Inter-chromosomal insertions into wild-type chromosomes induced by SCRaMbLE

Sijie Zhou , Junyanrui Li , Xichen Cui , Ying Wang , Ying-Jin Yuan

Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (9) : 107

PDF (1663KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (9) : 107 DOI: 10.1007/s11705-024-2458-5
RESEARCH ARTICLE

Inter-chromosomal insertions into wild-type chromosomes induced by SCRaMbLE

Author information +
History +
PDF (1663KB)

Abstract

Genomic rearrangements play a crucial role in shaping biological phenotypic diversity and driving species evolution. Synthetic chromosome rearrangement and modification by LoxP-mediated evolution (SCRaMbLE) has been applied to explore large-scale genomic rearrangements, yet it has been observed that these rearrangements occur exclusively in genomic regions containing loxPsym sites. Here, we found that SCRaMbLE of synthetic yeast harboring synthetic chromosome V and X can generate a variety of synthetic segment insertions into wild-type chromosomes, ranging from 1 to 300 kb. Furthermore, it was revealed that the novel insertions impacted the transcriptional level of neighboring regions and affected the production of exemplar pathway of zeaxanthin. Collectively, our results improve the understanding of the ability of SCRaMbLE to generate complex structural variations in nonsynthetic regions and provide a potential model to explore genomic transposable events.

Graphical abstract

Keywords

genomic rearrangements / synthetic yeast genome / SCRaMbLE / inter-chromosomal insertions / synthetic biology

Cite this article

Download citation ▾
Sijie Zhou, Junyanrui Li, Xichen Cui, Ying Wang, Ying-Jin Yuan. Inter-chromosomal insertions into wild-type chromosomes induced by SCRaMbLE. Front. Chem. Sci. Eng., 2024, 18(9): 107 DOI:10.1007/s11705-024-2458-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Korbel J O , Urban A E , Affourtit J P , Godwin B , Grubert F , Simons J F , Kim P M , Palejev D , Carriero N J , Du L . . Paired-end mapping reveals extensive structural variation in the human genome. Science, 2007, 318(5849): 420–426

[2]

Alonge M , Wang X , Benoit M , Soyk S , Pereira L , Zhang L , Suresh H , Ramakrishnan S , Maumus F , Ciren D . . Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell, 2020, 182(1): 145–161

[3]

Peter J , De Chiara M , Friedrich A , Yue J X , Pflieger D , Bergström A , Sigwalt A , Barre B , Freel K , Llored A . . Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature, 2018, 556(7701): 339–344

[4]

Yue J X , Li J , Aigrain L , Hallin J , Persson K , Oliver K , Bergström A , Coupland P , Warringer J , Lagomarsino M C . . Contrasting evolutionary genome dynamics between domesticated and wild yeasts. Nature Genetics, 2017, 49(6): 913–924

[5]

Kreplak J , Madoui M A , Cápal P , Novák P , Labadie K , Aubert G , Bayer P E , Gali K K , Syme R A , Main D . . A reference genome for pea provides insight into legume genome evolution. Nature Genetics, 2019, 51(9): 1411–1422

[6]

Chen H , Li C , Peng X , Zhou Z , Weinstein J N , Liang H , Caesar-Johnson S J , Demchok J A , Felau I , Kasapi M . . A pan-cancer analysis of enhancer expression in nearly 9000 patient samples. Cell, 2018, 173(2): 386–399

[7]

Fudenberg G , Getz G , Meyerson M , Mirny L A . High order chromatin architecture shapes the landscape of chromosomal alterations in cancer. Nature Biotechnology, 2011, 29(12): 1109–1113

[8]

Wu Y , Li B Z , Zhao M , Mitchell L A , Xie Z X , Lin Q H , Wang X , Xiao W H , Wang Y , Zhou X . . Bug mapping and fitness testing of chemically synthesized chromosome X. Science, 2017, 355(6329): eaaf4706

[9]

Xie Z X , Li B Z , Mitchell L A , Wu Y , Qi X , Jin Z , Jia B , Wang X , Zeng B X , Liu H M . . “Perfect” designer chromosome V and behavior of a ring derivative. Science, 2017, 355(6329): eaaf4704

[10]

Zhou S , Wu Y , Zhao Y , Zhang Z , Jiang L , Liu L , Zhang Y , Tang J , Yuan Y J . Dynamics of synthetic yeast chromosome evolution shaped by hierarchical chromatin organization. National Science Review, 2023, 10(5): nwad073

[11]

Zhang H , Fu X , Gong X , Wang Y , Zhang H , Zhao Y , Shen Y . Systematic dissection of key factors governing recombination outcomes by GCE-SCRaMbLE. Nature Communications, 2022, 13(1): 5836

[12]

Blount B A , Lu X , Driessen M R M , Jovicevic D , Sanchez M I , Ciurkot K , Zhao Y , Lauer S , Mckiernan R M , Gowers G O F . . Synthetic yeast chromosome XI design provides a testbed for the study of extrachromosomal circular DNA dynamics. Cell Genomics, 2023, 3(11): 100418

[13]

Zhou S , Wu Y , Xie Z X , Jia B , Yuan Y J . Directed genome evolution driven by structural rearrangement techniques. Chemical Society Reviews, 2021, 50(22): 12788–12807

[14]

Zhao Y , Coelho C , Hughes A L , Lazar-Stefanita L , Yang S , Brooks A N , Walker R S K , Zhang W , Lauer S , Hernandez C . . Debugging and consolidating multiple synthetic chromosomes reveals combinatorial genetic interactions. Cell, 2023, 186(24): 5220–5236

[15]

Gvozdenov Z , Barcutean Z , Struhl K . Functional analysis of a random-sequence chromosome reveals a high level and the molecular nature of transcriptional noise in yeast cells. Molecular Cell, 2023, 83(11): 1786–1797

[16]

Xiong Y , Zhang H , Zhou S , Ma L , Xiao W , Wu Y , Yuan Y J . Structural variations and adaptations of synthetic chromosome ends driven by SCRaMbLE in haploid and diploid yeasts. ACS Synthetic Biology, 2023, 12(3): 689–699

[17]

Steensels J , Gorkovskiy A , Verstrepen K J . SCRaMbLEing to understand and exploit structural variation in genomes. Nature Communications, 2018, 9(1): 1937

[18]

Shen Y , Gao F , Wang Y , Wang Y , Zheng J , Gong J , Zhang J , Luo Z , Schindler D , Deng Y . . Dissecting aneuploidy phenotypes by constructing Sc2.0 chromosome VII and SCRaMbLEing synthetic disomic yeast. Cell Genomics, 2023, 3(11): 100364

[19]

Wang J , Xie Z X , Ma Y , Chen X R , Huang Y Q , He B , Jia B , Li B Z , Yuan Y J . Ring synthetic chromosome V SCRaMbLE. Nature Communications, 2018, 9(1): 3783

[20]

Wu Y , Zhu R Y , Mitchell L A , Ma L , Liu R , Zhao M , Jia B , Xu H , Li Y X , Yang Z M . . In vitro DNA SCRaMbLE. Nature Communications, 2018, 9(1): 1935

[21]

Zhang Y , Chiu T Y , Zhang J T , Wang S J , Wang S W , Liu L Y , Ping Z , Wang Y , Chen A , Zhang W W . . Systematical engineering of synthetic yeast for enhanced production of lycopene. Bioengineering, 2021, 8(1): 14

[22]

Jia B , Jin J , Han M , Li B , Yuan Y . Directed yeast genome evolution by controlled introduction of trans-chromosomic structural variations. Science China: Life Sciences, 2022, 65(9): 1703–1717

[23]

Cheng L , Zhao S , Li T , Hou S , Luo Z , Xu J , Yu W , Jiang S , Monti M , Schindler D . . Large-scale genomic rearrangements boost SCRaMbLE in Saccharomyces cerevisiae. Nature Communications, 2024, 15(1): 770

[24]

Voigt K , Gogol-Döring A , Miskey C , Chen W , Cathomen T , Izsvák Z , Ivics Z . Retargeting sleeping beauty transposon insertions by engineered zinc finger DNA-binding domains. Molecular Therapy, 2012, 20(10): 1852–1862

[25]

Cao H , Hastie A R , Cao D , Lam E T , Sun Y , Huang H , Liu X , Lin L , Andrews W , Chan S . . Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology. GigaScience, 2014, 3(1): 34

[26]

Xie Z X , Mitchell L A , Liu H M , Li B Z , Liu D , Agmon N , Wu Y , Li X , Zhou X , Li B . . Rapid and efficient CRISPR/Cas9-based mating-type switching of Saccharomyces cerevisiae. G3, 2018, 8(1): 173–183

[27]

Liti G , Carter D M , Moses A M , Warringer J , Parts L , James S A , Davey R P , Roberts I N , Burt A , Koufopanou V . . Population genomics of domestic and wild yeasts. Nature, 2009, 458(7236): 337–341

[28]

Asker D . Isolation and characterization of a novel, highly selective astaxanthin-producing marine bacterium. Journal of Agricultural and Food Chemistry, 2017, 65(41): 9101–9109

[29]

Wang P , Xu H , Li H , Chen H , Zhou S , Tian F , Li B Z , Bo X , Wu Y , Yuan Y J . SCRaMbLEing of a synthetic yeast chromosome with clustered essential genes reveals synthetic lethal interactions. ACS Synthetic Biology, 2020, 9(5): 1181–1189

[30]

Dymond J S , Richardson S M , Coombes C E , Babatz T , Muller H , Annaluru N , Blake W J , Schwerzmann J W , Dai J , Lindstrom D L . . Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature, 2011, 477(7365): 471–476

[31]

Mitchell L A , Wang A , Stracquadanio G , Kuang Z , Wang X , Yang K , Richardson S , Martin J A , Zhao Y , Walker R . . Synthesis, debugging, and effects of synthetic chromosome consolidation: synVI and beyond. Science, 2017, 355(6329): eaaf4831

[32]

Carbon J . Yeast centromeres: structure and function. Cell, 1984, 37(2): 351–353

[33]

Xu H , Han M , Zhou S , Li B Z , Wu Y , Yuan Y J . Chromosome drives via CRISPR-Cas9 in yeast. Nature Communications, 2020, 11(1): 4344

[34]

Li Y X , Wu Y , Ma L , Guo Z , Xiao W H , Yuan Y J . Loss of heterozygosity by SCRaMbLEing. Science China. Life Sciences, 2019, 62(3): 381–393

[35]

Ko N , Nishihama R , Pringle J R . Control of 5-FOA and 5-FU resistance by Saccharomyces cerevisiae YJL055W. Yeast, 2008, 25(2): 155–160

[36]

Wood A J , Lo T W , Zeitler B , Pickle C S , Ralston E J , Lee A H , Amora R , Miller J C , Leung E , Meng X . . Targeted genome editing across species using ZFNs and TALENs. Science, 2011, 333(6040): 307

[37]

Gaj T , Gersbach C A , Barbas C F . ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 2013, 31(7): 397–405

[38]

Fleiss A , O’donnell S , Fournier T , Lu W , Agier N , Delmas S , Schacherer J , Fischer G . Reshuffling yeast chromosomes with CRISPR/Cas9. PLOS Genetics, 2019, 15(8): e1008332

[39]

Sultana T , Zamborlini A , Cristofari G , Lesage P . Integration site selection by retroviruses and transposable elements in eukaryotes. Nature Reviews. Genetics, 2017, 18(5): 292–308

[40]

Domínguez M , Dugas E , Benchouaia M , Leduque B , Jiménez-Gómez J M , Colot V , Quadrana L . The impact of transposable elements on tomato diversity. Nature Communications, 2020, 11(1): 4058

[41]

Brooks A N , Hughes A L , Clauder-Münster S , Mitchell L A , Boeke J D , Steinmetz L M . Transcriptional neighborhoods regulate transcript isoform lengths and expression levels. Science, 2022, 375(6584): 1000–1005

[42]

Studer A , Zhao Q , Ross-Ibarra J , Doebley J . Identification of a functional transposon insertion in the maize domestication gene tb1. Nature Genetics, 2011, 43(11): 1160–1163

[43]

Soyk S , Lemmon Z H , Oved M , Fisher J , Liberatore K L , Park S J , Goren A , Jiang K , Ramos A , Van Der Knaap E . . Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell, 2017, 169(6): 1142–1155

[44]

Fueyo R , Judd J , Feschotte C , Wysocka J . Roles of transposable elements in the regulation of mammalian transcription. Nature Reviews: Molecular Cell Biology, 2022, 23(7): 481–497

[45]

Wang Y , Wang M , Djekidel M N , Chen H , Liu D , Alt F W , Zhang Y . eccDNAs are apoptotic products with high innate immunostimulatory activity. Nature, 2021, 599(7884): 308–314

[46]

Yang F , Su W , Chung O W , Tracy L , Wang L , Ramsden D A , Zhang Z Z Z . Retrotransposons hijack alt-EJ for DNA replication and eccDNA biogenesis. Nature, 2023, 620(7972): 218–225

[47]

Guo F , Gopaul D N , Van Duyne G D . Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature, 1997, 389(6646): 40–46

[48]

Biedler J L , Spengler B A . Metaphase chromosome anomaly: association with drug resistance and cell-specific products. Science, 1976, 191(4223): 185–187

[49]

Rosswog C , Bartenhagen C , Welte A , Kahlert Y , Hemstedt N , Lorenz W , Cartolano M , Ackermann S , Perner S , Vogel W . . Chromothripsis followed by circular recombination drives oncogene amplification in human cancer. Nature Genetics, 2021, 53(12): 1673–1685

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1663KB)

Supplementary files

FCE-24012-OF-ZS_suppl_1

1747

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/