Single-atom catalysis: a promising avenue for precisely controlling reaction pathways

  • Xiaobo Yang ,
  • Xuning Li ,
  • Yanqiang Huang
Expand
  • State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
lixn@dicp.ac.cn
yqhuang@dicp.ac.cn

Received date: 22 Dec 2023

Accepted date: 19 Feb 2024

Copyright

2024 Higher Education Press

Abstract

Single-atom catalysts (SACs), characterized by exceptionally high atom efficiency, have garnered significant attention across various catalytic reactions. Recent studies have showcased SACs with robust capabilities for precise catalysis, specifically targeting reactions along designated pathways. This review focuses on the advances in the precise activation and reconstruction of chemical bonds on SACs, including precise activation of C–O and C–H bonds and selective couplings involving C–C and C–N bonds. Our discussion begins with a thorough exploration of the factors that render SACs skilled in precise catalytic processes, encompassing the narrow d-band electronic state of single atom site resulting in the adsorption tendency, isolate site resulting in unique adsorption structure, and synergy effect of a single atom site with its neighbors. Subsequently, we elaborate on the applications of SACs in electrocatalysis and thermocatalysis including four prominent reactions, namely, electrochemical CO2 reduction, urea electrochemical synthesis, CO2 hydrogenation, and CH4 activation. Then the concept of rational design of SACs for precisely controlling reaction pathways is discussed from the aspects of pore structure design, support-metal strong interaction, and support hydrophilic/hydrophobic. Finally, we summarize the challenges encountered by SACs in the field of precise catalytic processes and outline prospects for their further development in this domain.

Cite this article

Xiaobo Yang , Xuning Li , Yanqiang Huang . Single-atom catalysis: a promising avenue for precisely controlling reaction pathways[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(7) : 79 . DOI: 10.1007/s11705-024-2434-0

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB0600200), the National Key Research and Development Program of China (Grant No. 2021YFA1500502), the NSFC Center for Single-Atom Catalysis (Grant No. 22388102), the National Natural Science Foundation of China (Grant Nos. 22102176, U19A2015 and 21925803), CAS Project for Young Scientists in Basic Research (Grant Nos.YSBR-051, YSBR-022). The authors gratefully acknowledge the support of Photon Science Center for Carbon Neutrality.
1
Liu X , Dai L . Carbon-based metal-free catalysts. Nature Reviews. Materials, 2016, 1(11): 16064

DOI

2
Meirer F , Weckhuysen B M . Spatial and temporal exploration of heterogeneous catalysts with synchrotron radiation. Nature Reviews. Materials, 2018, 3(9): 324–340

DOI

3
Mitchell S , Pérez Ramírez J . Atomically precise control in the design of low-nuclearity supported metal catalysts. Nature Reviews. Materials, 2021, 6(11): 969–985

DOI

4
Zhao Z J , Liu S , Zha S , Cheng D , Studt F , Henkelman G , Gong J . Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nature Reviews. Materials, 2019, 4(12): 792–804

DOI

5
Suryanto B H R , Matuszek K , Choi J , Hodgetts R Y , Du H L , Bakker J M , Kang C S M , Cherepanov P V , Simonov A N , MacFarlane D R . Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle. Science, 2021, 372(6547): 1187–1191

DOI

6
Chen G F , Yuan Y , Jiang H , Ren S Y , Ding L X , Ma L , Wu T , Lu J , Wang H . Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nature Energy, 2020, 5(8): 605–613

DOI

7
Chang F , Tezsevin I , de Rijk J W , Meeldijk J D , Hofmann J P , Er S , Ngene P , de Jongh P E . Potassium hydride-intercalated graphite as an efficient heterogeneous catalyst for ammonia synthesis. Nature Catalysis, 2022, 5(3): 222–230

DOI

8
Pan X , Jiao F , Miao D , Bao X . Oxide-zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis. Chemical Reviews, 2021, 121(11): 6588–6609

DOI

9
Rahmati M , Safdari M S , Fletcher T H , Argyle M D , Bartholomew C H . Chemical and thermal sintering of supported metals with emphasis on cobalt catalysts during Fischer-Tropsch synthesis. Chemical Reviews, 2020, 120(10): 4455–4533

DOI

10
Rommens K T , Saeys M . Molecular views on Fischer-Tropsch synthesis. Chemical Reviews, 2023, 123(9): 5798–5858

DOI

11
Service R F . Lithium-ion battery development takes nobel. Science, 2019, 366(6463): 292

DOI

12
Degen F , Winter M , Bendig D , Tübke J . Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells. Nature Energy, 2023, 8(11): 1284–1295

DOI

13
Gent W E , Busse G M , House K Z . The predicted persistence of cobalt in lithium-ion batteries. Nature Energy, 2022, 7(12): 1132–1143

DOI

14
Feng X , Ren D , He X , Ouyang M . Mitigating thermal runaway of lithium-ion batteries. Joule, 2020, 4(4): 743–770

DOI

15
Harper G , Sommerville R , Kendrick E , Driscoll L , Slater P , Stolkin R , Walton A , Christensen P , Heidrich O , Lambert S . . Recycling lithium-ion batteries from electric vehicles. Nature, 2019, 575(7781): 75–86

DOI

16
Chen L D . Cations play an essential role in CO2 reduction. Nature Catalysis, 2021, 4(8): 641–642

DOI

17
Yan B , Li Y , Cao W , Zeng Z , Liu P , Ke Z , Yang G . Highly efficient and highly selective CO2 reduction to CO driven by laser. Joule, 2022, 6(12): 2735–2744

DOI

18
Kang W , Lee C C , Jasniewski A J , Ribbe M W , Hu Y . Structural evidence for a dynamic metallocofactor during N2 reduction by Mo-nitrogenase. Science, 2020, 368(6497): 1381–1385

DOI

19
Weliwatte N S , Minteer S D . Photo-bioelectrocatalytic CO2 reduction for a circular energy landscape. Joule, 2021, 5(10): 2564–2592

DOI

20
Yu X , Han P , Wei Z , Huang L , Gu Z , Peng S , Ma J , Zheng G . Boron-doped graphene for electrocatalytic N2 reduction. Joule, 2018, 2(8): 1610–1622

DOI

21
Qing G , Ghazfar R , Jackowski S T , Habibzadeh F , Ashtiani M M , Chen C P , Smith M R III , Hamann T W . Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chemical Reviews, 2020, 120(12): 5437–5516

DOI

22
Tanifuji K , Ohki Y . Metal-sulfur compounds in N2 reduction and nitrogenase-related chemistry. Chemical Reviews, 2020, 120(12): 5194–5251

DOI

23
Stephens I E L , Rossmeisl J , Chorkendorff I . Toward sustainable fuel cells. Science, 2016, 354(6318): 1378–1379

DOI

24
Gittleman C S , Jia H , De Castro E S , Chisholm C R I , Kim Y S . Proton conductors for heavy-duty vehicle fuel cells. Joule, 2021, 5(7): 1660–1677

DOI

25
Zhou Z , Zhang Y , Shen Y , Liu S , Zhang Y . Molecular engineering of polymeric carbon nitride: advancing applications from photocatalysis to biosensing and more. Chemical Society Reviews, 2018, 47(7): 2298–2321

DOI

26
Feng Y , Long S , Tang X , Sun Y , Luque R , Zeng X , Lin L . Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion. Chemical Society Reviews, 2021, 50(10): 6042–6093

DOI

27
Sudarsanam P , Peeters E , Makshina E V , Parvulescu V I , Sels B F . Advances in porous and nanoscale catalysts for viable biomass conversion. Chemical Society Reviews, 2019, 48(8): 2366–2421

DOI

28
Fang R , Dhakshinamoorthy A , Li Y , Garcia H . Metal organic frameworks for biomass conversion. Chemical Society Reviews, 2020, 49(11): 3638–3687

DOI

29
Rimer J D . Rational design of zeolite catalysts. Nature Catalysis, 2018, 1(7): 488–489

DOI

30
Xu D , Zhang S N , Chen J S , Li X H . Design of the synergistic rectifying interfaces in Mott-Schottky catalysts. Chemical Reviews, 2023, 123(1): 1–30

DOI

31
Durand D J , Fey N . Computational ligand descriptors for catalyst design. Chemical Reviews, 2019, 119(11): 6561–6594

DOI

32
Motagamwala A H , Dumesic J A . Microkinetic modeling: a tool for rational catalyst design. Chemical Reviews, 2021, 121(2): 1049–1076

DOI

33
Su D , Lam Z , Wang Y , Han F , Zhang M , Liu B , Chen H . Ultralong durability of ethanol oxidation reaction via morphological design. Joule, 2023, 7(11): 2568–2582

DOI

34
Wang L , Meng S , Tang C , Zhan C , Geng S , Jiang K , Huang X , Bu L . PtNi/PtIn-skin fishbone-like nanowires boost alkaline hydrogen oxidation catalysis. ACS Nano, 2023, 17(18): 17779–17789

DOI

35
Mehmood R , Fan W , Hu X , Li J , Liu P , Zhang Y , Zhou Z , Wang J , Liu M , Zhang F . Confirming high-valent iron as highly active species of water oxidation on the Fe, V-coupled bimetallic electrocatalyst: in situ analysis of X-ray absorption and mössbauer spectroscopy. Journal of the American Chemical Society, 2023, 145(22): 12206–12213

DOI

36
Das S , Pérez Ramírez J , Gong J , Dewangan N , Hidajat K , Gates B C , Kawi S . Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chemical Society Reviews, 2020, 49(10): 2937–3004

DOI

37
Rideal E K . Prof. Paul Sabatier, For. Mem.R.S. Nature, 1941, 148(3750): 309

38
Tan T H , Xie B , Ng Y H , Abdullah S F B , Tang H Y M , Bedford N , Taylor R A , Aguey Zinsou K F , Amal R , Scott J . Unlocking the potential of the formate pathway in the photo-assisted sabatier reaction. Nature Catalysis, 2020, 3(12): 1034–1043

DOI

39
Hu S , Li W X . Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts. Science, 2021, 374(6573): 1360–1365

DOI

40
Zhou Y , Wei F , Qi H , Chai Y , Cao L , Lin J , Wan Q , Liu X , Xing Y , Lin S . . Peripheral-nitrogen effects on the Ru1 centre for highly efficient propane dehydrogenation. Nature Catalysis, 2022, 5(12): 1145–1156

DOI

41
Qiao B , Wang A , Yang X , Allard L F , Jiang Z , Cui Y , Liu J , Li J , Zhang T . Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 2011, 3(8): 634–641

DOI

42
Yang X F , Wang A , Qiao B , Li J , Liu J , Zhang T . Single-atom catalysts: a new frontier in heterogeneous catalysis. Accounts of Chemical Research, 2013, 46(8): 1740–1748

DOI

43
Liu L , Corma A . Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chemical Reviews, 2018, 118(10): 4981–5079

DOI

44
Zhang Y . Heterogeneous catalysis: single atoms on a roll. Nature Reviews Chemistry, 2018, 2(1): 0151

45
Wu X , Wang Q , Yang S , Zhang J , Cheng Y , Tang H , Ma L , Min X , Tang C , Jiang S P . . Sublayer-enhanced atomic sites of single atom catalysts through in situ atomization of metal oxide nanoparticles. Energy & Environmental Science, 2022, 15(3): 1183–1191

DOI

46
Jiang D , Wan G , Halldin Stenlid J , García Vargas C E , Zhang J , Sun C , Li J , Abild Pedersen F , Tassone C J , Wang Y . Dynamic and reversible transformations of subnanometre-sized palladium on ceria for efficient methane removal. Nature Catalysis, 2023, 6(7): 618–627

DOI

47
Agarwal N , Freakley S J , McVicker R U , Althahban S M , Dimitratos N , He Q , Morgan D J , Jenkins R L , Willock D J , Taylor S H . . Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science, 2017, 358(6360): 223–227

DOI

48
Shoji S , Peng X , Yamaguchi A , Watanabe R , Fukuhara C , Cho Y , Yamamoto T , Matsumura S , Yu M W , Ishii S . . Photocatalytic uphill conversion of natural gas beyond the limitation of thermal reaction systems. Nature Catalysis, 2020, 3(2): 148–153

DOI

49
Xu S , Carter E A . Theoretical insights into heterogeneous (photo)electrochemical CO2 reduction. Chemical Reviews, 2019, 119(11): 6631–6669

DOI

50
Rizo R , Arán Ais R M , Padgett E , Muller D A , Lázaro M J , Solla Gullón J , Feliu J M , Pastor E , Abruña H D . Pt-richcore/Sn-richsubsurface/Ptskin nanocubes as highly active and stable electrocatalysts for the ethanol oxidation reaction. Journal of the American Chemical Society, 2018, 140(10): 3791–3797

DOI

51
Yang X , Liang Z , Chen S , Ma M , Wang Q , Tong X , Zhang Q , Ye J , Gu L , Yang N . A phosphorus-doped Ag@Pd catalyst for enhanced C–C bond cleavage during ethanol electrooxidation. Small, 2020, 16(47): 2004727

DOI

52
Vijay S , Ju W , Brückner S , Tsang S C , Strasser P , Chan K . Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nature Catalysis, 2021, 4(12): 1024–1031

DOI

53
Tang Y , Li Y , Fung V , Jiang D E , Huang W , Zhang S , Iwasawa Y , Sakata T , Nguyen L , Zhang X . . Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions. Nature Communications, 2018, 9(1): 1231

DOI

54
Xie P , Ding J , Yao Z , Pu T , Zhang P , Huang Z , Wang C , Zhang J , Zecher Freeman N , Zong H . . Oxo dicopper anchored on carbon nitride for selective oxidation of methane. Nature Communications, 2022, 13(1): 1375

DOI

55
Wang Z , Liu S , Zhao X , Wang M , Zhang L , Qian T , Xiong J , Yang C , Yan C . Interfacial defect engineering triggered by single atom doping for highly efficient electrocatalytic nitrate reduction to ammonia. ACS Materials Letters, 2023, 5(4): 1018–1026

DOI

56
Ding J , Teng Z , Su X , Kato K , Liu Y , Xiao T , Liu W , Liu L , Zhang Q , Ren X . . Asymmetrically coordinated cobalt single atom on carbon nitride for highly selective photocatalytic oxidation of CH4 to CH3OH. Chem, 2023, 9(4): 1017–1035

DOI

57
Ding J , Wei Z , Li F , Zhang J , Zhang Q , Zhou J , Wang W , Liu Y , Zhang Z , Su X . . Atomic high-spin cobalt(II) center for highly selective electrochemical CO reduction to CH3OH. Nature Communications, 2023, 14(1): 6550

DOI

58
Wang Q , Wang H , Cao H , Tung C W , Liu W , Hung S F , Wang W , Zhu C , Zhang Z , Cai W . . Atomic metal-non-metal catalytic pair drives efficient hydrogen oxidation catalysis in fuel cells. Nature Catalysis, 2023, 6(10): 916–926

DOI

59
Wang Y , Mao J , Meng X , Yu L , Deng D , Bao X . Catalysis with two-dimensional materials confining single atoms: concept, design, and applications. Chemical Reviews, 2019, 119(3): 1806–1854

DOI

60
NørskovJ KStoltzeP. Theoretical aspects of surface reactions. Surface Science, 1987, 189–190: 91–105

61
Greiner M T , Jones T E , Beeg S , Zwiener L , Scherzer M , Girgsdies F , Piccinin S , Armbrüster M , Knop Gericke A , Schlögl R . Free-atom-like d states in single-atom alloy catalysts. Nature Chemistry, 2018, 10(10): 1008–1015

DOI

62
Rosen A S , Vijay S , Persson K A . Free-atom-like d states beyond the dilute limit of single-atom alloys. Chemical Science, 2023, 14(6): 1503–1511

DOI

63
Spivey T D , Holewinski A . Selective interactions between free-atom-like d-states in single-atom alloy catalysts and near-frontier molecular orbitals. Journal of the American Chemical Society, 2021, 143(31): 11897–11902

DOI

64
Darby M T , Réocreux R , Sykes E C H , Michaelides A , Stamatakis M . Elucidating the stability and reactivity of surface intermediates on single-atom alloy catalysts. ACS Catalysis, 2018, 8(6): 5038–5050

DOI

65
Yu S , Cheng X , Wang Y , Xiao B , Xing Y , Ren J , Lu Y , Li H , Zhuang C , Chen G . High activity and selectivity of single palladium atom for oxygen hydrogenation to H2O2. Nature Communications, 2022, 13(1): 4737

DOI

66
Li W , Wu G , Hu W , Dang J , Wang C , Weng X , da Silva I , Manuel P , Yang S , Guan N . . Direct propylene epoxidation with molecular oxygen over cobalt-containing zeolites. Journal of the American Chemical Society, 2022, 144(9): 4260–4268

DOI

67
Qiao B , Liu J , Wang Y G , Lin Q , Liu X , Wang A , Li J , Zhang T , Liu J . Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catalysis, 2015, 5(11): 6249–6254

DOI

68
Ma W , Mao J , He C T , Shao L , Liu J , Wang M , Yu P , Mao L . Highly selective generation of singlet oxygen from dioxygen with atomically dispersed catalysts. Chemical Science (Cambridge), 2022, 13(19): 5606–5615

DOI

69
Shang Q , Tang N , Qi H , Chen S , Xu G , Wu C , Pan X , Wang X , Cong Y . Cong Y. A palladium single-atom catalyst toward efficient activation of molecular oxygen for cinnamyl alcohol oxidation. Chinese Journal of Catalysis, 2020, 41(12): 1812–1817

DOI

70
Li Z , Chen Y , Ji S , Tang Y , Chen W , Li A , Zhao J , Xiong Y , Wu Y , Gong Y . . Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nature Chemistry, 2020, 12(8): 764–772

DOI

71
Xiong Y , Dong J , Huang Z Q , Xin P , Chen W , Wang Y , Li Z , Jin Z , Xing W , Zhuang Z . . Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nature Nanotechnology, 2020, 15(5): 390–397

DOI

72
Li W , Madan S E , Réocreux R , Stamatakis M . Elucidating the reactivity of oxygenates on single-atom alloy catalysts. ACS Catalysis, 2023, 13(24): 15851–15868

DOI

73
Ni W , Meibom J L , Hassan N U , Chang M , Chu Y C , Krammer A , Sun S , Zheng Y , Bai L , Ma W . . Synergistic interactions between PtRu catalyst and nitrogen-doped carbon support boost hydrogen oxidation. Nature Catalysis, 2023, 6(9): 773–783

DOI

74
Meng G , Lan W , Zhang L , Wang S , Zhang T , Zhang S , Xu M , Wang Y , Zhang J , Yue F . . Synergy of single atoms and lewis acid sites for efficient and selective lignin disassembly into monolignol derivatives. Journal of the American Chemical Society, 2023, 145(23): 12884–12893

DOI

75
Dong C , Gao Z , Li Y , Peng M , Wang M , Xu Y , Li C , Xu M , Deng Y , Qin X . . Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles. Nature Catalysis, 2022, 5(6): 485–493

DOI

76
Fu N , Liang X , Wang X , Gan T , Ye C , Li Z , Liu J C , Li Y . Controllable conversion of platinum nanoparticles to single atoms in Pt/CeO2 by laser ablation for efficient CO oxidation. Journal of the American Chemical Society, 2023, 145(17): 9540–9547

DOI

77
Fang Y , Zhang Q , Zhang H , Li X , Chen W , Xu J , Shen H , Yang J , Pan C , Zhu Y . . Dual activation of molecular oxygen and surface lattice oxygen in single atom Cu1/TiO2 catalyst for CO oxidation. Angewandte Chemie International Edition, 2022, 61(48): e202212273

DOI

78
Niu H , Zhang Z , Wang X , Wan X , Shao C , Guo Y . Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts. Advanced Functional Materials, 2021, 31(11): 2008533

DOI

79
Leverett J , Tran Phu T , Yuwono J A , Kumar P , Kim C , Zhai Q , Han C , Qu J , Cairney J , Simonov A N . . Tuning the coordination structure of Cu-N-C single atom catalysts for simultaneous electrochemical reduction of CO2 and NO3 to urea. Advanced Energy Materials, 2022, 12(32): 2201500

DOI

80
Yang W , Polo Garzon F , Zhou H , Huang Z , Chi M , Meyer H III , Yu X , Li Y , Wu Z . Boosting the activity of Pd single atoms by tuning their local environment on ceria for methane combustion. Angewandte Chemie International Edition, 2023, 62(5): e202217323

DOI

81
Jia G , Sun M , Wang Y , Shi Y , Zhang L , Cui X , Huang B , Yu J C . Asymmetric coupled dual-atom sites for selective photoreduction of carbon dioxide to acetic acid. Advanced Functional Materials, 2022, 32(41): 2206817

DOI

82
Chu C , Huang D , Gupta S , Weon S , Niu J , Stavitski E , Muhich C , Kim J H . Neighboring Pd single atoms surpass isolated single atoms for selective hydrodehalogenation catalysis. Nature Communications, 2021, 12(1): 5179

DOI

83
Liu P , Huang X , Mance D , Copéret C . Atomically dispersed iridium on MgO(111) nanosheets catalyses benzene-ethylene coupling towards styrene. Nature Catalysis, 2021, 4(11): 968–975

DOI

84
Ro I , Qi J , Lee S , Xu M , Yan X , Xie Z , Zakem G , Morales A , Chen J G , Pan X . . Bifunctional hydroformylation on heterogeneous Rh-WOx pair site catalysts. Nature, 2022, 609(7926): 287–292

DOI

85
Liu W , Feng H , Yang Y , Niu Y , Wang L , Yin P , Hong S , Zhang B , Zhang X , Wei M . Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes. Nature Communications, 2022, 13(1): 3188

DOI

86
Cao H , Zhang Z , Chen J W , Wang Y G . Potential-dependent free energy relationship in interpreting the electrochemical performance of CO2 reduction on single atom catalysts. ACS Catalysis, 2022, 12(11): 6606–6617

DOI

87
Li J , Zeng H , Dong X , Ding Y , Hu S , Zhang R , Dai Y , Cui P , Xiao Z , Zhao D . . Selective CO2 electrolysis to CO using isolated antimony alloyed copper. Nature Communications, 2023, 14(1): 340

DOI

88
Zhang M , Zhang Z , Zhao Z , Huang H , Anjum D H , Wang D , He J , Huang K W . He J h, Huang K W. Tunable selectivity for electrochemical CO2 reduction by bimetallic Cu-Sn catalysts: elucidating the roles of Cu and Sn. ACS Catalysis, 2021, 11(17): 11103–11108

DOI

89
Yang H B , Hung S F , Liu S , Yuan K , Miao S , Zhang L , Huang X , Wang H Y , Cai W , Chen R . . Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nature Energy, 2018, 3(2): 140–147

DOI

90
Deng Y , Zhao J , Wang S , Chen R , Ding J , Tsai H J , Zeng W J , Hung S F , Xu W , Wang J . . Operando spectroscopic analysis of axial oxygen-coordinated single-Sn-atom sites for electrochemical CO2 reduction. Journal of the American Chemical Society, 2023, 145(13): 7242–7251

DOI

91
Ding J , Bin Yang H , Ma X L , Liu S , Liu W , Mao Q , Huang Y , Li J , Zhang T , Liu B . A tin-based tandem electrocatalyst for CO2 reduction to ethanol with 80% selectivity. Nature Energy, 2023, 8(12): 1386–1394

DOI

92
Zheng X , De Luna P , García de Arquer F P , Zhang B , Becknell N , Ross M B , Li Y , Banis M N , Li Y , Liu M . . Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule, 2017, 1(4): 794–805

DOI

93
Li W , Li L , Xia Q , Hong S , Wang L , Yao Z , Wu T S , Soo Y L , Zhang H , Lo T W B . . Lowering C–C coupling barriers for efficient electrochemical CO2 reduction to C2H4 by jointly engineering single Bi atoms and oxygen vacancies on CuO. Applied Catalysis B: Environmental, 2022, 318: 121823

DOI

94
Cao Y , Chen S , Bo S , Fan W , Li J , Jia C , Zhou Z , Liu Q , Zheng L , Zhang F . Single atom Bi decorated copper alloy enables C–C coupling for electrocatalytic reduction of CO2 into C2+ products**. Angewandte Chemie International Edition, 2023, 62(30): e202303048

DOI

95
Jiang M , Zhu M , Wang M , He Y , Luo X , Wu C , Zhang L , Jin Z . Review on electrocatalytic coreduction of carbon dioxide and nitrogenous species for urea synthesis. ACS Nano, 2023, 17(4): 3209–3224

DOI

96
Zhang X , Zhu X , Bo S , Chen C , Qiu M , Wei X , He N , Xie C , Chen W , Zheng J . . Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe-Ni catalyst. Nature Communications, 2022, 13(1): 5337

DOI

97
LiuYTuXWeiXWangDZhangXChenWChenCWangS. C-bound or O-bound surface: which one boosts electrocatalytic urea synthesis? Angewandte Chemie International Edition, 2023, 62(19): e202300387

98
Li J , Zhang Y , Kuruvinashetti K , Kornienko N . Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nature Reviews. Chemistry, 2022, 6(5): 303–319

DOI

99
Liu J , Smith S C , Gu Y , Kou L . C–N coupling enabled by N–N bond breaking for electrochemical urea production. Advanced Functional Materials, 2023, 33(47): 2305894

DOI

100
Zhang X , Zhu X , Bo S , Chen C , Cheng K , Zheng J , Li S , Tu X , Chen W , Xie C . . Electrocatalytic urea synthesis with 63.5% faradaic efficiency and 100% N-selectivity via one-step C–N coupling. Angewandte Chemie International Edition, 2023, 62(33): e202305447

DOI

101
Chen L , Allec S I , Nguyen M T , Kovarik L , Hoffman A S , Hong J , Meira D , Shi H , Bare S R , Glezakou V A . . Dynamic evolution of palladium single atoms on anatase titania support determines the reverse water-gas shift activity. Journal of the American Chemical Society, 2023, 145(19): 10847–10860

DOI

102
Millet M M , Algara Siller G , Wrabetz S , Mazheika A , Girgsdies F , Teschner D , Seitz F , Tarasov A , Levchenko S V , Schlögl R . . Ni single atom catalysts for CO2 activation. Journal of the American Chemical Society, 2019, 141(6): 2451–2461

DOI

103
Du P , Qi R , Zhang Y , Gu Q , Xu X , Tan Y , Liu X , Wang A , Zhu B , Yang B . . Single-atom-driven dynamic carburization over Pd1-FeOx catalyst boosting CO2 conversion. Chem, 2022, 8(12): 3252–3262

DOI

104
Yang B , Wang Y , Gao B , Zhang L , Guo L . Size-dependent active site and its catalytic mechanism for CO2 hydrogenation reactivity and selectivity over Re/TiO2. ACS Catalysis, 2023, 13(15): 10364–10374

DOI

105
Wang D , Yuan Z , Wu X , Xiong W , Ding J , Zhang Z , Huang W . Ni single atoms confined in nitrogen-doped carbon nanotubes for active and selective hydrogenation of CO2 to CO. ACS Catalysis, 2023, 13(10): 7132–7138

DOI

106
Shao X , Yang X , Xu J , Liu S , Miao S , Liu X , Su X , Duan H , Huang Y , Zhang T . Iridium single-atom catalyst performing a quasi-homogeneous hydrogenation transformation of CO2 to formate. Chem, 2019, 5(3): 693–705

DOI

107
Yang T , Mao X , Zhang Y , Wu X , Wang L , Chu M , Pao C W , Yang S , Xu Y , Huang X . Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature. Nature Communications, 2021, 12(1): 6022

DOI

108
Chen Y , Li H , Zhao W , Zhang W , Li J , Li W , Zheng X , Yan W , Zhang W , Zhu J . . Optimizing reaction paths for methanol synthesis from CO2 hydrogenation via metal-ligand cooperativity. Nature Communications, 2019, 10(1): 1885

DOI

109
Ye X , Yang C , Pan X , Ma J , Zhang Y , Ren Y , Liu X , Li L , Huang Y . Highly selective hydrogenation of CO2 to ethanol via designed bifunctional Ir1-In2O3 single-atom catalyst. Journal of the American Chemical Society, 2020, 142(45): 19001–19005

DOI

110
Zheng K , Li Y , Liu B , Jiang F , Xu Y , Liu X . Ti-doped CeO2 stabilized single-atom rhodium catalyst for selective and stable CO2 hydrogenation to ethanol. Angewandte Chemie International Edition, 2022, 61(44): e202210991

DOI

111
Gani T Z H , Kulik H J . Understanding and breaking scaling relations in single-site catalysis: methane to methanol conversion by Fe(IV)=O. ACS Catalysis, 2018, 8(2): 975–986

DOI

112
Schwach P , Pan X , Bao X . Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chemical Reviews, 2017, 117(13): 8497–8520

DOI

113
Tang X , Wang L , Yang B , Fei C , Yao T , Liu W , Lou Y , Dai Q , Cai Y , Cao X M . . Direct oxidation of methane to oxygenates on supported single Cu atom catalyst. Applied Catalysis B: Environmental, 2021, 285: 119827

DOI

114
Yang J , Huang Y , Qi H , Zeng C , Jiang Q , Cui Y , Su Y , Du X , Pan X , Liu X . . Modulating the strong metal-support interactian of single-atom catalysts via vicinal structure decoration. Nature Communications, 2022, 13(1): 4244

115
Fang G , Wei F , Lin J , Zhou Y , Sun L , Shang X , Lin S , Wang X . Retrofitting Zr-Oxo nodes of UiO-66 by Ru single atoms to boost methane hydroxylation with nearly total selectivity. Journal of the American Chemical Society, 2023, 145(24): 13169–13180

DOI

116
Grundner S , Markovits M A C , Li G , Tromp M , Pidko E A , Hensen E J M , Jentys A , Sanchez Sanchez M , Lercher J A . Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nature Communications, 2015, 6(1): 7546

DOI

117
Yu B , Cheng L , Dai S , Jiang Y , Yang B , Li H , Zhao Y , Xu J , Zhang Y , Pan C . . Silver and copper dual single atoms boosting direct oxidation of methane to methanol via synergistic catalysis. Advanced Science, 2023, 10(26): 2302143

DOI

118
Shen X , Wu D , Fu X Z , Luo J L . Highly selective conversion of methane to ethanol over CuFe2O4-carbon nanotube catalysts at low temperature. Chinese Chemical Letters, 2022, 33(1): 390–393

DOI

119
Wang Z , Liu Y , Zhang H , Zhou X . Cubic platinum nanoparticles capped with Cs2[closo-B12H12] as an effective oxidation catalyst for converting methane to ethanol. Journal of Colloid and Interface Science, 2020, 566: 135–142

DOI

120
Zhou Y , Zhang L , Wang W . Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis. Nature Communications, 2019, 10(1): 506

DOI

121
Su J , Musgrave C B III , Song Y , Huang L , Liu Y , Li G , Xin Y , Xiong P , Li M M J , Wu H . . Strain enhances the activity of molecular electrocatalysts via carbon nanotube supports. Nature Catalysis, 2023, 6(9): 818–828

DOI

122
Zhou S , Ma W , Anjum U , Kosari M , Xi S , Kozlov S M , Zeng H C . Strained few-layer MoS2 with atomic copper and selectively exposed in-plane sulfur vacancies for CO2 hydrogenation to methanol. Nature Communications, 2023, 14(1): 5872

DOI

123
Shamzhy M , Opanasenko M , Concepción P , Martínez A . New trends in tailoring active sites in zeolite-based catalysts. Chemical Society Reviews, 2019, 48(4): 1095–1149

DOI

124
Deng X , Qin B , Liu R , Qin X , Dai W , Wu G , Guan N , Ma D , Li L . Zeolite-eencaged isolated platinum ions enable heterolytic dihydrogen activation and selective hydrogenations. Journal of the American Chemical Society, 2021, 143(49): 20898–20906

DOI

125
Han B , Guo Y , Huang Y , Xi W , Xu J , Luo J , Qi H , Ren Y , Liu X , Qiao B . . Strong metal-support interactions between Pt single atoms and TiO2. Angewandte Chemie International Edition, 2020, 59(29): 11824–11829

DOI

126
Yang J , Li W , Wang D , Li Y . Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Advanced Materials, 2020, 32(49): 2003300

DOI

127
Wakerley D , Lamaison S , Ozanam F , Menguy N , Mercier D , Marcus P , Fontecave M , Mougel V . Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nature Materials, 2019, 18(11): 1222–1227

DOI

128
Li X , Cao C S , Hung S F , Lu Y R , Cai W , Rykov A I , Miao S , Xi S , Yang H , Hu Z . . Identification of the electronic and structural dynamics of catalytic centers in single-Fe-atom material. Chem, 2020, 6(12): 3440–3454

DOI

129
Ren X , Zhao J , Li X , Shao J , Pan B , Salamé A , Boutin E , Groizard T , Wang S , Ding J . . In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO2 reduction to methanol. Nature Communications, 2023, 14(1): 3401

DOI

Outlines

/