silva I, Manuel P, Cheng Y.
CrossRef
Google scholar
|
/
〈 | 〉 |