Zeolites for the separation of ethylene, ethane, and ethyne

Binyu Wang, Qiang Li, Haoyang Zhang, Jia-Nan Zhang, Qinhe Pan, Wenfu Yan

PDF(957 KB)
PDF(957 KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (9) : 108. DOI: 10.1007/s11705-024-2459-4
REVIEW ARTICLE

Zeolites for the separation of ethylene, ethane, and ethyne

Author information +
History +

Abstract

The cost-effective separation of ethylene (C2H4), ethyne (C2H2), and ethane (C2H6) poses a significant challenge in the contemporary chemical industry. In contrast to the energy-intensive high-pressure cryogenic distillation process, zeolite-based adsorptive separation offers a low-energy alternative. This review provides a concise overview of recent advancements in the adsorptive separation of C2H4, C2H2, and C2H6 using zeolites or zeolite-based adsorbents. It commences with an examination of the industrial significance of these compounds and the associated separation challenges. Subsequently, it systematically examines the utilization of various types of zeolites with diverse cationic species in such separation processes. And then it explores how different zeolitic structures impact adsorption and separation capabilities, considering principles such as cation-π interaction, π-complexation, and steric separation concerning C2H4, C2H2, and C2H6 molecules. Furthermore, it discusses methods to enhance the separation performance of zeolites and zeolite-based adsorbents, encompassing structural design, modifications, and ion exchange processes. Finally, it summarizes current research trends and future directions, highlighting the potential application value of zeolitic materials in the field of C2H4, C2H2, and C2H6 separation and offering recommendations for further investigation.

Graphical abstract

Keywords

zeolite / ethylene / ethane / cation-π interaction / π-complexation

Cite this article

Download citation ▾
Binyu Wang, Qiang Li, Haoyang Zhang, Jia-Nan Zhang, Qinhe Pan, Wenfu Yan. Zeolites for the separation of ethylene, ethane, and ethyne. Front. Chem. Sci. Eng., 2024, 18(9): 108 https://doi.org/10.1007/s11705-024-2459-4

References

[1]
Miller E V. The story of ethylene. Scientific Monthly, 1947, 65(4): 335–342
[2]
Bakshi A, Shemansky J M, Chang C, Binder B M. History of research on the plant hormone ethylene. Journal of Plant Growth Regulation, 2015, 34(4): 809–827
CrossRef Google scholar
[3]
GarsideM. Production capacity of ethylene worldwide from 2018 to 2022. Available at statista website
[4]
Sholl D S, Lively R P. Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437
CrossRef Google scholar
[5]
Chauhan R, Sartape R, Minocha N, Goyal I, Singh M R. Advancements in environmentally sustainable technologies for ethylene production. Energy & Fuels, 2023, 37(17): 12589–12622
CrossRef Google scholar
[6]
Sadrameli S M. Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins: a state-of-the-art review II: catalytic cracking review. Fuel, 2016, 173: 285–297
CrossRef Google scholar
[7]
Cui X, Chen K, Xing H, Yang Q, Krishna R, Bao Z, Wu H, Zhou W, Dong X, Han Y. . Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science, 2016, 353(6295): 141–144
CrossRef Google scholar
[8]
Zhou Y, Zhang J, Wang L, Cui X, Liu X, Wong S, An H, Yan N, Xie J, Yu C. . Self-assembled iron-containing mordenite monolith for carbon dioxide sieving. Science, 2021, 373(6552): 315–320
CrossRef Google scholar
[9]
Chen Z, Li P, Anderson R, Wang X, Zhang X, Robison L, Redfern L R, Moribe S, Islamoglu T, Gomezgualdron D A. . Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science, 2020, 368(6488): 297–303
CrossRef Google scholar
[10]
Li L, Lin R B, Krishna R, Li H, Xiang S, Wu H, Li J, Zhou W, Chen B. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science, 2018, 362(6413): 443–446
CrossRef Google scholar
[11]
Zhu B, Cao J W, Mukherjee S, Pham T, Zhang T, Wang T, Jiang X, Forrest K A, Zaworotko M J, Chen K J. Pore engineering for one-step ethylene purification from a three-component hydrocarbon mixture. Journal of the American Chemical Society, 2021, 143(3): 1485–1492
CrossRef Google scholar
[12]
Bai R, Song X, Yan W, Yu J. Low-energy adsorptive separation by zeolites. National Science Review, 2022, 9(9): nwac064
CrossRef Google scholar
[13]
YangR. Adsorbents: Fundamentals and Applications. New Jersey: John Wiley & Sons, 2003
[14]
Li Y, Shen J, Peng S, Zhang J, Wu J, Liu X, Sun L. Enhancing oxidation resistance of Cu(I) by tailoring microenvironment in zeolites for efficient adsorptive desulfurization. Nature Communications, 2020, 11(1): 3206
CrossRef Google scholar
[15]
Yang R T, Kikkinides E S. New sorbents for olefin/paraffin separations by adsorption via π-complexation. AIChE Journal. American Institute of Chemical Engineers, 1995, 41(3): 509–517
CrossRef Google scholar
[16]
Padin J, Yang R, Munson C. New sorbents for olefin/paraffin separations and olefin purification for C4 hydrocarbons. Industrial & Engineering Chemistry Research, 1999, 38(10): 3614–3621
CrossRef Google scholar
[17]
Aguado S, Bergeret G, Daniel C, Farrusseng D. Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A. Journal of the American Chemical Society, 2012, 134(36): 14635–14637
CrossRef Google scholar
[18]
MiltenburgA VZhuWKapteijnF MoulijnJ A. Adsorptive separation of light olefin/paraffin mixtures. Chemical Engineering Research & Design, 2006, 84(5 A5): 350–354
[19]
Cen P L. Adsorption uptake curves of ethylene on Cu(I)-NaY zeolite. AIChE Journal. American Institute of Chemical Engineers, 1990, 36(5): 789–793
CrossRef Google scholar
[20]
Pérez-Botella E, Valencia S, Rey F. Zeolites in adsorption processes: state of the art and future prospects. Chemical Reviews, 2022, 122(24): 17647–17695
CrossRef Google scholar
[21]
Liang J, Fu W, Liu C, Li X, Wang Y, Ma D, Li Y, Wang Z, Yang W. Synthesis of FER zeolite using 4-(aminomethyl) pyridine as structure-directing agent. Chemical Research in Chinese Universities, 2022, 38(1): 243–249
CrossRef Google scholar
[22]
BaerlocherCMccusker L B. Database of Zeolite Structures. Available at iza-structure website
[23]
XuRPangW YuJHuoQ ChenJ. Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure. Singapore: John Wiley & Sons (Asia) Pte Ltd., 2007
[24]
CejkaJCorma AZonesS I. Zeolites and Catalysis—Synthesis, Reactions and Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010
[25]
KulprathipanjaS. Zeolites in Industrial Separation and Catalysis. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010
[26]
XiaoFMeng X. Zeolites in Sustainable Chemistry: Synthesis, Characterization and Catalytic Applications. Heidelberg: Springer, 2016
[27]
Li Y, Simon A O, Jiao C, Zhang M, Yan W, Rao H, Liu J, Zhang J. Rapid removal of Sr2+, Cs+ and UO22+ from solution with surfactant and amino acid modified zeolite Y. Microporous and Mesoporous Materials, 2020, 302: 110244
CrossRef Google scholar
[28]
Bai R, Song Y, Tian G, Wang F, Corma A, Yu J. Titanium-rich TS-1 zeolite for highly efficient oxidative desulfurization. Green Energy & Environment, 2023, 8(1): 163–172
CrossRef Google scholar
[29]
Pang H, Yang G, Li L, Yu J. Efficient transesterification over two-dimensional zeolites for sustainable biodiesel production. Green Energy & Environment, 2020, 5(4): 405–413
CrossRef Google scholar
[30]
Wu R, Han J, Wang Y, Chen M, Tian P, Zhou X, Xu J, Zhang J N, Yan W. Exclusive SAPO-seeded synthesis of ZK-5 zeolite for selective synthesis of methylamines. Inorganic Chemistry Frontiers, 2022, 9(22): 5766–5773
CrossRef Google scholar
[31]
Wang X, Yan N, Xie M, Liu P, Bai P, Su H, Wang B, Wang Y, Li L, Cheng T. . The inorganic cation-tailored “trapdoor” effect of silicoaluminophosphate zeolite for highly selective CO2 separation. Chemical Science, 2021, 12(25): 8803–8810
CrossRef Google scholar
[32]
LiebauF. Structural Chemistry of Silicates: Structure, Bonding and Classification. Berlin: Springer-Verlag, 1985
[33]
Wang B, Li L, Li J, Jin K, Zhang S, Zhang J, Yan W. Recent progresses on the synthesis of zeolites from the industrial solid wastes. Chemical Journal of Chinese Universities, 2021, 42(1): 40–59
[34]
Wang B, Li J, Zhou X, Hao W, Zhang S, Lan C, Wang X, Wang Z, Xu J, Zhang J N. . Facile activation of lithium slag for the hydrothermal synthesis of zeolite A with commercial quality and high removal efficiency for the isotope of radioactive 90Sr. Inorganic Chemistry Frontiers, 2022, 9(3): 468–477
CrossRef Google scholar
[35]
Wragg D, Morris R, Burton A. Pure silica zeolite-type frameworks: a structural analysis. Chemistry of Materials, 2008, 20(4): 1561–1570
CrossRef Google scholar
[36]
KerryF G. Industrial Gas Handbook: Gas Separation and Purification. Boca Raton: CRC Press, 2007
[37]
Li J, Kuppler R J, Zhou H. Selective gas adsorption and separation in metal-organic frameworks. Chemical Society Reviews, 2009, 38(5): 1477–1504
CrossRef Google scholar
[38]
Sircar S. Pressure swing adsorption. Industrial & Engineering Chemistry Research, 2002, 41(6): 1389–1392
CrossRef Google scholar
[39]
Fu X P, Wang Y L, Liu Q Y. Metal-organic frameworks for C2H2/CO2 separation. Dalton Transactions, 2020, 49(46): 16598–16607
CrossRef Google scholar
[40]
Ding Q, Zhang S. Recent advances in the development of metal-organic frameworks for propylene and propane separation. Energy & Fuels, 2022, 36(14): 7337–7361
CrossRef Google scholar
[41]
Lin X, Yang Y, Wang X, Lin S, Bao Z, Zhang Z, Xiang S. Functionalized metal-organic and hydrogen-bonded organic frameworks for C2H4/C2H6 separation. Separation and Purification Technology, 2024, 330: 125252
CrossRef Google scholar
[42]
SircarSMyers A L. Gas Separation by Zeolites in Handbook of Zeolite Science and Technology. Boca Raton: CRC Press, 2003
[43]
LideD R. CRC Handbook of Chemistry and Physics. Boca Raton: CRC Press, 2016
[44]
BläkerCMauerVPaselC DreisbachFBathen D. Adsorption mechanisms of ethane, ethene and ethyne on calcium exchanged LTA and FAU zeolites. Adsorption, July 11, 2023. https://doi.org/10.1007/s10450-023-00392-0
[45]
Chung K, Park D, Kim K M, Lee C H. Adsorption equilibria and kinetics of ethane and ethylene on zeolite 13X pellets. Microporous and Mesoporous Materials, 2022, 343: 112199
CrossRef Google scholar
[46]
Liu S, Chen Y, Yue B, Nie Y, Chai Y, Wu G, Li J, Han X, Day S J, Thompson S P. . Cascade adsorptive separation of light hydrocarbons by commercial zeolites. Journal of Energy Chemistry, 2022, 72: 299–305
CrossRef Google scholar
[47]
Seabra R, Martins V F D, Ribeiro A M, Rodrigues A E, Ferreira A P. Ethylene/ethane separation by gas-phase SMB in binderfree zeolite 13X monoliths. Chemical Engineering Science, 2021, 229: 116006
CrossRef Google scholar
[48]
Romero-Perez A, Aguilar-Armenta G. Adsorption kinetics and equilibria of carbon dioxide, ethylene, and ethane on 4A(CECA) zeolite. Journal of Chemical & Engineering Data, 2010, 55(9): 3625–3630
CrossRef Google scholar
[49]
Mi Z, Lu T, Zhang J N, Xu R, Yan W. Synthesis of pure silica zeolites. Chemical Research in Chinese Universities, 2022, 38(1): 9–17
CrossRef Google scholar
[50]
Bereciartua P J, Cantín Á, Corma A, Jordá J L, Palomino M, Rey F, Valencia S, Corcoran E W Jr, Kortunov P, Ravikovitch P I. . Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science, 2017, 358(6366): 1068–1071
CrossRef Google scholar
[51]
Park J, Cho K H, Kim J C, Ryoo R, Park J, Lee Y, Choi M. Design of olefin-phobic zeolites for efficient ethane and ethylene separation. Chemistry of Materials, 2023, 35(5): 2078–2087
CrossRef Google scholar
[52]
Karetina I V, Zemljanova G J, Khvoshchev S S. Calorimetric study of C2H4 adsorption on synthetic zeolites with Na+ and Ca2+ cations. Studies in Surface Science and Catalysis, 2002, 142: 1627–1630
CrossRef Google scholar
[53]
Nam G M, Jeong B M, Kang S H, Lee B K, Choi D K. Equilibrium isotherms of CH4, C2H6, C2H4, N2, and H2 on zeolite 5A using a static volumetric method. Journal of Chemical & Engineering Data, 2005, 50(1): 72–76
CrossRef Google scholar
[54]
Bian Q, Xin M, Xu G, Chen S, Zou K, Shi Y. Effect of zeolite 5A particle size on its performance for adsorptive separation of ethylene/ethane. China Petroleum Processing and Petrochemical Technology, 2019, 21(4): 36–41
[55]
Roehnert M, Pasel C, Bläker C, Bathen D. Influence of temperature on the binary adsorption of ethane and ethene on FAU zeolites. Journal of Chemical & Engineering Data, 2023, 68(4): 1031–1042
CrossRef Google scholar
[56]
Liu C, Xin M, Wang C, Zhao W, Xiang Y, Zhang X, Qiu L, Xu G. Ag2O nanoparticles encapsulated in Ag-exchanged LTA zeolites for highly selective separation of ethylene/ethane. ACS Applied Nano Materials, 2023, 6(7): 5374–5383
CrossRef Google scholar
[57]
Monzón J D, Pereyra A M, Gonzalez M R, Legnoverde M S, Moreno M S, Gargiulo N, Peluso A, Aprea P, Caputo D, Basaldella E I. Ethylene adsorption onto thermally treated AgA-Zeolite. Applied Surface Science, 2021, 542: 148748
CrossRef Google scholar
[58]
Liu Y, Wu Y, Liang W, Peng J, Li Z, Wang H, Janik M J, Xiao J. Bimetallic ions regulate pore size and chemistry of zeolites for selective adsorption of ethylene from ethane. Chemical Engineering Science, 2020, 220: 115636
CrossRef Google scholar
[59]
Sakai M, Sasaki Y, Tomono T, Seshimo M, Matsukata M. Olefin selective Ag-exchanged X-type zeolite membrane for propylene/propane and ethylene/ethane separation. ACS Applied Materials & Interfaces, 2019, 11(4): 4145–4151
CrossRef Google scholar
[60]
Min J G, Kemp K C, Hong S B. Silver ZK-5 zeolites for selective ethylene/ethane separation. Separation and Purification Technology, 2020, 250: 117146
CrossRef Google scholar
[61]
Zhou J, Zhang Y, Guo X, Zhang A, Fei X. Removal of C2H4 from a CO2 stream by using AgNO3-modified Y-zeolites. Industrial & Engineering Chemistry Research, 2006, 45(18): 6236–6242
CrossRef Google scholar
[62]
Abdi H, Maghsoudi H, Akhoundi V. Adsorption properties of ion-exchanged SSZ-13 zeolite for ethylene/ethane separation. Fluid Phase Equilibria, 2021, 546: 113171
CrossRef Google scholar
[63]
Golipour H, Mokhtarani B, Mafi M, Moradi A, Godini H R. Experimental measurement for adsorption of ethylene and ethane gases on copper-exchanged zeolites 13X and 5A. Journal of Chemical & Engineering Data, 2020, 65(8): 3920–3932
CrossRef Google scholar
[64]
Li G, Wang H, Li Q, Zhang X, Qin Y, Bi Y, Song L. Regulation of the nature and sites of copper species in CuNaY zeolites for ethylene and ethane separation. New Journal of Chemistry, 2023, 47(12): 5650–5658
CrossRef Google scholar
[65]
Liu S, Han X, Chai Y, Wu G, Li W, Li J, Da Silva I, Manuel P, Cheng Y, Daemen L L. . Efficient separation of acetylene and carbon dioxide in a decorated zeolite. Angewandte Chemie International Edition, 2021, 60(12): 6526–6532
CrossRef Google scholar
[66]
Chai Y, Han X, Li W, Liu S, Yao S, Wang C, Shi W, Da-Silva I, Manuel P, Cheng Y. . Control of zeolite pore interior for chemoselective alkyne/olefin separations. Science, 2020, 368(6494): 1002–1006
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

We acknowledge the financial support from the National Key Research and Development Program of China (Grant Nos. 2021YFA1500401, 2021YFA1501202, and 2022YFB3504000), the National Natural Science Foundation of China (Grant No. 22288101), the 111 Project (Grant No. B17020), the Innovation Platform for Academicians of Hainan Province, and the Specific Research Fund of the Innovation Platform for Academicians of Hainan Province (Grant No. YSPTZX202321).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(957 KB)

Accesses

Citations

Detail

Sections
Recommended

/