Solid-conversion synthesis of three-dimensionally ordered mesoporous ZSM-5 catalysts for the methanol-to-propylene reaction

  • Weilong Chun 1 ,
  • Chenbiao Yang 1 ,
  • Xu Wang 1 ,
  • Xin Yang 1 ,
  • Huiyong Chen , 1,2
Expand
  • 1. School of Chemical Engineering, Northwest University, Xi’an 710069, China
  • 2. International Science & Technology Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Northwest University, Xi’an 710069, China
hychen@nwu.edu.cn

Received date: 12 Jan 2024

Accepted date: 09 Mar 2024

Copyright

2024 Higher Education Press

Abstract

A facile synthesis of hierarchical ZSM-5 with the three-dimensionally ordered mesoporosity (3DOm ZSM-5) was achieved by solid conversion (SC) of SiO2 colloidal crystals to high-crystalline ZSM-5. The products of 3DZ5_S/C and 3DZ5_S, which were severally transformed from the carbon-padded SiO2 colloidal crystals and the initial SiO2 colloidal crystals, exhibited not only a similar ordered structure and acidity but also higher crystallinity and more balanced meso-/micropore combination in comparison with 3DZ5_C obtained by the conventional confined space crystallization approach. All three synthesized 3DZ5 catalysts showed improved methanol-to-propylene performance than the commercially microporous ZSM-5 (CZ5), embodied in five times longer lifetime, higher propylene selectivity and Spropylene/Sethylene ratio (P/E), and superior coke toleration with lower formation rate of coke (Rcoke). Moreover, the 3DZ5_S catalyst in situ converted from SiO2 colloidal crystals presented the highest selectivities of propylene (42.51%) and light olefins (74.6%) among all three 3DZ5 catalysts. The high efficiency in synthesis and in situ utilization of SiO2 colloidal crystals demonstrate the proposed SC strategy to be more efficiently and eco-friendly for the high-yield production of not only 3DOm ZSM-5 but also other types of hierarchical zeolites.

Cite this article

Weilong Chun , Chenbiao Yang , Xu Wang , Xin Yang , Huiyong Chen . Solid-conversion synthesis of three-dimensionally ordered mesoporous ZSM-5 catalysts for the methanol-to-propylene reaction[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(8) : 93 . DOI: 10.1007/s11705-024-2446-9

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21978238), the Natural Science Foundation of Shaanxi Provincial Department of Education (Grant No. 21JY041) and the Key R&D Program of Shaanxi Province (Grant No. 2024GX-YBXM-426)

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://dx.doi.org/10.1007/s11705-024-2446-9 and is accessible for authorized users.
1
Davis M E . Ordered porous materials for emerging applications. Nature, 2002, 417(6891): 813–821

DOI

2
Shamzhy M , Opanasenko M , Concepción P , Martínez A . New trends in tailoring active sites in zeolite-based catalysts. Chemical Society Reviews, 2019, 48(4): 1095–1149

DOI

3
Sun Q M , Wang N , Yu J H . Advances in catalytic applications of zeolite-supported metal catalysts. Advanced Materials, 2021, 33(51): 2104442

DOI

4
Liu X L , Wang C M , Zhou J , Liu C , Liu Z C , Shi J , Wang Y D , Teng J W , Xie Z K . Molecular transport in zeolite catalysts: depicting an integrated picture from macroscopic to microscopic scales. Chemical Society Reviews, 2022, 51(19): 8174–8200

DOI

5
Mallette A J , Seo S , Rimer J D . Synthesis strategies and design principles for nanosized and hierarchical zeolites. Nature Synthesis, 2022, 1(7): 521–534

DOI

6
Pérez-Ramírez J , Christensen C H , Egeblad K , Christensen C H , Groen J C . Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 2008, 37(11): 2530–2542

DOI

7
Xu S , Zhang X , Cheng D G , Chen F , Ren X . Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking. Frontiers of Chemical Science and Engineering, 2018, 12(4): 780–789

DOI

8
Mintova S , Jaber M , Valtchev V . Nanosized microporous crystals: emerging applications. Chemical Society Reviews, 2015, 44(20): 7207–7233

DOI

9
Chen L H , Sun M H , Wang Z , Yang W , Su B L . Hierarchically structured zeolites: from design to application. Chemical Reviews, 2020, 120(20): 11194–11294

DOI

10
Chen H Y , Yang M F , Shang W J , Tong Y , Liu B Y , Han X L , Zhang J B , Hao Q Q , Sun M , Ma X X . Organosilane surfactant-directed synthesis of hierarchical ZSM-5 zeolites with improved catalytic performance in methanol-to-propylene reaction. Industrial & Engineering Chemistry Research, 2018, 57(32): 10956–10966

DOI

11
Mendoza-castro M J , Jardim E D O , Trujillo C A , Linares N , Garciamartinez J . Hierarchical catalysts prepared by interzeolite transformation. Journal of the American Chemical Society, 2022, 144(11): 5163–5171

DOI

12
Wang C T , Fang W , Liu Z Q , Wang L , Liao Z W , Yang Y R , Li H J , Liu L , Zhou H , Qin X D . . Fischer-tropsch synthesis to olefins boosted by MFI zeolite nanosheets. Nature Nanotechnology, 2022, 17(7): 714–720

DOI

13
Verboekend D , Milina M , Mitchell S , Pérez-Ramírez J . Hierarchical zeolites by desilication: occurrence and catalytic impact of recrystallization and restructuring. Crystal Growth & Design, 2013, 13(11): 5025–5035

DOI

14
Li J J , Liu M , Guo X W , Xu S T , Wei Y X , Liu Z M , Song C S . Interconnected hierarchical ZSM-5 with tunable acidity prepared by a dealumination-realumination process: a superior MTP catalyst. ACS Applied Materials & Interfaces, 2017, 9(31): 26096–26106

DOI

15
Ivanova I I , Knyazeva E E . Micro-mesoporous materials obtained by zeolite recrystallization: synthesis, characterization and catalytic applications. Chemical Society Reviews, 2013, 42(9): 3671–3688

DOI

16
Wang Z P , Li C , Cho H J , Kung S C , Snyder M A , Fan W . Direct, single-step synthesis of hierarchical zeolites without secondary templating. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(3): 1298–1305

DOI

17
Choi M , Cho H S , Srivastava R , Venkatesan C , Choi D H , Ryoo R . Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials, 2006, 5(9): 718–723

DOI

18
Choi M , Na K , Kim J , Sakamoto Y , Ryoo R . Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249

DOI

19
Hartmann M . Hierarchical zeolites: a proven strategy to combine shape selectivity with efficient mass transport. Angewandte Chemie International Edition, 2004, 43(44): 5880–5882

DOI

20
Dai H , Shen Y F , Yang T M , Lee C S , Fu D L , Agarwal A , Le T T , Tsapatsis M , Palmer J C , Weckhuysen B M . . Finned zeolite catalysts. Nature Materials, 2020, 19(10): 1074–1080

DOI

21
Zhang X Y , Liu D X , Xu D D , Asahina S , Cychosz K A , Agrawal K V , Al Wahedi Y , Bhan A , Al Hashimi S , Terasaki O . . Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science, 2012, 336(6089): 1684–1687

DOI

22
Fan W , Snyder M A , Kumar S , Lee P S , Yoo W C , Mccormick A V , Penn R L , Stein A , Tsapatsis M . Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nature Materials, 2008, 7(12): 984–991

DOI

23
Valtchev V , Majano G , Mintova S , Pérez-Ramírez J . Tailored crystalline microporous materials by post-synthesis modification. Chemical Society Reviews, 2013, 42(1): 263–290

DOI

24
Chen H Y , Shang W J , Yang C B , Liu B Y , Dai C Y , Zhang J B , Hao Q Q , Sun M , Ma X X . Epitaxial growth of layered-bulky ZSM-5 hybrid catalysts for the methanol-to-propylene process. Industrial & Engineering Chemistry Research, 2019, 58(4): 1580–1589

DOI

25
Kim S , Park G , Woo M H , Kwak G , Kim S K . Control of hierarchical structure and framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on methanol conversion. ACS Catalysis, 2019, 9(4): 2880–2892

DOI

26
Mohamed H O , Parsapur R K , Hita I , Ramírez A , Huang K W , Gascon J , Castaño P . Stable and reusable hierarchical ZSM-5 zeolite with superior performance for olefin oligomerization when partially coked. Applied Catalysis B: Environmental, 2022, 316: 121582

DOI

27
Chen H Y , Wydra J , Zhang X Y , Lee P S , Wang Z P , Fan W , Tsapatsis M . Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. Journal of the American Chemical Society, 2011, 133(32): 12390–12393

DOI

28
Wang J , Yang M F , Shang W J , Su X P , Hao Q Q , Chen H Y , Ma X X . Synthesis, characterization, and catalytic application of hierarchical SAPO-34 zeolite with three-dimensionally ordered mesoporous-imprinted structure. Microporous and Mesoporous Materials, 2017, 252: 10–16

DOI

29
Cho H J , Dornath P , Fan W . Synthesis of hierarchical Sn-MFI as lewis acid catalysts for isomerization of cellulosic sugars. ACS Catalysis, 2014, 4(6): 2029–2037

DOI

30
You Q , Wang X , Wu Y S , Bi C Y , Yang X , Sun M , Zhang J B , Hao Q Q , Chen H Y , Ma X X . Hierarchical Ti-beta with a three-dimensional ordered mesoporosity for catalytic epoxidation of bulky cyclic olefins. New Journal of Chemistry, 2021, 45(23): 10303–10314

DOI

31
Chen H Y , Lee P S , Zhang X Y , Lu D . Structure replication and growth development of three-dimensionally ordered mesoporous-imprinted zeolites during confined growth. Journal of Materials Research, 2013, 28(10): 1356–1364

DOI

32
Wang Z P , Dornath P , Chang C C , Chen H Y , Fan W . Confined synthesis of three-dimensionally ordered mesoporous-imprinted zeolites with tunable morphology and Si/Al ratio. Microporous and Mesoporous Materials, 2013, 181: 8–16

DOI

33
Khare R , Bhan A . Mechanistic studies of methanol-to-hydrocarbons conversion on diffusion-free MFI samples. Journal of Catalysis, 2015, 329: 218–228

DOI

34
Fernández-Reyes B , Morales-Jiménez S , Sánchez-Marrero G , Muñoz-Senmache J C , Hernández-Maldonado A J . Hierarchical three-dimensionally ordered mesoporous carbon (3DOm) zeolite composites for the adsorption of contaminants of emerging concern. Journal of Hazardous Materials Letters, 2021, 2: 100017

DOI

35
Lee P S , Zhang X Y , Stoeger J A , Malek A , Fan W , Kumar S , Yoo W C , Al Hashimi S , Penn R L , Stein A . . Sub-40 nm zeolite suspensions via disassembly of three-dimensionally ordered mesoporous-imprinted silicalite-1. Journal of the American Chemical Society, 2011, 133(3): 493–502

DOI

36
Mintova S , Hölzl M , Valtchev V , Mihailova B , Bouizi Y , Bein T . Closely packed zeolite nanocrystals obtained via transformation of porous amorphous silica. Chemistry of Materials, 2004, 16(25): 5452–5459

DOI

37
Han D Z , Yang D Y , Bi C Y , Zhang G Q , Yang F , Hao Q Q , Zhang J B , Chen H Y , Ma X X . Dry-gel conversion synthesis of SAPO-14 zeolites for the selective conversion of methanol to propylene. Inorganic Chemistry Frontiers, 2023, 10(21): 6193–6203

DOI

38
Davis T M , Snyder M A , Krohn J E , Tsapatsis M . Nanoparticles in lysine-silica sols. Chemistry of Materials, 2006, 18(25): 5814–5816

DOI

39
Pérez-Ramírez J , Verboekend D , Bonilla A , Abelló S . Zeolite catalysts with tunable hierarchy factor by pore-growth moderators. Advanced Functional Materials, 2009, 19(24): 3972–3979

DOI

40
Zhao X B , Hong Y , Wang L Y , Fan D , Yan N N , Liu X N , Tian P , Guo X W , Liu Z M . External surface modification of as-made ZSM-5 and their catalytic performance in the methanol to propylene reaction. Chinese Journal of Catalysis, 2018, 39(8): 1418–1426

DOI

41
Ramesh K , Jie C , Han Y F , Borgna A . Synthesis, characterization, and catalytic activity of phosphorus modified H-ZSM-5 catalysts in selective ethanol dehydration. Industrial & Engineering Chemistry Research, 2010, 49(9): 4080–4090

DOI

42
Zhang J X , Zhou A , Gawande K , Li G X , Shang S J , Dai C Y , Fan W , Han Y , Song C S , Ren L M . . B-axis-oriented ZSM-5 nanosheets for efficient alkylation of benzene with methanol: synergy of acid sites and diffusion. ACS Catalysis, 2023, 13(6): 3794–3805

DOI

43
Li J H , Wang Y N , Jia W Z , Xi Z W , Chen H H , Zhu Z R , Hu Z H . Effect of external surface of HZSM-5 zeolite on product distribution in the conversion of methanol to hydrocarbons. Journal of Energy Chemistry, 2014, 23(6): 771–780

DOI

44
Chang C C , Teixeira A R , Li C , Dauenhauer P J , Fan W . Enhanced molecular transport in hierarchical silicalite-1. Langmuir, 2013, 29(45): 13943–13950

DOI

45
Sun M H , Zhou J , Hu Z Y , Chen L H , Li L Y , Wang Y D , Xie Z K , Turner S , Van Tendeloo G , Hasan T . . Hierarchical zeolite single-crystal reactor for excellent catalytic efficiency. Matter, 2020, 3(4): 1226–1245

DOI

46
Beheshti M S , Behzad M , Ahmadpour J , Arabi H . Modification of H-[B]-ZSM-5 zeolite for methanol to propylene (MTP) conversion: investigation of extrusion and steaming treatments on physicochemical characteristics and catalytic performance. Microporous and Mesoporous Materials, 2020, 291: 109699

DOI

47
Zhang Y P , Li M G , Xing E H , Luo Y B , Shu X T . Protective desilication of highly siliceous H-ZSM-5 by sole tetraethylammonium hydroxide for the methanol to propylene (MTP) reaction. RSC Advances, 2018, 8(66): 37842–37854

DOI

48
Wu X Q , Wei Y X , Liu Z M . Dynamic catalytic mechanism of the methanol-to-hydrocarbons reaction over zeolites. Accounts of Chemical Research, 2023, 56(14): 2001–2014

DOI

49
Zhang M Z , Xu S T , Wei Y X , Li J Z , Wang J B , Zhang W N , Gao S S , Liu Z M . Changing the balance of the MTO reaction dual-cycle mechanism: reactions over ZSM-5 with varying contact times. Chinese Journal of Catalysis, 2016, 37(8): 1413–1422

DOI

Outlines

/