Inter-chromosomal insertions into wild-type chromosomes induced by SCRaMbLE

  • Sijie Zhou 1,2 ,
  • Junyanrui Li 1,2 ,
  • Xichen Cui 1,2 ,
  • Ying Wang 1,2 ,
  • Ying-Jin Yuan , 1,2
Expand
  • 1. Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • 2. Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
yjyuan@tju.edu.cn

Received date: 14 Mar 2024

Accepted date: 29 Mar 2024

Copyright

2024 Higher Education Press

Abstract

Genomic rearrangements play a crucial role in shaping biological phenotypic diversity and driving species evolution. Synthetic chromosome rearrangement and modification by LoxP-mediated evolution (SCRaMbLE) has been applied to explore large-scale genomic rearrangements, yet it has been observed that these rearrangements occur exclusively in genomic regions containing loxPsym sites. Here, we found that SCRaMbLE of synthetic yeast harboring synthetic chromosome V and X can generate a variety of synthetic segment insertions into wild-type chromosomes, ranging from 1 to 300 kb. Furthermore, it was revealed that the novel insertions impacted the transcriptional level of neighboring regions and affected the production of exemplar pathway of zeaxanthin. Collectively, our results improve the understanding of the ability of SCRaMbLE to generate complex structural variations in nonsynthetic regions and provide a potential model to explore genomic transposable events.

Cite this article

Sijie Zhou , Junyanrui Li , Xichen Cui , Ying Wang , Ying-Jin Yuan . Inter-chromosomal insertions into wild-type chromosomes induced by SCRaMbLE[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(9) : 107 . DOI: 10.1007/s11705-024-2458-5

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

The authors would like to thank Bin Jia from Tianjin University for discussions and advice. The authors would also like to thank Jianting Zhou from Tianjin University for helpful comments during manuscript preparation. This study was supported by the National Key Research and Development Program of China (Grant No. 2021YFC2100800), the National Natural Science Foundation of China (Grant No. 22208241), China Postdoctoral Science Foundation (Grant No. 2023M732591), and the Key R&D Program of Shandong Province, China (Grant No. 2022SFGC0102).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2458-5 and is accessible for authorized users.
1
Korbel J O , Urban A E , Affourtit J P , Godwin B , Grubert F , Simons J F , Kim P M , Palejev D , Carriero N J , Du L . . Paired-end mapping reveals extensive structural variation in the human genome. Science, 2007, 318(5849): 420–426

DOI

2
Alonge M , Wang X , Benoit M , Soyk S , Pereira L , Zhang L , Suresh H , Ramakrishnan S , Maumus F , Ciren D . . Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell, 2020, 182(1): 145–161

DOI

3
Peter J , De Chiara M , Friedrich A , Yue J X , Pflieger D , Bergström A , Sigwalt A , Barre B , Freel K , Llored A . . Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature, 2018, 556(7701): 339–344

DOI

4
Yue J X , Li J , Aigrain L , Hallin J , Persson K , Oliver K , Bergström A , Coupland P , Warringer J , Lagomarsino M C . . Contrasting evolutionary genome dynamics between domesticated and wild yeasts. Nature Genetics, 2017, 49(6): 913–924

DOI

5
Kreplak J , Madoui M A , Cápal P , Novák P , Labadie K , Aubert G , Bayer P E , Gali K K , Syme R A , Main D . . A reference genome for pea provides insight into legume genome evolution. Nature Genetics, 2019, 51(9): 1411–1422

DOI

6
Chen H , Li C , Peng X , Zhou Z , Weinstein J N , Liang H , Caesar-Johnson S J , Demchok J A , Felau I , Kasapi M . . A pan-cancer analysis of enhancer expression in nearly 9000 patient samples. Cell, 2018, 173(2): 386–399

DOI

7
Fudenberg G , Getz G , Meyerson M , Mirny L A . High order chromatin architecture shapes the landscape of chromosomal alterations in cancer. Nature Biotechnology, 2011, 29(12): 1109–1113

DOI

8
Wu Y , Li B Z , Zhao M , Mitchell L A , Xie Z X , Lin Q H , Wang X , Xiao W H , Wang Y , Zhou X . . Bug mapping and fitness testing of chemically synthesized chromosome X. Science, 2017, 355(6329): eaaf4706

DOI

9
Xie Z X , Li B Z , Mitchell L A , Wu Y , Qi X , Jin Z , Jia B , Wang X , Zeng B X , Liu H M . . “Perfect” designer chromosome V and behavior of a ring derivative. Science, 2017, 355(6329): eaaf4704

DOI

10
Zhou S , Wu Y , Zhao Y , Zhang Z , Jiang L , Liu L , Zhang Y , Tang J , Yuan Y J . Dynamics of synthetic yeast chromosome evolution shaped by hierarchical chromatin organization. National Science Review, 2023, 10(5): nwad073

DOI

11
Zhang H , Fu X , Gong X , Wang Y , Zhang H , Zhao Y , Shen Y . Systematic dissection of key factors governing recombination outcomes by GCE-SCRaMbLE. Nature Communications, 2022, 13(1): 5836

DOI

12
Blount B A , Lu X , Driessen M R M , Jovicevic D , Sanchez M I , Ciurkot K , Zhao Y , Lauer S , Mckiernan R M , Gowers G O F . . Synthetic yeast chromosome XI design provides a testbed for the study of extrachromosomal circular DNA dynamics. Cell Genomics, 2023, 3(11): 100418

DOI

13
Zhou S , Wu Y , Xie Z X , Jia B , Yuan Y J . Directed genome evolution driven by structural rearrangement techniques. Chemical Society Reviews, 2021, 50(22): 12788–12807

DOI

14
Zhao Y , Coelho C , Hughes A L , Lazar-Stefanita L , Yang S , Brooks A N , Walker R S K , Zhang W , Lauer S , Hernandez C . . Debugging and consolidating multiple synthetic chromosomes reveals combinatorial genetic interactions. Cell, 2023, 186(24): 5220–5236

DOI

15
Gvozdenov Z , Barcutean Z , Struhl K . Functional analysis of a random-sequence chromosome reveals a high level and the molecular nature of transcriptional noise in yeast cells. Molecular Cell, 2023, 83(11): 1786–1797

DOI

16
Xiong Y , Zhang H , Zhou S , Ma L , Xiao W , Wu Y , Yuan Y J . Structural variations and adaptations of synthetic chromosome ends driven by SCRaMbLE in haploid and diploid yeasts. ACS Synthetic Biology, 2023, 12(3): 689–699

DOI

17
Steensels J , Gorkovskiy A , Verstrepen K J . SCRaMbLEing to understand and exploit structural variation in genomes. Nature Communications, 2018, 9(1): 1937

DOI

18
Shen Y , Gao F , Wang Y , Wang Y , Zheng J , Gong J , Zhang J , Luo Z , Schindler D , Deng Y . . Dissecting aneuploidy phenotypes by constructing Sc2.0 chromosome VII and SCRaMbLEing synthetic disomic yeast. Cell Genomics, 2023, 3(11): 100364

DOI

19
Wang J , Xie Z X , Ma Y , Chen X R , Huang Y Q , He B , Jia B , Li B Z , Yuan Y J . Ring synthetic chromosome V SCRaMbLE. Nature Communications, 2018, 9(1): 3783

DOI

20
Wu Y , Zhu R Y , Mitchell L A , Ma L , Liu R , Zhao M , Jia B , Xu H , Li Y X , Yang Z M . . In vitro DNA SCRaMbLE. Nature Communications, 2018, 9(1): 1935

DOI

21
Zhang Y , Chiu T Y , Zhang J T , Wang S J , Wang S W , Liu L Y , Ping Z , Wang Y , Chen A , Zhang W W . . Systematical engineering of synthetic yeast for enhanced production of lycopene. Bioengineering, 2021, 8(1): 14

DOI

22
Jia B , Jin J , Han M , Li B , Yuan Y . Directed yeast genome evolution by controlled introduction of trans-chromosomic structural variations. Science China: Life Sciences, 2022, 65(9): 1703–1717

DOI

23
Cheng L , Zhao S , Li T , Hou S , Luo Z , Xu J , Yu W , Jiang S , Monti M , Schindler D . . Large-scale genomic rearrangements boost SCRaMbLE in Saccharomyces cerevisiae. Nature Communications, 2024, 15(1): 770

DOI

24
Voigt K , Gogol-Döring A , Miskey C , Chen W , Cathomen T , Izsvák Z , Ivics Z . Retargeting sleeping beauty transposon insertions by engineered zinc finger DNA-binding domains. Molecular Therapy, 2012, 20(10): 1852–1862

DOI

25
Cao H , Hastie A R , Cao D , Lam E T , Sun Y , Huang H , Liu X , Lin L , Andrews W , Chan S . . Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology. GigaScience, 2014, 3(1): 34

DOI

26
Xie Z X , Mitchell L A , Liu H M , Li B Z , Liu D , Agmon N , Wu Y , Li X , Zhou X , Li B . . Rapid and efficient CRISPR/Cas9-based mating-type switching of Saccharomyces cerevisiae. G3, 2018, 8(1): 173–183

DOI

27
Liti G , Carter D M , Moses A M , Warringer J , Parts L , James S A , Davey R P , Roberts I N , Burt A , Koufopanou V . . Population genomics of domestic and wild yeasts. Nature, 2009, 458(7236): 337–341

DOI

28
Asker D . Isolation and characterization of a novel, highly selective astaxanthin-producing marine bacterium. Journal of Agricultural and Food Chemistry, 2017, 65(41): 9101–9109

DOI

29
Wang P , Xu H , Li H , Chen H , Zhou S , Tian F , Li B Z , Bo X , Wu Y , Yuan Y J . SCRaMbLEing of a synthetic yeast chromosome with clustered essential genes reveals synthetic lethal interactions. ACS Synthetic Biology, 2020, 9(5): 1181–1189

DOI

30
Dymond J S , Richardson S M , Coombes C E , Babatz T , Muller H , Annaluru N , Blake W J , Schwerzmann J W , Dai J , Lindstrom D L . . Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature, 2011, 477(7365): 471–476

DOI

31
Mitchell L A , Wang A , Stracquadanio G , Kuang Z , Wang X , Yang K , Richardson S , Martin J A , Zhao Y , Walker R . . Synthesis, debugging, and effects of synthetic chromosome consolidation: synVI and beyond. Science, 2017, 355(6329): eaaf4831

DOI

32
Carbon J . Yeast centromeres: structure and function. Cell, 1984, 37(2): 351–353

DOI

33
Xu H , Han M , Zhou S , Li B Z , Wu Y , Yuan Y J . Chromosome drives via CRISPR-Cas9 in yeast. Nature Communications, 2020, 11(1): 4344

DOI

34
Li Y X , Wu Y , Ma L , Guo Z , Xiao W H , Yuan Y J . Loss of heterozygosity by SCRaMbLEing. Science China. Life Sciences, 2019, 62(3): 381–393

DOI

35
Ko N , Nishihama R , Pringle J R . Control of 5-FOA and 5-FU resistance by Saccharomyces cerevisiae YJL055W. Yeast, 2008, 25(2): 155–160

DOI

36
Wood A J , Lo T W , Zeitler B , Pickle C S , Ralston E J , Lee A H , Amora R , Miller J C , Leung E , Meng X . . Targeted genome editing across species using ZFNs and TALENs. Science, 2011, 333(6040): 307

DOI

37
Gaj T , Gersbach C A , Barbas C F . ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 2013, 31(7): 397–405

DOI

38
Fleiss A , O’donnell S , Fournier T , Lu W , Agier N , Delmas S , Schacherer J , Fischer G . Reshuffling yeast chromosomes with CRISPR/Cas9. PLOS Genetics, 2019, 15(8): e1008332

DOI

39
Sultana T , Zamborlini A , Cristofari G , Lesage P . Integration site selection by retroviruses and transposable elements in eukaryotes. Nature Reviews. Genetics, 2017, 18(5): 292–308

DOI

40
Domínguez M , Dugas E , Benchouaia M , Leduque B , Jiménez-Gómez J M , Colot V , Quadrana L . The impact of transposable elements on tomato diversity. Nature Communications, 2020, 11(1): 4058

DOI

41
Brooks A N , Hughes A L , Clauder-Münster S , Mitchell L A , Boeke J D , Steinmetz L M . Transcriptional neighborhoods regulate transcript isoform lengths and expression levels. Science, 2022, 375(6584): 1000–1005

DOI

42
Studer A , Zhao Q , Ross-Ibarra J , Doebley J . Identification of a functional transposon insertion in the maize domestication gene tb1. Nature Genetics, 2011, 43(11): 1160–1163

DOI

43
Soyk S , Lemmon Z H , Oved M , Fisher J , Liberatore K L , Park S J , Goren A , Jiang K , Ramos A , Van Der Knaap E . . Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell, 2017, 169(6): 1142–1155

DOI

44
Fueyo R , Judd J , Feschotte C , Wysocka J . Roles of transposable elements in the regulation of mammalian transcription. Nature Reviews: Molecular Cell Biology, 2022, 23(7): 481–497

DOI

45
Wang Y , Wang M , Djekidel M N , Chen H , Liu D , Alt F W , Zhang Y . eccDNAs are apoptotic products with high innate immunostimulatory activity. Nature, 2021, 599(7884): 308–314

DOI

46
Yang F , Su W , Chung O W , Tracy L , Wang L , Ramsden D A , Zhang Z Z Z . Retrotransposons hijack alt-EJ for DNA replication and eccDNA biogenesis. Nature, 2023, 620(7972): 218–225

DOI

47
Guo F , Gopaul D N , Van Duyne G D . Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature, 1997, 389(6646): 40–46

DOI

48
Biedler J L , Spengler B A . Metaphase chromosome anomaly: association with drug resistance and cell-specific products. Science, 1976, 191(4223): 185–187

DOI

49
Rosswog C , Bartenhagen C , Welte A , Kahlert Y , Hemstedt N , Lorenz W , Cartolano M , Ackermann S , Perner S , Vogel W . . Chromothripsis followed by circular recombination drives oncogene amplification in human cancer. Nature Genetics, 2021, 53(12): 1673–1685

DOI

Outlines

/