Single-atom catalysis: a promising avenue for precisely controlling reaction pathways
Received date: 22 Dec 2023
Accepted date: 19 Feb 2024
Copyright
Single-atom catalysts (SACs), characterized by exceptionally high atom efficiency, have garnered significant attention across various catalytic reactions. Recent studies have showcased SACs with robust capabilities for precise catalysis, specifically targeting reactions along designated pathways. This review focuses on the advances in the precise activation and reconstruction of chemical bonds on SACs, including precise activation of C–O and C–H bonds and selective couplings involving C–C and C–N bonds. Our discussion begins with a thorough exploration of the factors that render SACs skilled in precise catalytic processes, encompassing the narrow d-band electronic state of single atom site resulting in the adsorption tendency, isolate site resulting in unique adsorption structure, and synergy effect of a single atom site with its neighbors. Subsequently, we elaborate on the applications of SACs in electrocatalysis and thermocatalysis including four prominent reactions, namely, electrochemical CO2 reduction, urea electrochemical synthesis, CO2 hydrogenation, and CH4 activation. Then the concept of rational design of SACs for precisely controlling reaction pathways is discussed from the aspects of pore structure design, support-metal strong interaction, and support hydrophilic/hydrophobic. Finally, we summarize the challenges encountered by SACs in the field of precise catalytic processes and outline prospects for their further development in this domain.
Key words: single atom catalysts; selective oxidation; CO2RR; bond coupling
Xiaobo Yang , Xuning Li , Yanqiang Huang . Single-atom catalysis: a promising avenue for precisely controlling reaction pathways[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(7) : 79 . DOI: 10.1007/s11705-024-2434-0
1 |
Liu X , Dai L . Carbon-based metal-free catalysts. Nature Reviews. Materials, 2016, 1(11): 16064
|
2 |
Meirer F , Weckhuysen B M . Spatial and temporal exploration of heterogeneous catalysts with synchrotron radiation. Nature Reviews. Materials, 2018, 3(9): 324–340
|
3 |
Mitchell S , Pérez Ramírez J . Atomically precise control in the design of low-nuclearity supported metal catalysts. Nature Reviews. Materials, 2021, 6(11): 969–985
|
4 |
Zhao Z J , Liu S , Zha S , Cheng D , Studt F , Henkelman G , Gong J . Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nature Reviews. Materials, 2019, 4(12): 792–804
|
5 |
Suryanto B H R , Matuszek K , Choi J , Hodgetts R Y , Du H L , Bakker J M , Kang C S M , Cherepanov P V , Simonov A N , MacFarlane D R . Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle. Science, 2021, 372(6547): 1187–1191
|
6 |
Chen G F , Yuan Y , Jiang H , Ren S Y , Ding L X , Ma L , Wu T , Lu J , Wang H . Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nature Energy, 2020, 5(8): 605–613
|
7 |
Chang F , Tezsevin I , de Rijk J W , Meeldijk J D , Hofmann J P , Er S , Ngene P , de Jongh P E . Potassium hydride-intercalated graphite as an efficient heterogeneous catalyst for ammonia synthesis. Nature Catalysis, 2022, 5(3): 222–230
|
8 |
Pan X , Jiao F , Miao D , Bao X . Oxide-zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis. Chemical Reviews, 2021, 121(11): 6588–6609
|
9 |
Rahmati M , Safdari M S , Fletcher T H , Argyle M D , Bartholomew C H . Chemical and thermal sintering of supported metals with emphasis on cobalt catalysts during Fischer-Tropsch synthesis. Chemical Reviews, 2020, 120(10): 4455–4533
|
10 |
Rommens K T , Saeys M . Molecular views on Fischer-Tropsch synthesis. Chemical Reviews, 2023, 123(9): 5798–5858
|
11 |
Service R F . Lithium-ion battery development takes nobel. Science, 2019, 366(6463): 292
|
12 |
Degen F , Winter M , Bendig D , Tübke J . Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells. Nature Energy, 2023, 8(11): 1284–1295
|
13 |
Gent W E , Busse G M , House K Z . The predicted persistence of cobalt in lithium-ion batteries. Nature Energy, 2022, 7(12): 1132–1143
|
14 |
Feng X , Ren D , He X , Ouyang M . Mitigating thermal runaway of lithium-ion batteries. Joule, 2020, 4(4): 743–770
|
15 |
Harper G , Sommerville R , Kendrick E , Driscoll L , Slater P , Stolkin R , Walton A , Christensen P , Heidrich O , Lambert S .
|
16 |
Chen L D . Cations play an essential role in CO2 reduction. Nature Catalysis, 2021, 4(8): 641–642
|
17 |
Yan B , Li Y , Cao W , Zeng Z , Liu P , Ke Z , Yang G . Highly efficient and highly selective CO2 reduction to CO driven by laser. Joule, 2022, 6(12): 2735–2744
|
18 |
Kang W , Lee C C , Jasniewski A J , Ribbe M W , Hu Y . Structural evidence for a dynamic metallocofactor during N2 reduction by Mo-nitrogenase. Science, 2020, 368(6497): 1381–1385
|
19 |
Weliwatte N S , Minteer S D . Photo-bioelectrocatalytic CO2 reduction for a circular energy landscape. Joule, 2021, 5(10): 2564–2592
|
20 |
Yu X , Han P , Wei Z , Huang L , Gu Z , Peng S , Ma J , Zheng G . Boron-doped graphene for electrocatalytic N2 reduction. Joule, 2018, 2(8): 1610–1622
|
21 |
Qing G , Ghazfar R , Jackowski S T , Habibzadeh F , Ashtiani M M , Chen C P , Smith M R III , Hamann T W . Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chemical Reviews, 2020, 120(12): 5437–5516
|
22 |
Tanifuji K , Ohki Y . Metal-sulfur compounds in N2 reduction and nitrogenase-related chemistry. Chemical Reviews, 2020, 120(12): 5194–5251
|
23 |
Stephens I E L , Rossmeisl J , Chorkendorff I . Toward sustainable fuel cells. Science, 2016, 354(6318): 1378–1379
|
24 |
Gittleman C S , Jia H , De Castro E S , Chisholm C R I , Kim Y S . Proton conductors for heavy-duty vehicle fuel cells. Joule, 2021, 5(7): 1660–1677
|
25 |
Zhou Z , Zhang Y , Shen Y , Liu S , Zhang Y . Molecular engineering of polymeric carbon nitride: advancing applications from photocatalysis to biosensing and more. Chemical Society Reviews, 2018, 47(7): 2298–2321
|
26 |
Feng Y , Long S , Tang X , Sun Y , Luque R , Zeng X , Lin L . Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion. Chemical Society Reviews, 2021, 50(10): 6042–6093
|
27 |
Sudarsanam P , Peeters E , Makshina E V , Parvulescu V I , Sels B F . Advances in porous and nanoscale catalysts for viable biomass conversion. Chemical Society Reviews, 2019, 48(8): 2366–2421
|
28 |
Fang R , Dhakshinamoorthy A , Li Y , Garcia H . Metal organic frameworks for biomass conversion. Chemical Society Reviews, 2020, 49(11): 3638–3687
|
29 |
Rimer J D . Rational design of zeolite catalysts. Nature Catalysis, 2018, 1(7): 488–489
|
30 |
Xu D , Zhang S N , Chen J S , Li X H . Design of the synergistic rectifying interfaces in Mott-Schottky catalysts. Chemical Reviews, 2023, 123(1): 1–30
|
31 |
Durand D J , Fey N . Computational ligand descriptors for catalyst design. Chemical Reviews, 2019, 119(11): 6561–6594
|
32 |
Motagamwala A H , Dumesic J A . Microkinetic modeling: a tool for rational catalyst design. Chemical Reviews, 2021, 121(2): 1049–1076
|
33 |
Su D , Lam Z , Wang Y , Han F , Zhang M , Liu B , Chen H . Ultralong durability of ethanol oxidation reaction via morphological design. Joule, 2023, 7(11): 2568–2582
|
34 |
Wang L , Meng S , Tang C , Zhan C , Geng S , Jiang K , Huang X , Bu L . PtNi/PtIn-skin fishbone-like nanowires boost alkaline hydrogen oxidation catalysis. ACS Nano, 2023, 17(18): 17779–17789
|
35 |
Mehmood R , Fan W , Hu X , Li J , Liu P , Zhang Y , Zhou Z , Wang J , Liu M , Zhang F . Confirming high-valent iron as highly active species of water oxidation on the Fe, V-coupled bimetallic electrocatalyst: in situ analysis of X-ray absorption and mössbauer spectroscopy. Journal of the American Chemical Society, 2023, 145(22): 12206–12213
|
36 |
Das S , Pérez Ramírez J , Gong J , Dewangan N , Hidajat K , Gates B C , Kawi S . Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chemical Society Reviews, 2020, 49(10): 2937–3004
|
37 |
Rideal E K . Prof. Paul Sabatier, For. Mem.R.S. Nature, 1941, 148(3750): 309
|
38 |
Tan T H , Xie B , Ng Y H , Abdullah S F B , Tang H Y M , Bedford N , Taylor R A , Aguey Zinsou K F , Amal R , Scott J . Unlocking the potential of the formate pathway in the photo-assisted sabatier reaction. Nature Catalysis, 2020, 3(12): 1034–1043
|
39 |
Hu S , Li W X . Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts. Science, 2021, 374(6573): 1360–1365
|
40 |
Zhou Y , Wei F , Qi H , Chai Y , Cao L , Lin J , Wan Q , Liu X , Xing Y , Lin S .
|
41 |
Qiao B , Wang A , Yang X , Allard L F , Jiang Z , Cui Y , Liu J , Li J , Zhang T . Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 2011, 3(8): 634–641
|
42 |
Yang X F , Wang A , Qiao B , Li J , Liu J , Zhang T . Single-atom catalysts: a new frontier in heterogeneous catalysis. Accounts of Chemical Research, 2013, 46(8): 1740–1748
|
43 |
Liu L , Corma A . Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chemical Reviews, 2018, 118(10): 4981–5079
|
44 |
Zhang Y . Heterogeneous catalysis: single atoms on a roll. Nature Reviews Chemistry, 2018, 2(1): 0151
|
45 |
Wu X , Wang Q , Yang S , Zhang J , Cheng Y , Tang H , Ma L , Min X , Tang C , Jiang S P .
|
46 |
Jiang D , Wan G , Halldin Stenlid J , García Vargas C E , Zhang J , Sun C , Li J , Abild Pedersen F , Tassone C J , Wang Y . Dynamic and reversible transformations of subnanometre-sized palladium on ceria for efficient methane removal. Nature Catalysis, 2023, 6(7): 618–627
|
47 |
Agarwal N , Freakley S J , McVicker R U , Althahban S M , Dimitratos N , He Q , Morgan D J , Jenkins R L , Willock D J , Taylor S H .
|
48 |
Shoji S , Peng X , Yamaguchi A , Watanabe R , Fukuhara C , Cho Y , Yamamoto T , Matsumura S , Yu M W , Ishii S .
|
49 |
Xu S , Carter E A . Theoretical insights into heterogeneous (photo)electrochemical CO2 reduction. Chemical Reviews, 2019, 119(11): 6631–6669
|
50 |
Rizo R , Arán Ais R M , Padgett E , Muller D A , Lázaro M J , Solla Gullón J , Feliu J M , Pastor E , Abruña H D . Pt-richcore/Sn-richsubsurface/Ptskin nanocubes as highly active and stable electrocatalysts for the ethanol oxidation reaction. Journal of the American Chemical Society, 2018, 140(10): 3791–3797
|
51 |
Yang X , Liang Z , Chen S , Ma M , Wang Q , Tong X , Zhang Q , Ye J , Gu L , Yang N . A phosphorus-doped Ag@Pd catalyst for enhanced C–C bond cleavage during ethanol electrooxidation. Small, 2020, 16(47): 2004727
|
52 |
Vijay S , Ju W , Brückner S , Tsang S C , Strasser P , Chan K . Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nature Catalysis, 2021, 4(12): 1024–1031
|
53 |
Tang Y , Li Y , Fung V , Jiang D E , Huang W , Zhang S , Iwasawa Y , Sakata T , Nguyen L , Zhang X .
|
54 |
Xie P , Ding J , Yao Z , Pu T , Zhang P , Huang Z , Wang C , Zhang J , Zecher Freeman N , Zong H .
|
55 |
Wang Z , Liu S , Zhao X , Wang M , Zhang L , Qian T , Xiong J , Yang C , Yan C . Interfacial defect engineering triggered by single atom doping for highly efficient electrocatalytic nitrate reduction to ammonia. ACS Materials Letters, 2023, 5(4): 1018–1026
|
56 |
Ding J , Teng Z , Su X , Kato K , Liu Y , Xiao T , Liu W , Liu L , Zhang Q , Ren X .
|
57 |
Ding J , Wei Z , Li F , Zhang J , Zhang Q , Zhou J , Wang W , Liu Y , Zhang Z , Su X .
|
58 |
Wang Q , Wang H , Cao H , Tung C W , Liu W , Hung S F , Wang W , Zhu C , Zhang Z , Cai W .
|
59 |
Wang Y , Mao J , Meng X , Yu L , Deng D , Bao X . Catalysis with two-dimensional materials confining single atoms: concept, design, and applications. Chemical Reviews, 2019, 119(3): 1806–1854
|
60 |
NørskovJ KStoltzeP. Theoretical aspects of surface reactions. Surface Science, 1987, 189–190: 91–105
|
61 |
Greiner M T , Jones T E , Beeg S , Zwiener L , Scherzer M , Girgsdies F , Piccinin S , Armbrüster M , Knop Gericke A , Schlögl R . Free-atom-like d states in single-atom alloy catalysts. Nature Chemistry, 2018, 10(10): 1008–1015
|
62 |
Rosen A S , Vijay S , Persson K A . Free-atom-like d states beyond the dilute limit of single-atom alloys. Chemical Science, 2023, 14(6): 1503–1511
|
63 |
Spivey T D , Holewinski A . Selective interactions between free-atom-like d-states in single-atom alloy catalysts and near-frontier molecular orbitals. Journal of the American Chemical Society, 2021, 143(31): 11897–11902
|
64 |
Darby M T , Réocreux R , Sykes E C H , Michaelides A , Stamatakis M . Elucidating the stability and reactivity of surface intermediates on single-atom alloy catalysts. ACS Catalysis, 2018, 8(6): 5038–5050
|
65 |
Yu S , Cheng X , Wang Y , Xiao B , Xing Y , Ren J , Lu Y , Li H , Zhuang C , Chen G . High activity and selectivity of single palladium atom for oxygen hydrogenation to H2O2. Nature Communications, 2022, 13(1): 4737
|
66 |
Li W , Wu G , Hu W , Dang J , Wang C , Weng X , da Silva I , Manuel P , Yang S , Guan N .
|
67 |
Qiao B , Liu J , Wang Y G , Lin Q , Liu X , Wang A , Li J , Zhang T , Liu J . Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catalysis, 2015, 5(11): 6249–6254
|
68 |
Ma W , Mao J , He C T , Shao L , Liu J , Wang M , Yu P , Mao L . Highly selective generation of singlet oxygen from dioxygen with atomically dispersed catalysts. Chemical Science (Cambridge), 2022, 13(19): 5606–5615
|
69 |
Shang Q , Tang N , Qi H , Chen S , Xu G , Wu C , Pan X , Wang X , Cong Y . Cong Y. A palladium single-atom catalyst toward efficient activation of molecular oxygen for cinnamyl alcohol oxidation. Chinese Journal of Catalysis, 2020, 41(12): 1812–1817
|
70 |
Li Z , Chen Y , Ji S , Tang Y , Chen W , Li A , Zhao J , Xiong Y , Wu Y , Gong Y .
|
71 |
Xiong Y , Dong J , Huang Z Q , Xin P , Chen W , Wang Y , Li Z , Jin Z , Xing W , Zhuang Z .
|
72 |
Li W , Madan S E , Réocreux R , Stamatakis M . Elucidating the reactivity of oxygenates on single-atom alloy catalysts. ACS Catalysis, 2023, 13(24): 15851–15868
|
73 |
Ni W , Meibom J L , Hassan N U , Chang M , Chu Y C , Krammer A , Sun S , Zheng Y , Bai L , Ma W .
|
74 |
Meng G , Lan W , Zhang L , Wang S , Zhang T , Zhang S , Xu M , Wang Y , Zhang J , Yue F .
|
75 |
Dong C , Gao Z , Li Y , Peng M , Wang M , Xu Y , Li C , Xu M , Deng Y , Qin X .
|
76 |
Fu N , Liang X , Wang X , Gan T , Ye C , Li Z , Liu J C , Li Y . Controllable conversion of platinum nanoparticles to single atoms in Pt/CeO2 by laser ablation for efficient CO oxidation. Journal of the American Chemical Society, 2023, 145(17): 9540–9547
|
77 |
Fang Y , Zhang Q , Zhang H , Li X , Chen W , Xu J , Shen H , Yang J , Pan C , Zhu Y .
|
78 |
Niu H , Zhang Z , Wang X , Wan X , Shao C , Guo Y . Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts. Advanced Functional Materials, 2021, 31(11): 2008533
|
79 |
Leverett J , Tran Phu T , Yuwono J A , Kumar P , Kim C , Zhai Q , Han C , Qu J , Cairney J , Simonov A N .
|
80 |
Yang W , Polo Garzon F , Zhou H , Huang Z , Chi M , Meyer H III , Yu X , Li Y , Wu Z . Boosting the activity of Pd single atoms by tuning their local environment on ceria for methane combustion. Angewandte Chemie International Edition, 2023, 62(5): e202217323
|
81 |
Jia G , Sun M , Wang Y , Shi Y , Zhang L , Cui X , Huang B , Yu J C . Asymmetric coupled dual-atom sites for selective photoreduction of carbon dioxide to acetic acid. Advanced Functional Materials, 2022, 32(41): 2206817
|
82 |
Chu C , Huang D , Gupta S , Weon S , Niu J , Stavitski E , Muhich C , Kim J H . Neighboring Pd single atoms surpass isolated single atoms for selective hydrodehalogenation catalysis. Nature Communications, 2021, 12(1): 5179
|
83 |
Liu P , Huang X , Mance D , Copéret C . Atomically dispersed iridium on MgO(111) nanosheets catalyses benzene-ethylene coupling towards styrene. Nature Catalysis, 2021, 4(11): 968–975
|
84 |
Ro I , Qi J , Lee S , Xu M , Yan X , Xie Z , Zakem G , Morales A , Chen J G , Pan X .
|
85 |
Liu W , Feng H , Yang Y , Niu Y , Wang L , Yin P , Hong S , Zhang B , Zhang X , Wei M . Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes. Nature Communications, 2022, 13(1): 3188
|
86 |
Cao H , Zhang Z , Chen J W , Wang Y G . Potential-dependent free energy relationship in interpreting the electrochemical performance of CO2 reduction on single atom catalysts. ACS Catalysis, 2022, 12(11): 6606–6617
|
87 |
Li J , Zeng H , Dong X , Ding Y , Hu S , Zhang R , Dai Y , Cui P , Xiao Z , Zhao D .
|
88 |
Zhang M , Zhang Z , Zhao Z , Huang H , Anjum D H , Wang D , He J , Huang K W . He J h, Huang K W. Tunable selectivity for electrochemical CO2 reduction by bimetallic Cu-Sn catalysts: elucidating the roles of Cu and Sn. ACS Catalysis, 2021, 11(17): 11103–11108
|
89 |
Yang H B , Hung S F , Liu S , Yuan K , Miao S , Zhang L , Huang X , Wang H Y , Cai W , Chen R .
|
90 |
Deng Y , Zhao J , Wang S , Chen R , Ding J , Tsai H J , Zeng W J , Hung S F , Xu W , Wang J .
|
91 |
Ding J , Bin Yang H , Ma X L , Liu S , Liu W , Mao Q , Huang Y , Li J , Zhang T , Liu B . A tin-based tandem electrocatalyst for CO2 reduction to ethanol with 80% selectivity. Nature Energy, 2023, 8(12): 1386–1394
|
92 |
Zheng X , De Luna P , García de Arquer F P , Zhang B , Becknell N , Ross M B , Li Y , Banis M N , Li Y , Liu M .
|
93 |
Li W , Li L , Xia Q , Hong S , Wang L , Yao Z , Wu T S , Soo Y L , Zhang H , Lo T W B .
|
94 |
Cao Y , Chen S , Bo S , Fan W , Li J , Jia C , Zhou Z , Liu Q , Zheng L , Zhang F . Single atom Bi decorated copper alloy enables C–C coupling for electrocatalytic reduction of CO2 into C2+ products**. Angewandte Chemie International Edition, 2023, 62(30): e202303048
|
95 |
Jiang M , Zhu M , Wang M , He Y , Luo X , Wu C , Zhang L , Jin Z . Review on electrocatalytic coreduction of carbon dioxide and nitrogenous species for urea synthesis. ACS Nano, 2023, 17(4): 3209–3224
|
96 |
Zhang X , Zhu X , Bo S , Chen C , Qiu M , Wei X , He N , Xie C , Chen W , Zheng J .
|
97 |
LiuYTuXWeiXWangDZhangXChenWChenCWangS. C-bound or O-bound surface: which one boosts electrocatalytic urea synthesis? Angewandte Chemie International Edition, 2023, 62(19): e202300387
|
98 |
Li J , Zhang Y , Kuruvinashetti K , Kornienko N . Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nature Reviews. Chemistry, 2022, 6(5): 303–319
|
99 |
Liu J , Smith S C , Gu Y , Kou L . C–N coupling enabled by N–N bond breaking for electrochemical urea production. Advanced Functional Materials, 2023, 33(47): 2305894
|
100 |
Zhang X , Zhu X , Bo S , Chen C , Cheng K , Zheng J , Li S , Tu X , Chen W , Xie C .
|
101 |
Chen L , Allec S I , Nguyen M T , Kovarik L , Hoffman A S , Hong J , Meira D , Shi H , Bare S R , Glezakou V A .
|
102 |
Millet M M , Algara Siller G , Wrabetz S , Mazheika A , Girgsdies F , Teschner D , Seitz F , Tarasov A , Levchenko S V , Schlögl R .
|
103 |
Du P , Qi R , Zhang Y , Gu Q , Xu X , Tan Y , Liu X , Wang A , Zhu B , Yang B .
|
104 |
Yang B , Wang Y , Gao B , Zhang L , Guo L . Size-dependent active site and its catalytic mechanism for CO2 hydrogenation reactivity and selectivity over Re/TiO2. ACS Catalysis, 2023, 13(15): 10364–10374
|
105 |
Wang D , Yuan Z , Wu X , Xiong W , Ding J , Zhang Z , Huang W . Ni single atoms confined in nitrogen-doped carbon nanotubes for active and selective hydrogenation of CO2 to CO. ACS Catalysis, 2023, 13(10): 7132–7138
|
106 |
Shao X , Yang X , Xu J , Liu S , Miao S , Liu X , Su X , Duan H , Huang Y , Zhang T . Iridium single-atom catalyst performing a quasi-homogeneous hydrogenation transformation of CO2 to formate. Chem, 2019, 5(3): 693–705
|
107 |
Yang T , Mao X , Zhang Y , Wu X , Wang L , Chu M , Pao C W , Yang S , Xu Y , Huang X . Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature. Nature Communications, 2021, 12(1): 6022
|
108 |
Chen Y , Li H , Zhao W , Zhang W , Li J , Li W , Zheng X , Yan W , Zhang W , Zhu J .
|
109 |
Ye X , Yang C , Pan X , Ma J , Zhang Y , Ren Y , Liu X , Li L , Huang Y . Highly selective hydrogenation of CO2 to ethanol via designed bifunctional Ir1-In2O3 single-atom catalyst. Journal of the American Chemical Society, 2020, 142(45): 19001–19005
|
110 |
Zheng K , Li Y , Liu B , Jiang F , Xu Y , Liu X . Ti-doped CeO2 stabilized single-atom rhodium catalyst for selective and stable CO2 hydrogenation to ethanol. Angewandte Chemie International Edition, 2022, 61(44): e202210991
|
111 |
Gani T Z H , Kulik H J . Understanding and breaking scaling relations in single-site catalysis: methane to methanol conversion by Fe(IV)=O. ACS Catalysis, 2018, 8(2): 975–986
|
112 |
Schwach P , Pan X , Bao X . Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chemical Reviews, 2017, 117(13): 8497–8520
|
113 |
Tang X , Wang L , Yang B , Fei C , Yao T , Liu W , Lou Y , Dai Q , Cai Y , Cao X M .
|
114 |
Yang J , Huang Y , Qi H , Zeng C , Jiang Q , Cui Y , Su Y , Du X , Pan X , Liu X .
|
115 |
Fang G , Wei F , Lin J , Zhou Y , Sun L , Shang X , Lin S , Wang X . Retrofitting Zr-Oxo nodes of UiO-66 by Ru single atoms to boost methane hydroxylation with nearly total selectivity. Journal of the American Chemical Society, 2023, 145(24): 13169–13180
|
116 |
Grundner S , Markovits M A C , Li G , Tromp M , Pidko E A , Hensen E J M , Jentys A , Sanchez Sanchez M , Lercher J A . Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nature Communications, 2015, 6(1): 7546
|
117 |
Yu B , Cheng L , Dai S , Jiang Y , Yang B , Li H , Zhao Y , Xu J , Zhang Y , Pan C .
|
118 |
Shen X , Wu D , Fu X Z , Luo J L . Highly selective conversion of methane to ethanol over CuFe2O4-carbon nanotube catalysts at low temperature. Chinese Chemical Letters, 2022, 33(1): 390–393
|
119 |
Wang Z , Liu Y , Zhang H , Zhou X . Cubic platinum nanoparticles capped with Cs2[closo-B12H12] as an effective oxidation catalyst for converting methane to ethanol. Journal of Colloid and Interface Science, 2020, 566: 135–142
|
120 |
Zhou Y , Zhang L , Wang W . Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis. Nature Communications, 2019, 10(1): 506
|
121 |
Su J , Musgrave C B III , Song Y , Huang L , Liu Y , Li G , Xin Y , Xiong P , Li M M J , Wu H .
|
122 |
Zhou S , Ma W , Anjum U , Kosari M , Xi S , Kozlov S M , Zeng H C . Strained few-layer MoS2 with atomic copper and selectively exposed in-plane sulfur vacancies for CO2 hydrogenation to methanol. Nature Communications, 2023, 14(1): 5872
|
123 |
Shamzhy M , Opanasenko M , Concepción P , Martínez A . New trends in tailoring active sites in zeolite-based catalysts. Chemical Society Reviews, 2019, 48(4): 1095–1149
|
124 |
Deng X , Qin B , Liu R , Qin X , Dai W , Wu G , Guan N , Ma D , Li L . Zeolite-eencaged isolated platinum ions enable heterolytic dihydrogen activation and selective hydrogenations. Journal of the American Chemical Society, 2021, 143(49): 20898–20906
|
125 |
Han B , Guo Y , Huang Y , Xi W , Xu J , Luo J , Qi H , Ren Y , Liu X , Qiao B .
|
126 |
Yang J , Li W , Wang D , Li Y . Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Advanced Materials, 2020, 32(49): 2003300
|
127 |
Wakerley D , Lamaison S , Ozanam F , Menguy N , Mercier D , Marcus P , Fontecave M , Mougel V . Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nature Materials, 2019, 18(11): 1222–1227
|
128 |
Li X , Cao C S , Hung S F , Lu Y R , Cai W , Rykov A I , Miao S , Xi S , Yang H , Hu Z .
|
129 |
Ren X , Zhao J , Li X , Shao J , Pan B , Salamé A , Boutin E , Groizard T , Wang S , Ding J .
|
/
〈 | 〉 |