Rational design of practical layered transition metal oxide cathode materials for sodium-ion batteries

  • Yan Wang 1 ,
  • Ning Ding 1 ,
  • Rui Zhang , 1 ,
  • Guanhua Jin , 2 ,
  • Dan Sun 1 ,
  • Yougen Tang 1 ,
  • Haiyan Wang , 1
Expand
  • 1. Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
  • 2. College of Energy and Chemical Engineering, Xinjiang Institute of Technology, Aksu Prefecture 843100, China
zhangrui_2023@163.com
guanhuajin@xjit.edu.cn
wanghy419@csu.edu.cn

Received date: 25 Dec 2023

Accepted date: 19 Feb 2024

Copyright

2024 Higher Education Press

Abstract

Sodium-ion batteries (SIBs), which serve as alternatives or supplements to lithium-ion batteries, have been developed rapidly in recent years. Designing advanced high-performance layered NaxTMO2 cathode materials is beneficial for accelerating the commercialization of SIBs. Herein, the recent research progress on scalable synthesis methods, challenges on the path to commercialization and practical material design strategies for layered NaxTMO2 cathode materials is summarized. Co-precipitation method and solid-phase method are commonly used to synthesize NaxTMO2 on mass production and show their own advantages and disadvantages in terms of manufacturing cost, operative difficulty, sample quality and so on. To overcome drawbacks of layered NaxTMO2 cathode materials and meet the requirements for practical application, a detailed and deep understanding of development trends of layered NaxTMO2 cathode materials is also provided, including high specific energy materials, high-entropy oxides, single crystal materials, wide operation temperature materials and high air stability materials. This work can provide useful guidance in developing practical layered NaxTMO2 cathode materials for commercial SIBs.

Cite this article

Yan Wang , Ning Ding , Rui Zhang , Guanhua Jin , Dan Sun , Yougen Tang , Haiyan Wang . Rational design of practical layered transition metal oxide cathode materials for sodium-ion batteries[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(7) : 80 . DOI: 10.1007/s11705-024-2435-z

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant Nos. U19A2019 and 21771062), the Basic Research Business Fee of Central Universities (Grant No. 2022XQLH011) and Postdoctoral Fellowship Program of CPSF (Grant No. GZC20233152).
1
Zhao L , Zhang T , Li W , Li T , Zhang L , Zhang X , Wang Z . Engineering of sodium-ion batteries: opportunities and challenges. Engineering, 2023, 24: 172–183

DOI

2
Arbizzani C , Lacarbonara G . From Volta’s pile to lithium ion battery: 200 years of energy. Pure and Applied Chemistry, 2023, 95(11): 1131–1139

DOI

3
Zuo W , Innocenti A , Zarrabeitia M , Bresser D , Yang Y , Passerini S . Layered oxide cathodes for sodium-ion batteries: storage mechanism, electrochemistry, and techno-economics. Accounts of Chemical Research, 2023, 56(3): 284–296

DOI

4
Yabuuchi N , Kubota K , Dahbi M , Komaba S . Research development on sodium-ion batteries. Chemical Reviews, 2014, 114(23): 11636–11682

DOI

5
Robinson J , Finegan D , Heenan T , Smith K , Kendrick E , Brett D , Shearing P . Microstructural analysis of the effects of thermal runaway on Li-ion and Na-ion battery electrodes. Journal of Electrochemical Energy Conversion and Storage, 2018, 15(1): 011010–011019

DOI

6
Gupta P , Pushpakanth S , Haider M , Basu S . Understanding the design of cathode materials for Na-ion batteries. ACS Omega, 2022, 7(7): 5605–5614

DOI

7
Wang W , Gang Y , Hu Z , Yan Z , Li W , Li Y , Gu Q , Wang Z , Chou S , Liu H . . Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Nature Communications, 2020, 11(1): 980

DOI

8
Zhu L , Wang H , Sun D , Tang Y , Wang H . A comprehensive review on the fabrication, modification and applications of Na3V2(PO4)2F3 cathodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(41): 21387–21407

DOI

9
Zhu L , Wang M , Xiang S , Sun D , Tang Y , Wang H . A medium-entropy phosphate cathode with multielectron redox reaction for advanced sodium-ion batteries. Advanced Energy Materials, 2023, 13(36): 2302046

DOI

10
Zhang R , Chen H , Yue H . Room-temperature synthesis of layered open framework cathode for sodium-ion batteries. Chinese Chemical Letters, 2023, 34(5): 107580

DOI

11
Zhang Q , Fu L , Luan J , Huang X , Tang Y , Xie H , Wang H . Surface engineering induced core-shell Prussian blue@polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode. Journal of Power Sources, 2018, 395: 305–313

DOI

12
Bauer A , Song J , Vail S , Pan W , Barker J , Lu Y . The scale-up and commercialization of nonaqueous Na-ion battery technologies. Advanced Energy Materials, 2018, 8(17): 1702869

DOI

13
Wang C , Wang G , Wang E , Wu T , Yu H . Synthesis and modification of lithium-ion battery cathode materials. Chemical Industry and Engineering Progress, 2021, 40(9): 4998–5011

14
Chen S , Wu C , Shen L , Zhu C , Huang Y , Xi K , Maier J , Yu Y . Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Advanced Materials, 2017, 29(48): 1700431

DOI

15
HuYLuYChenL. Sodium-ion Battery Science and Technology. Beijing: Science Press, 2020, 448–450 (in Chinese)

16
Ma A , Yin Z , Wang J , Wang Z , Guo H , Yan G . Al-doped NaNi1/3Mn1/3Fe1/3O2 for high performance of sodium ion batteries. Ionics, 2020, 26(4): 1797–1804

DOI

17
Luo X , Huang Q , Feng Y , Zhang C , Liang C , Zhou L , Wei W . Constructing a composite structure by a gradient Mg2+ doping strategy for high-performance sodium-ion batteries. ACS Applied Materials & Interfaces, 2022, 14(46): 51846–51854

DOI

18
Zhang R , Wang Y , Liu R , Sun D , Tang Y , Xie Z , Wang H . A multifunctional cathode sodiation additive for high-performance sodium-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(48): 25546–25555

DOI

19
Chen J , Li X , Mi L , Chen W . Emerging presodiation strategies for long-life sodium-ion batteries. Energy Lab, 2023, 1(3): 230008

DOI

20
LiangXHwangJ YSunY K. Practical cathodes for sodium-ion batteries: who will take the crown? Advanced Energy Materials, 2023, 13(37): 2301975

21
Liu Z , Wu J , Zeng J , Li F , Peng C , Xue D , Zhu M , Liu J . Co-free layered oxide cathode material with stable anionic redox reaction for sodium-ion batteries. Advanced Energy Materials, 2023, 13(29): 2301471

DOI

22
Yuan X , Guo Y , Gan L , Yang X , He W , Zhang X , Yin Y , Xin S , Yao H , Huang Z . . A universal strategy toward air-stable and high-rate P3 layered oxide cathodes for Na-ion batteries. Advanced Functional Materials, 2022, 32(17): 2111466

DOI

23
Rudola A , Rennie A , Heap R , Meysami S , Lowbridge A , Mazzali F , Sayers R , Wright C , Barker J . Commercialisation of high energy density sodium-ion batteries: Faradion’s journey and outlook. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(13): 8279–8302

DOI

24
Mu L , Xu S , Li Y , Hu Y , Li H , Chen L , Huang X . Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode. Advanced Materials, 2015, 27(43): 6928–6933

DOI

25
Kong L , Liu H , Zhu Y , Li J , Su Y , Li H , Hu H , Liu Y , Yang M , Jian Z . . Layered oxide cathodes for sodium-ion batteries: microstructure design, local chemistry and structural unit. Science China. Chemistry, 2024, 67: 191–213

26
Zhu X , Xu S , Wang X , Liu M , Cheng Y , Wang P . Sodium composite oxide cathode materials: phase regulation, electrochemical performance and reaction mechanism. Batteries & Supercaps, 2023, 6(3): e202200473

DOI

27
Xiao J , Zhang F , Tang K , Li X , Wang D , Wang Y , Liu H , Wu M , Wang G . Rational design of a P2-type spherical layered oxide cathode for high-performance sodium-ion batteries. ACS Central Science, 2019, 5(12): 1937–1945

DOI

28
Li Z , Gao R , Zhang J , Zhang X , Hu Z , Liu X . New insights into designing high-rate performance cathode materials for sodium ion batteries by enlarging the slab-spacing of the Na-ion diffusion layer. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(9): 3453–3461

DOI

29
Zhang S , Guo Y , Zhou Y , Zhang X , Niu Y , Wang E , Huang L , An P , Zhang J , Yang X . . P3/O3 integrated layered oxide as high-power and long-life cathode toward Na-ion batteries. Small, 2021, 17(10): 2007236

DOI

30
Kim S , Hong J , Kang Y . Spray-assisted synthesis of layered P2-type Na0.67Mn0.67Cu0.33O2 powders and their superior electrochemical properties for Na-ion battery cathode. Applied Surface Science, 2023, 611: 155673

DOI

31
Luo X , Huang Q , Feng Y , Zhou L , Wei W . Designing layered Na3Ni2SbO6 cathodes with hierarchical and hollow nanostructure for sodium-ion batteries. ChemElectroChem, 2022, 9(20): e202200821

DOI

32
Feng Z , Rajagopalan R , Zhang S , Sun D , Tang Y , Ren Y , Wang H . A three in one strategy to achieve zirconium doping, boron doping, and interfacial coating for stable LiNi0.8Co0.1Mn0.1O2 cathode. Advanced Science, 2021, 8(2): 2001809

DOI

33
Leng M , Bi J , Wang W , Liu R , Xia C . Synthesis and characterization of Ru doped NaNi0.5Mn0.3Ti0.2O2 cathode material with improved electrochemical performance for sodium-ion batteries. Ionics, 2019, 25(3): 1105–1115

DOI

34
Wang H , Liao X , Yang Y , Yan X , He Y , Ma Z . Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries. Journal of the Electrochemical Society, 2016, 163(3): A565–A570

DOI

35
Xu L , Zhou F , Kong J , Zhou H , Zhang Q , Wang Q , Yan G . Influence of precursor phase on the structure and electrochemical properties of Li(Ni0.6Mn0.2Co0.2)O2 cathode materials. Solid State Ionics, 2018, 324: 49–58

DOI

36
Wu Z , Zhou Y , Zeng J , Hai C , Sun Y , Ren X , Shen Y , Li X . Investigating the effect of pH on the growth of coprecipitated Ni0.8Co0.1Mn0.1(OH)2 agglomerates as precursors of cathode materials for Li-ion batteries. Ceramics International, 2023, 49(10): 15851–15864

DOI

37
Wu Z , Zhou Y , Hai C , Zeng J , Sun Y , Ren X , Shen Y , Li X , Zhang G . Analysis of the growth mechanism of hierarchical structure Ni0.8Co0.1Mn0.1(OH)2 agglomerates as precursors of LiNi0.8Co0.1Mn0.1O2 in the presence of aqueous ammonia. Applied Surface Science, 2023, 619: 156379

DOI

38
Xu L , Zhou F , Kong J , Zhou H , Zhang Q . Effect of testing temperature on the electrochemical properties of Li(Ni0.6Mn0.2Co0.2)O2 and its Ti3C2(OH)2 modification as cathode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 804: 353–363

DOI

39
Lee M , Kang Y , Myung S , Sun Y . Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation. Electrochimica Acta, 2004, 50(4): 939–948

DOI

40
Zhang S , Deng C , Fu B , Yang S , Ma L . Synthetic optimization of spherical Li[Ni1/3Mn1/3Co1/3]O2 prepared by a carbonate co-precipitation method. Powder Technology, 2010, 198(3): 373–380

DOI

41
Wang T , Liu Z H , Fan L , Han Y , Tang X . Synthesis optimization of Li1+x[Mn0.45Co0.40Ni0.15]O2 with different spherical sizes via co-precipitation. Powder Technology, 2008, 187(2): 124–129

DOI

42
Mhaske V , Jilkar S , Yadav M . Minireview on layered transition metal oxides synthesis using coprecipitation for sodium ion batteries cathode material: advances and perspectives. Energy & Fuels, 2023, 37(21): 16221–16244

DOI

43
Hua W , Liu W , Chen M , Indris S , Zheng Z , Guo X , Bruns M , Wu T , Chen Y , Zhong B . . Unravelling the growth mechanism of hierarchically structured Ni1/3Co1/3Mn1/3(OH)2 and their application as precursors for high-power cathode materials. Electrochimica Acta, 2017, 232: 123–131

DOI

44
Araño K , Armstrong B , Boeding E , Yang G , Meyer H III , Wang E , Korkosz R , Browning K , Malkowski T , Key B . . Functionalized silicon particles for enhanced half-and full-cell cycling of Si-based Li-ion batteries. ACS Applied Materials & Interfaces, 2023, 15(8): 10554–10569

DOI

45
Fleischmann S , Mancini M , Axmann P , Golla-Schindler U , Kaiser U , Wohlfahrt-Mehrens M . Insights into the impact of impurities and non-stoichiometric effects on the electrochemical performance of Li2MnSiO4. ChemSusChem, 2016, 9(20): 2982–2993

DOI

46
WangWChouWDingQ. Nickel Cobalt Manganese Based Cathode Materials for Li-ion Batteries Technology Production and Application. Beijing: Chemical Industry Press, 2015, 3 (in Chinese)

47
Yuan T , Li S , Sun Y , Wang J , Chen A , Zheng Q , Zhang Y , Chen L , Nam G , Che H . . A high-rate, durable cathode for sodium-ion batteries: Sb-doped O3-type Ni/Mn-based layered oxides. ACS Nano, 2022, 16(11): 18058–18070

DOI

48
Yu L , Dong H , Chang Y , Cheng Z , Xu K , Feng Y , Si D , Zhu X , Liu M , Xiao B . . Elucidation of the sodium kinetics in layered P-type oxide cathodes. Science China. Chemistry, 2022, 65(10): 2005–2014

DOI

49
Wang Y , Tang K , Li X , Yu R , Zhang X , Huang Y , Chen G , Jamil S , Cao S , Xie X . . Improved cycle and air stability of P3-Na0.65Mn0.75Ni0.25O2 electrode for sodium-ion batteries coated with metal phosphates. Chemical Engineering Journal, 2019, 372: 1066–1076

DOI

50
Mohan I , Raj A , Shubham K , Lata D , Mandal S , Kumar S . Potential of potassium and sodium-ion batteries as the future of energy storage: recent progress in anodic materials. Journal of Energy Storage, 2022, 55: 105625

DOI

51
Chayambuka K , Mulder G , Danilov D , Notten P . From Li-ion batteries toward Na-ion chemistries: challenges and opportunities. Advanced Energy Materials, 2020, 10(38): 2001310

DOI

52
Ryu M , Hong Y , Lee S , Park J . Ultrahigh loading dry-process for solvent-free lithium-ion battery electrode fabrication. Nature Communications, 2023, 14(1): 1316

DOI

53
Deng J , Luo W , Lu X , Yao Q , Wang Z , Liu H , Zhou H , Dou S . High energy density sodium-ion battery with industrially feasible and air-stable O3-type layered oxide cathode. Advanced Energy Materials, 2018, 8(5): 1701610

DOI

54
Li Y , Yang Z , Xu S , Mu L , Gu L , Hu Y , Li H , Chen L . Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries. Advanced Science, 2015, 2(6): 1500031

DOI

55
Zhao C , Ding F , Lu Y , Chen L , Hu Y . High-entropy layered oxide cathodes for sodium-ion batteries. Angewandte Chemie International Edition, 2020, 59(1): 264–269

DOI

56
Liu Y , Han K , Peng D , Kong L , Su Y , Li H , Hu H , Li J , Wang H , Fu Z . . Layered oxide cathodes for sodium-ion batteries: from air stability, interface chemistry to phase transition. InfoMat, 2023, 5(6): e12422

DOI

57
Feng J , Chernova N , Omenya F , Tong L , Rastogi A , Stanley W . Effect of electrode charge balance on the energy storage performance of hybrid supercapacitor cells based on LiFePO4 as Li-ion battery electrode and activated carbon. Journal of Solid State Electrochemistry, 2018, 22(4): 1063–1078

DOI

58
Schmidt A , Smith A , Ehrenberg H . Power capability and cyclic aging of commercial, high power lithium ion battery cells with respect to different cell designs. Journal of Power Sources, 2019, 425: 27–38

DOI

59
Sathiya M , Hemalatha K , Ramesha K , Tarascon J , Prakash A . Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2. Chemistry of Materials, 2012, 24(10): 1846–1853

DOI

60
Sun Y , Guo S , Zhou H . Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy & Environmental Science, 2019, 12(3): 825–840

DOI

61
Zuo W , Liu X , Qiu J , Zhang D , Xiao Z , Xie J , Ren F , Wang J , Li Y , Ortiz F . . Engineering Na+-layer spacings to stabilize Mn-based layered cathodes for sodium-ion batteries. Nature Communications, 2021, 12(1): 4903

DOI

62
Fu F , Liu X , Fu X , Chen H , Huang L , Fan J , Le J , Wang Q , Yang W , Ren Y . . Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries. Nature Communications, 2022, 13(1): 2826

DOI

63
Deng C , Skinner P , Liu Y , Sun M , Tong W , Ma C , Lau M , Hunt R , Barnes P , Xu J . . Li-substituted layered spinel cathode material for sodium ion batteries. Chemistry of Materials, 2018, 30(22): 8145–8154

DOI

64
Yang C , Peng X , Yu J , Li S , Zhang H . Engineering crystal-facet modulation to obtain stable Mn-based P2-layered oxide cathodes for sodium-ion batteries. Journal of Colloid and Interface Science, 2023, 629: 1061–1067

DOI

65
Sun Y . Direction for commercialization of O3-type layered cathodes for sodium-ion batteries. ACS Energy Letters, 2020, 5(4): 1278–1280

DOI

66
Yan P , Zheng J , Gu M , Xiao J , Zhang J , Wang C . Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nature Communications, 2017, 8(1): 14101

DOI

67
RyuHParkKYoonCSunY. Capacity fading of Ni-rich Li[NixCoyMn1–xy]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chemistry of Materials, 2018, 30(3): 1155–1163

68
Anderson J , Schieber M . Order-disorder transitions in heat-treated rock-salt lithium ferrite. Journal of Physics and Chemistry of Solids, 1964, 25(9): 961–968

DOI

69
Liu Z , Peng C , Wu J , Yang T , Zeng J , Li F , Kucernak A , Xue D , Liu Q , Zhu M . . Regulating electron distribution of P2-type layered oxide cathodes for practical sodium-ion batteries. Materials Today, 2023, 68: 22–33

DOI

70
Kim S , Seo D , Ma X , Ceder G , Kang K . Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Advanced Energy Materials, 2012, 2(7): 710–721

DOI

71
Yao H , Wang P , Wang Y , Yu X , Yin Y , Guo Y . Excellent comprehensive performance of Na-based layered oxide benefiting from the synergetic contributions of multimetal ions. Advanced Energy Materials, 2017, 7(15): 1700189

DOI

72
Yazami R , Ozawa Y , Gabrisch H , Fultz B . Mechanism of electrochemical performance decay in LiCoO2 aged at high voltage. Electrochimica Acta, 2004, 50(2-3): 385–390

DOI

73
Saadoune I , Maazaz A , Ménétrier M , Delmas C . On the NaxNi0.6Co0.4O2 system: physical and electrochemical studies. Journal of Solid State Chemistry, 1996, 122(1): 111–117

DOI

74
Zhang W , Yuan C , Zhu J , Jin T , Shen C , Xie K . Air instability of Ni-rich layered oxides—a roadblock to large scale application. Advanced Energy Materials, 2023, 13(2): 2202993

DOI

75
Wang P , You Y , Yin Y , Guo Y . Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance. Advanced Energy Materials, 2018, 8(8): 1701912

DOI

76
Han M H , Sharma N , Gonzalo E , Pramudita J C , Brand H E , Amo J , Rojo T . Moisture exposed layered oxide electrodes as Na-ion battery cathodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(48): 18963–18975

DOI

77
Xu W , Dang R , Zhou L , Yang Y , Lin T , Guo Q , Xie F , Hu Z , Ding F , Liu Y . . Conversion of surface residual alkali to solid electrolyte to enable Na-ion full cells with robust interfaces. Advanced Materials, 2023, 35(42): 2301314

DOI

78
Yao H R , Wang P F , Gong Y , Zhang J , Yu X , Gu L , Ou Yang C , Yin Y , Hu E , Yang X . . Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries. Journal of the American Chemical Society, 2017, 139(25): 8440–8443

DOI

79
Zhang Y , Zhang R , Huang Y . Air-stable NaxTMO2 cathodes for sodium storage. Frontiers in Chemistry, 2019, 7: 335

DOI

80
Huang Z , Gu Z , Heng Y , Ang E , Geng H , Wu X . Advanced layered oxide cathodes for sodium/potassium-ion batteries: development, challenges and prospects. Chemical Engineering Journal, 2023, 452: 139438

DOI

81
Lu Z , Dahn J R . Intercalation of water in P2, T2 and O2 structure Az[CoxNi1/3–xMn2/3]O2. Chemistry of Materials, 2001, 13(4): 1252–1257

DOI

82
Duffort V , Talaie E , Black R , Nazar L . Uptake of CO2 in layered P2-Na0.67Mn0.5Fe0.5O2: insertion of carbonate anions. Chemistry of Materials, 2015, 27(7): 2515–2524

DOI

83
Ross G , Watts J , Hill M , Morrissey P . Surface modification of poly(vinylidene fluoride) by alkaline treatment1. The degradation mechanism. Polymer, 2000, 41(5): 1685–1696

DOI

84
Ross G , Watts J , Hill M , Morrissey P . Surface modification of poly(vinylidene fluoride) by alkaline treatment. Part 2. Process modification by the use of phase transfer catalysts. Polymer, 2001, 42(2): 403–413

DOI

85
Buchholz D , Chagas L , Vaalma C , Wu L , Passerini S . Water sensitivity of layered P2/P3-NaxNi0.22Co0.11Mn0.66O2 cathode material. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(33): 13415–13421

DOI

86
Zhou T , Wang H , Wang Y , Jiao P , Hao Z , Zhang K , Xu J , Liu J , He Y , Zhang Y . . Stabilizing lattice oxygen in slightly Li-enriched nickel oxide cathodes toward high-energy batteries. Chem, 2022, 8(10): 2817–2830

DOI

87
Feng J , Chen Z , Zhou W , Hao Z . Origin and characterization of the oxygen loss phenomenon in the layered oxide cathodes of Li-ion batteries. Materials Horizons, 2023, 10(11): 4686–4709

DOI

88
Venkatachalam P , Karra C , Duru K , Maram P , Madhavan A , Kalluri S . Perspective-challenges and benchmarking in scale-up of Ni-rich cathodes for sodium-ion batteries. Journal of the Electrochemical Society, 2022, 169(7): 070536

DOI

89
Yang C , Xin S , Mai L , You Y . Materials design for high-safety sodium-ion battery. Advanced Energy Materials, 2021, 11(2): 2000974

DOI

90
Zheng X , Cai Z , Sun J , He J , Rao W , Wang J , Zhang Y , Gao Q , Han B , Xia K . . Nickel-rich layered oxide cathodes for lithium-ion batteries: failure mechanisms and modification strategies. Journal of Energy Storage, 2023, 58: 106405

DOI

91
Li X , Liang L , Su M , Wang L , Zhang Y , Sun J , Liu Y , Hou L , Yuan C . Multi-level modifications enabling chemomechanically stable Ni-rich O3-layered cathode toward wide-temperature-tolerance quasi-solid-state Na-ion batteries. Advanced Energy Materials, 2023, 13(9): 2203701

DOI

92
Ding F , Zhao C , Zhou D , Meng Q , Xiao D , Zhang Q , Niu Y , Li Y , Rong X , Lu Y . . A novel Ni-rich O3-Na[Ni0.60Fe0.25Mn0.15]O2 cathode for Na-ion batteries. Energy Storage Materials, 2020, 30: 420–430

DOI

93
Chu S , Zhong Y , Liao K , Shao Z . Layered Co/Ni-free oxides for sodium-ion battery cathode materials. Current Opinion in Green and Sustainable Chemistry, 2019, 17: 29–34

DOI

94
Liu G , Xu W , Wu J , Li Y , Chen L , Li S , Ren Q , Wang J . Unlocking high-rate O3 layered oxide cathode for Na-ion batteries via ion migration path modulation. Journal of Energy Chemistry, 2023, 83: 53–61

DOI

95
Wei T T , Liu X , Yang S J , Wang P F , Yi T F . Regulating the electrochemical activity of Fe-Mn-Cu-based layer oxides as cathode materials for high-performance Na-ion battery. Journal of Energy Chemistry, 2023, 80: 603–613

DOI

96
Wan G , Dou W , Zhu H , Zhang W , Liu T , Wang L , Lu J . Empowering higher energy sodium-ion battery cathode by oxygen chemistry. Interdisciplinary Materials, 2023, 2(3): 416–422

DOI

97
Wu X , Guo J , Wang D , Zhong G , McDonald M , Yang Y . P2-type Na0.66Ni0.33–xZnxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries. Journal of Power Sources, 2015, 281: 18–26

DOI

98
Shen Q , Liu Y , Zhao X , Jin J , Song X , Wang Y , Qu X , Jiao L . Unexpectedly high cycling stability induced by a high charge cut-off voltage of layered sodium oxide cathodes. Advanced Energy Materials, 2023, 13(6): 2203216

DOI

99
Han Y , Lei Y , Ni J , Zhang Y , Geng Z , Ming P , Zhang C , Tian X , Shi J , Guo Y . . Single-crystalline cathodes for advanced Li-ion batteries: progress and challenges. Small, 2022, 18(43): 2107048

DOI

100
Hu J , Li L , Bi Y , Tao J , Lochala J , Liu D , Wu B , Cao X , Chae S , Wang C . . Locking oxygen in lattice: a quantifiable comparison of gas generation in polycrystalline and single crystal Ni-rich cathodes. Energy Storage Materials, 2022, 47: 195–202

DOI

101
Sun J , Sheng C , Cao X , Wang P , He P , Yang H , Chang Z , Yue X , Zhou H . Restraining oxygen release and suppressing structure distortion in single-crystal Li-rich layered cathode materials. Advanced Functional Materials, 2022, 32(10): 2110295

DOI

102
Darga J , Manthiram A . Facile synthesis of O3-type NaNi0.5Mn0.5O2 single crystals with improved performance in sodium-ion batteries. ACS Applied Materials & Interfaces, 2022, 14(47): 52729–52737

DOI

103
Deng Z , Manthiram A . Influence of cationic substitutions on the oxygen loss and reversible capacity of lithium-rich layered oxide cathodes. Journal of Physical Chemistry C, 2011, 115(14): 7097–7103

DOI

104
Langdon J , Manthiram A . A perspective on single-crystal layered oxide cathodes for lithium-ion batteries. Energy Storage Materials, 2021, 37: 143–160

DOI

105
Kimijima T , Zettsu N , Teshima K . Growth manner of octahedral-shaped Li(Ni1/3Co1/3Mn1/3)O2 single crystals in molten Na2SO4. Crystal Growth & Design, 2016, 16(5): 2618–2623

DOI

106
Gupta S , Mao Y . Recent developments on molten salt synthesis of inorganic nanomaterials: a review. Journal of Physical Chemistry C, 2021, 125(12): 6508–6533

DOI

107
Li J , Cameron A , Li H , Glazier S , Xiong D , Chatzidakis M , Allen J , Botton G , Dahn J . Comparison of single crystal and polycrystalline LiNi0.5Mn0.3Co0.2O2 positive electrode materials for high voltage Li-ion cells. Journal of the Electrochemical Society, 2017, 164(7): A1534–A1544

DOI

108
Fan X , Liu Y , Ou X , Zhang J , Zhang B , Wang D , Hu G . Unravelling the influence of quasi single-crystalline architecture on high-voltage and thermal stability of LiNi0.5Co0.2Mn0.3O2 cathode for lithium-ion batteries. Chemical Engineering Journal, 2020, 393: 124709

DOI

109
He X , Wang J , Qiu B , Paillard E , Ma C , Cao X , Liu H , Stan M , Liu H , Gallash T . . Durable high-rate capability Na0.44MnO2 cathode material for sodium-ion batteries. Nano Energy, 2016, 27: 602–610

DOI

110
Su D , Wang C , Ahn H , Wang G . Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance. Chemistry, 2013, 19(33): 10884–10889

DOI

111
Pamidi V , Trivedi S , Behara S , Fichtner M , Reddy M . Micron-sized single-crystal cathodes for sodium-ion batteries. iScience, 2022, 25(5): 104205

DOI

112
Hu G , Zhang S , Du K , Peng Z , Zeng J , Fang Z , Li L , Zhang Y , Huang J , Guan D . . Enhanced cycle performance and synthesis of LiNi0.6Co0.2Mn0.2O2 single-crystal through the assist of Ba ion. Journal of Power Sources, 2022, 542: 231784

DOI

113
Zhang S , Hu G , Du K , Peng Z , Li L , Zhang Y , Cao Y . Enhanced cycle performance and synthesis of LiNi0.6Co0.2Mn0.2O2 single-crystal through the assist of Bi ion. Electrochimica Acta, 2023, 470: 143280

DOI

114
Hu J , Wang H , Xiao B , Liu P , Huang T , Li Y , Ren X , Zhang Q , Liu J , Ouyang X . . Challenges and approaches of single-crystal Ni-rich layered cathodes in lithium batteries. National Science Review, 2023, 10(12): nwad252

DOI

115
Ni L , Zhang S , Di A , Deng W , Zou G , Hou H , Ji X . Challenges and strategies towards single-crystalline Ni-rich layered cathodes. Advanced Energy Materials, 2022, 12(31): 2201510

DOI

116
Zhang L , Huang J , Song M , Lu C , Wu W , Wu X . Single-crystal growth of P2-type layered oxides with increased exposure of {010} planes for high-performance sodium-ion batteries. ACS Applied Materials & Interfaces, 2023, 15(40): 47037–47048

DOI

117
Huang H , Zhang L , Tian H , Yan J , Tong J , Liu X , Zhang H , Huang H , Hao S , Gao J . . Pulse high temperature sintering to prepare single-crystal high nickel oxide cathodes with enhanced electrochemical performance. Advanced Energy Materials, 2023, 13(3): 2203188

DOI

118
Li L , Hu G , Cao Y , Gong D , Fu Q , Peng Z , Du K . Effect of grain size of single crystalline cathode material of LiNi0.65Co0.07Mn0.28O2 on its electrochemical performance. Electrochimica Acta, 2022, 435: 141386

DOI

119
Sarkar A , Breitung B , Hahn H . High entropy oxides: the role of entropy, enthalpy and synergy. Scripta Materialia, 2020, 187: 43–48

DOI

120
Rost C , Sachet E , Borman T , Moballegh A , Dickey E , Hou D , Jones J , Curtarolo S , Maria J . Entropy-stabilized oxides. Nature Communications, 2015, 6(1): 8485

DOI

121
Aamlid S , Oudah M , Rottler J , Hallas A . Understanding the role of entropy in high entropy oxides. Journal of the American Chemical Society, 2023, 145(11): 5991–6006

DOI

122
Zhang R , Wang C , Zou P , Lin R , Ma L , Yin L , Li T , Xu W , Jia H , Li Q . . Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature, 2022, 610(7930): 67–73

DOI

123
Lin C , Liu H , Kang J , Yang C , Li C , Chen H , Huang S , Ni C , Chuang Y , Chen B . . In-situ X-ray studies of high-entropy layered oxide cathode for sodium-ion batteries. Energy Storage Materials, 2022, 51: 159–171

DOI

124
Tian K , He H , Li X , Wang D , Wang Z , Zheng R , Sun H , Liu Y , Wang Q . Boosting electrochemical reaction and suppressing phase transition with a high-entropy O3-type layered oxide for sodium-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(28): 14943–14953

DOI

125
Wang H , Gao X , Zhang S , Mei Y , Ni L , Gao J , Liu H , Hong N , Zhang B , Zhu F . . High-entropy Na-deficient layered oxides for sodium-ion batteries. ACS Nano, 2023, 17(13): 12530–12543

DOI

126
Tripathi A , Rudola A , Gajjela S , Xi S , Balaya P . Developing an O3 type layered oxide cathode and its application in 18650 commercial type Na-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(45): 25944–25960

DOI

127
Mukai K , Inoue T , Kato Y , Shirai S . Superior low-temperature power and cycle performances of Na-ion battery over Li-ion battery. ACS Omega, 2017, 2(3): 864–872

DOI

128
Zhou J , Liu J , Li Y , Zhao Z , Zhou P , Wu X , Tang X , Zhou J . Reaching the initial coulombic efficiency and structural stability limit of P2/O3 biphasic layered cathode for sodium-ion batteries. Journal of Colloid and Interface Science, 2023, 638: 758–767

DOI

129
Shi Q , Qi R , Feng X , Wang J , Li Y , Yao Z , Wang X , Li Q , Lu X , Zhang J . . Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries. Nature Communications, 2022, 13(1): 3205

DOI

130
Peng B , Zhou Z , Xu J , Ahmad N , Zeng S , Cheng M , Ma L , Li Y , Zhang G . Crystal facet design in layered oxide cathode enables low-temperature sodium-ion batteries. ACS Materials Letters, 2023, 5(8): 2233–2242

DOI

131
Li Y , Shi Q , Yin X , Wang J , Wang J , Zhao Y , Zhang J . Construction nasicon-type NaTi2(PO4)3 nanoshell on the surface of P2-type Na0.67Co0.2Mn0.8O2 cathode for superior room/low-temperature sodium storage. Chemical Engineering Journal, 2020, 402: 126181

DOI

132
Deng Z , Liu Y , Wang L , Fu N , Li Y , Luo Y , Wang J , Xiao X , Wang X , Yang X . . Challenges of thermal stability of high-energy layered oxide cathode materials for lithium-ion batteries: a review. Materials Today, 2023, 69: 236–261

DOI

133
Xie Y , Xu G , Che H , Wang H , Yang K , Yang X , Guo F , Ren Y , Chen Z , Amine K . . Probing thermal and chemical stability of NaxNi1/3Fe1/3Mn1/3O2 cathode material toward safe sodium-ion batteries. Chemistry of Materials, 2018, 30(15): 4909–4918

DOI

134
Hwang S , Lee Y , Jo E , Chung K Y , Choi W , Kim S M , Chang W Y . Investigation of thermal stability of P2-NaxCoO2 cathode materials for sodium ion batteries using real-time electron microscopy. ACS Applied Materials & Interfaces, 2017, 9(22): 18883–18888

DOI

135
Li J , Hu H , Wang J , Xiao Y . Surface chemistry engineering of layered oxide cathodes for sodium-ion batteries. Carbon Neutralization, 2022, 1(2): 96–116

DOI

136
Jiao J , Wu K , Dang R , Li N , Deng X , Liu X , Hu Z , Xiao X . A collaborative strategy with ionic conductive Na2SiO3 coating and Si doping of P2-Na0.67Fe0.5Mn0.5O2 cathode: an effective solution to capacity attenuation. Electrochimica Acta, 2021, 384: 138362

DOI

137
Zhang K , Xu Z , Li G , Luo R , Ma C , Wang Y , Zhou Y , Xia Y . Regulating phase transition and oxygen redox to achieve stable high-voltage O3-type cathode materials for sodium-ion batteries. Advanced Energy Materials, 2023, 13(45): 2302793

DOI

138
Zhang L , Deshmukh J , Hijazi H , Ye Z , Johnson M , George M , Dahn J , Metzger M . Impact of calcium on air stability of Na[Ni1/3Fe1/3Mn1/3]O2 positive electrode material for sodium-ion batteries. Journal of the Electrochemical Society, 2023, 170(7): 070514

DOI

139
Wan G , Peng B , Zhao L , Wang F , Yu L , Liu R , Zhang G . Dual-strategy modification on P2Na0.67Ni0.33Mn0.67O2 realizes stable high-voltage cathode and high energy density full cell for sodium-ion batteries. SusMat, 2023, 3(1): 58–71

DOI

140
Chen X , Zheng S , Liu P , Sun Z , Zhu K , Li H , Liu Y , Jiao L . Fluorine substitution promotes air-stability of P’2-type layered cathodes for sodium-ion batteries. Small, 2023, 19(4): 2205789

DOI

141
Le D , Zhou Z , Li J , Fu H , Wu F , Li Y , Zheng J , He Z . Air-stable manganese based cathode material enabled by organic protection layer for Na-ion batteries. Ceramics International, 2023, 49(10): 15451–15458

DOI

142
Zhang R , Liang J , Zeng C , Chen J , Ma Y , Zhai T , Li H . Air degradation and rehealing of high-voltage Na0.7Ni0.35Sn0.65O2 cathode for sodium ion batteries. Science China Materials, 2023, 66(1): 88–96

DOI

143
Xu C , Cai H , Chen Q , Kong X , Pan H , Hu Y . Origin of air-stability for transition metal oxide cathodes in sodium-ion batteries. ACS Applied Materials & Interfaces, 2022, 14(4): 5338–5345

DOI

Outlines

/