Inter-chromosomal insertions into wild-type chromosomes induced by SCRaMbLE

Sijie Zhou, Junyanrui Li, Xichen Cui, Ying Wang, Ying-Jin Yuan

PDF(1663 KB)
PDF(1663 KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (9) : 107. DOI: 10.1007/s11705-024-2458-5
RESEARCH ARTICLE

Inter-chromosomal insertions into wild-type chromosomes induced by SCRaMbLE

Author information +
History +

Abstract

Genomic rearrangements play a crucial role in shaping biological phenotypic diversity and driving species evolution. Synthetic chromosome rearrangement and modification by LoxP-mediated evolution (SCRaMbLE) has been applied to explore large-scale genomic rearrangements, yet it has been observed that these rearrangements occur exclusively in genomic regions containing loxPsym sites. Here, we found that SCRaMbLE of synthetic yeast harboring synthetic chromosome V and X can generate a variety of synthetic segment insertions into wild-type chromosomes, ranging from 1 to 300 kb. Furthermore, it was revealed that the novel insertions impacted the transcriptional level of neighboring regions and affected the production of exemplar pathway of zeaxanthin. Collectively, our results improve the understanding of the ability of SCRaMbLE to generate complex structural variations in nonsynthetic regions and provide a potential model to explore genomic transposable events.

Graphical abstract

Keywords

genomic rearrangements / synthetic yeast genome / SCRaMbLE / inter-chromosomal insertions / synthetic biology

Cite this article

Download citation ▾
Sijie Zhou, Junyanrui Li, Xichen Cui, Ying Wang, Ying-Jin Yuan. Inter-chromosomal insertions into wild-type chromosomes induced by SCRaMbLE. Front. Chem. Sci. Eng., 2024, 18(9): 107 https://doi.org/10.1007/s11705-024-2458-5

References

[1]
Korbel J O , Urban A E , Affourtit J P , Godwin B , Grubert F , Simons J F , Kim P M , Palejev D , Carriero N J , Du L . . Paired-end mapping reveals extensive structural variation in the human genome. Science, 2007, 318(5849): 420–426
CrossRef Google scholar
[2]
Alonge M , Wang X , Benoit M , Soyk S , Pereira L , Zhang L , Suresh H , Ramakrishnan S , Maumus F , Ciren D . . Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell, 2020, 182(1): 145–161
CrossRef Google scholar
[3]
Peter J , De Chiara M , Friedrich A , Yue J X , Pflieger D , Bergström A , Sigwalt A , Barre B , Freel K , Llored A . . Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature, 2018, 556(7701): 339–344
CrossRef Google scholar
[4]
Yue J X , Li J , Aigrain L , Hallin J , Persson K , Oliver K , Bergström A , Coupland P , Warringer J , Lagomarsino M C . . Contrasting evolutionary genome dynamics between domesticated and wild yeasts. Nature Genetics, 2017, 49(6): 913–924
CrossRef Google scholar
[5]
Kreplak J , Madoui M A , Cápal P , Novák P , Labadie K , Aubert G , Bayer P E , Gali K K , Syme R A , Main D . . A reference genome for pea provides insight into legume genome evolution. Nature Genetics, 2019, 51(9): 1411–1422
CrossRef Google scholar
[6]
Chen H , Li C , Peng X , Zhou Z , Weinstein J N , Liang H , Caesar-Johnson S J , Demchok J A , Felau I , Kasapi M . . A pan-cancer analysis of enhancer expression in nearly 9000 patient samples. Cell, 2018, 173(2): 386–399
CrossRef Google scholar
[7]
Fudenberg G , Getz G , Meyerson M , Mirny L A . High order chromatin architecture shapes the landscape of chromosomal alterations in cancer. Nature Biotechnology, 2011, 29(12): 1109–1113
CrossRef Google scholar
[8]
Wu Y , Li B Z , Zhao M , Mitchell L A , Xie Z X , Lin Q H , Wang X , Xiao W H , Wang Y , Zhou X . . Bug mapping and fitness testing of chemically synthesized chromosome X. Science, 2017, 355(6329): eaaf4706
CrossRef Google scholar
[9]
Xie Z X , Li B Z , Mitchell L A , Wu Y , Qi X , Jin Z , Jia B , Wang X , Zeng B X , Liu H M . . “Perfect” designer chromosome V and behavior of a ring derivative. Science, 2017, 355(6329): eaaf4704
CrossRef Google scholar
[10]
Zhou S , Wu Y , Zhao Y , Zhang Z , Jiang L , Liu L , Zhang Y , Tang J , Yuan Y J . Dynamics of synthetic yeast chromosome evolution shaped by hierarchical chromatin organization. National Science Review, 2023, 10(5): nwad073
CrossRef Google scholar
[11]
Zhang H , Fu X , Gong X , Wang Y , Zhang H , Zhao Y , Shen Y . Systematic dissection of key factors governing recombination outcomes by GCE-SCRaMbLE. Nature Communications, 2022, 13(1): 5836
CrossRef Google scholar
[12]
Blount B A , Lu X , Driessen M R M , Jovicevic D , Sanchez M I , Ciurkot K , Zhao Y , Lauer S , Mckiernan R M , Gowers G O F . . Synthetic yeast chromosome XI design provides a testbed for the study of extrachromosomal circular DNA dynamics. Cell Genomics, 2023, 3(11): 100418
CrossRef Google scholar
[13]
Zhou S , Wu Y , Xie Z X , Jia B , Yuan Y J . Directed genome evolution driven by structural rearrangement techniques. Chemical Society Reviews, 2021, 50(22): 12788–12807
CrossRef Google scholar
[14]
Zhao Y , Coelho C , Hughes A L , Lazar-Stefanita L , Yang S , Brooks A N , Walker R S K , Zhang W , Lauer S , Hernandez C . . Debugging and consolidating multiple synthetic chromosomes reveals combinatorial genetic interactions. Cell, 2023, 186(24): 5220–5236
CrossRef Google scholar
[15]
Gvozdenov Z , Barcutean Z , Struhl K . Functional analysis of a random-sequence chromosome reveals a high level and the molecular nature of transcriptional noise in yeast cells. Molecular Cell, 2023, 83(11): 1786–1797
CrossRef Google scholar
[16]
Xiong Y , Zhang H , Zhou S , Ma L , Xiao W , Wu Y , Yuan Y J . Structural variations and adaptations of synthetic chromosome ends driven by SCRaMbLE in haploid and diploid yeasts. ACS Synthetic Biology, 2023, 12(3): 689–699
CrossRef Google scholar
[17]
Steensels J , Gorkovskiy A , Verstrepen K J . SCRaMbLEing to understand and exploit structural variation in genomes. Nature Communications, 2018, 9(1): 1937
CrossRef Google scholar
[18]
Shen Y , Gao F , Wang Y , Wang Y , Zheng J , Gong J , Zhang J , Luo Z , Schindler D , Deng Y . . Dissecting aneuploidy phenotypes by constructing Sc2.0 chromosome VII and SCRaMbLEing synthetic disomic yeast. Cell Genomics, 2023, 3(11): 100364
CrossRef Google scholar
[19]
Wang J , Xie Z X , Ma Y , Chen X R , Huang Y Q , He B , Jia B , Li B Z , Yuan Y J . Ring synthetic chromosome V SCRaMbLE. Nature Communications, 2018, 9(1): 3783
CrossRef Google scholar
[20]
Wu Y , Zhu R Y , Mitchell L A , Ma L , Liu R , Zhao M , Jia B , Xu H , Li Y X , Yang Z M . . In vitro DNA SCRaMbLE. Nature Communications, 2018, 9(1): 1935
CrossRef Google scholar
[21]
Zhang Y , Chiu T Y , Zhang J T , Wang S J , Wang S W , Liu L Y , Ping Z , Wang Y , Chen A , Zhang W W . . Systematical engineering of synthetic yeast for enhanced production of lycopene. Bioengineering, 2021, 8(1): 14
CrossRef Google scholar
[22]
Jia B , Jin J , Han M , Li B , Yuan Y . Directed yeast genome evolution by controlled introduction of trans-chromosomic structural variations. Science China: Life Sciences, 2022, 65(9): 1703–1717
CrossRef Google scholar
[23]
Cheng L , Zhao S , Li T , Hou S , Luo Z , Xu J , Yu W , Jiang S , Monti M , Schindler D . . Large-scale genomic rearrangements boost SCRaMbLE in Saccharomyces cerevisiae. Nature Communications, 2024, 15(1): 770
CrossRef Google scholar
[24]
Voigt K , Gogol-Döring A , Miskey C , Chen W , Cathomen T , Izsvák Z , Ivics Z . Retargeting sleeping beauty transposon insertions by engineered zinc finger DNA-binding domains. Molecular Therapy, 2012, 20(10): 1852–1862
CrossRef Google scholar
[25]
Cao H , Hastie A R , Cao D , Lam E T , Sun Y , Huang H , Liu X , Lin L , Andrews W , Chan S . . Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology. GigaScience, 2014, 3(1): 34
CrossRef Google scholar
[26]
Xie Z X , Mitchell L A , Liu H M , Li B Z , Liu D , Agmon N , Wu Y , Li X , Zhou X , Li B . . Rapid and efficient CRISPR/Cas9-based mating-type switching of Saccharomyces cerevisiae. G3, 2018, 8(1): 173–183
CrossRef Google scholar
[27]
Liti G , Carter D M , Moses A M , Warringer J , Parts L , James S A , Davey R P , Roberts I N , Burt A , Koufopanou V . . Population genomics of domestic and wild yeasts. Nature, 2009, 458(7236): 337–341
CrossRef Google scholar
[28]
Asker D . Isolation and characterization of a novel, highly selective astaxanthin-producing marine bacterium. Journal of Agricultural and Food Chemistry, 2017, 65(41): 9101–9109
CrossRef Google scholar
[29]
Wang P , Xu H , Li H , Chen H , Zhou S , Tian F , Li B Z , Bo X , Wu Y , Yuan Y J . SCRaMbLEing of a synthetic yeast chromosome with clustered essential genes reveals synthetic lethal interactions. ACS Synthetic Biology, 2020, 9(5): 1181–1189
CrossRef Google scholar
[30]
Dymond J S , Richardson S M , Coombes C E , Babatz T , Muller H , Annaluru N , Blake W J , Schwerzmann J W , Dai J , Lindstrom D L . . Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature, 2011, 477(7365): 471–476
CrossRef Google scholar
[31]
Mitchell L A , Wang A , Stracquadanio G , Kuang Z , Wang X , Yang K , Richardson S , Martin J A , Zhao Y , Walker R . . Synthesis, debugging, and effects of synthetic chromosome consolidation: synVI and beyond. Science, 2017, 355(6329): eaaf4831
CrossRef Google scholar
[32]
Carbon J . Yeast centromeres: structure and function. Cell, 1984, 37(2): 351–353
CrossRef Google scholar
[33]
Xu H , Han M , Zhou S , Li B Z , Wu Y , Yuan Y J . Chromosome drives via CRISPR-Cas9 in yeast. Nature Communications, 2020, 11(1): 4344
CrossRef Google scholar
[34]
Li Y X , Wu Y , Ma L , Guo Z , Xiao W H , Yuan Y J . Loss of heterozygosity by SCRaMbLEing. Science China. Life Sciences, 2019, 62(3): 381–393
CrossRef Google scholar
[35]
Ko N , Nishihama R , Pringle J R . Control of 5-FOA and 5-FU resistance by Saccharomyces cerevisiae YJL055W. Yeast, 2008, 25(2): 155–160
CrossRef Google scholar
[36]
Wood A J , Lo T W , Zeitler B , Pickle C S , Ralston E J , Lee A H , Amora R , Miller J C , Leung E , Meng X . . Targeted genome editing across species using ZFNs and TALENs. Science, 2011, 333(6040): 307
CrossRef Google scholar
[37]
Gaj T , Gersbach C A , Barbas C F . ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 2013, 31(7): 397–405
CrossRef Google scholar
[38]
Fleiss A , O’donnell S , Fournier T , Lu W , Agier N , Delmas S , Schacherer J , Fischer G . Reshuffling yeast chromosomes with CRISPR/Cas9. PLOS Genetics, 2019, 15(8): e1008332
CrossRef Google scholar
[39]
Sultana T , Zamborlini A , Cristofari G , Lesage P . Integration site selection by retroviruses and transposable elements in eukaryotes. Nature Reviews. Genetics, 2017, 18(5): 292–308
CrossRef Google scholar
[40]
Domínguez M , Dugas E , Benchouaia M , Leduque B , Jiménez-Gómez J M , Colot V , Quadrana L . The impact of transposable elements on tomato diversity. Nature Communications, 2020, 11(1): 4058
CrossRef Google scholar
[41]
Brooks A N , Hughes A L , Clauder-Münster S , Mitchell L A , Boeke J D , Steinmetz L M . Transcriptional neighborhoods regulate transcript isoform lengths and expression levels. Science, 2022, 375(6584): 1000–1005
CrossRef Google scholar
[42]
Studer A , Zhao Q , Ross-Ibarra J , Doebley J . Identification of a functional transposon insertion in the maize domestication gene tb1. Nature Genetics, 2011, 43(11): 1160–1163
CrossRef Google scholar
[43]
Soyk S , Lemmon Z H , Oved M , Fisher J , Liberatore K L , Park S J , Goren A , Jiang K , Ramos A , Van Der Knaap E . . Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell, 2017, 169(6): 1142–1155
CrossRef Google scholar
[44]
Fueyo R , Judd J , Feschotte C , Wysocka J . Roles of transposable elements in the regulation of mammalian transcription. Nature Reviews: Molecular Cell Biology, 2022, 23(7): 481–497
CrossRef Google scholar
[45]
Wang Y , Wang M , Djekidel M N , Chen H , Liu D , Alt F W , Zhang Y . eccDNAs are apoptotic products with high innate immunostimulatory activity. Nature, 2021, 599(7884): 308–314
CrossRef Google scholar
[46]
Yang F , Su W , Chung O W , Tracy L , Wang L , Ramsden D A , Zhang Z Z Z . Retrotransposons hijack alt-EJ for DNA replication and eccDNA biogenesis. Nature, 2023, 620(7972): 218–225
CrossRef Google scholar
[47]
Guo F , Gopaul D N , Van Duyne G D . Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature, 1997, 389(6646): 40–46
CrossRef Google scholar
[48]
Biedler J L , Spengler B A . Metaphase chromosome anomaly: association with drug resistance and cell-specific products. Science, 1976, 191(4223): 185–187
CrossRef Google scholar
[49]
Rosswog C , Bartenhagen C , Welte A , Kahlert Y , Hemstedt N , Lorenz W , Cartolano M , Ackermann S , Perner S , Vogel W . . Chromothripsis followed by circular recombination drives oncogene amplification in human cancer. Nature Genetics, 2021, 53(12): 1673–1685
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

The authors would like to thank Bin Jia from Tianjin University for discussions and advice. The authors would also like to thank Jianting Zhou from Tianjin University for helpful comments during manuscript preparation. This study was supported by the National Key Research and Development Program of China (Grant No. 2021YFC2100800), the National Natural Science Foundation of China (Grant No. 22208241), China Postdoctoral Science Foundation (Grant No. 2023M732591), and the Key R&D Program of Shandong Province, China (Grant No. 2022SFGC0102).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2458-5 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(1663 KB)

Accesses

Citations

Detail

Sections
Recommended

/