Solid-conversion synthesis of three-dimensionally ordered mesoporous ZSM-5 catalysts for the methanol-to-propylene reaction

Weilong Chun , Chenbiao Yang , Xu Wang , Xin Yang , Huiyong Chen

Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (8) : 93

PDF (1294KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (8) : 93 DOI: 10.1007/s11705-024-2446-9
RESEARCH ARTICLE

Solid-conversion synthesis of three-dimensionally ordered mesoporous ZSM-5 catalysts for the methanol-to-propylene reaction

Author information +
History +
PDF (1294KB)

Abstract

A facile synthesis of hierarchical ZSM-5 with the three-dimensionally ordered mesoporosity (3DOm ZSM-5) was achieved by solid conversion (SC) of SiO2 colloidal crystals to high-crystalline ZSM-5. The products of 3DZ5_S/C and 3DZ5_S, which were severally transformed from the carbon-padded SiO2 colloidal crystals and the initial SiO2 colloidal crystals, exhibited not only a similar ordered structure and acidity but also higher crystallinity and more balanced meso-/micropore combination in comparison with 3DZ5_C obtained by the conventional confined space crystallization approach. All three synthesized 3DZ5 catalysts showed improved methanol-to-propylene performance than the commercially microporous ZSM-5 (CZ5), embodied in five times longer lifetime, higher propylene selectivity and Spropylene/Sethylene ratio (P/E), and superior coke toleration with lower formation rate of coke (Rcoke). Moreover, the 3DZ5_S catalyst in situ converted from SiO2 colloidal crystals presented the highest selectivities of propylene (42.51%) and light olefins (74.6%) among all three 3DZ5 catalysts. The high efficiency in synthesis and in situ utilization of SiO2 colloidal crystals demonstrate the proposed SC strategy to be more efficiently and eco-friendly for the high-yield production of not only 3DOm ZSM-5 but also other types of hierarchical zeolites.

Graphical abstract

Keywords

hierarchical zeolite / three-dimensionally ordered mesoporosity / ZSM-5 / solid conversion / methanol-to-propylene

Cite this article

Download citation ▾
Weilong Chun, Chenbiao Yang, Xu Wang, Xin Yang, Huiyong Chen. Solid-conversion synthesis of three-dimensionally ordered mesoporous ZSM-5 catalysts for the methanol-to-propylene reaction. Front. Chem. Sci. Eng., 2024, 18(8): 93 DOI:10.1007/s11705-024-2446-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Davis M E . Ordered porous materials for emerging applications. Nature, 2002, 417(6891): 813–821

[2]

Shamzhy M , Opanasenko M , Concepción P , Martínez A . New trends in tailoring active sites in zeolite-based catalysts. Chemical Society Reviews, 2019, 48(4): 1095–1149

[3]

Sun Q M , Wang N , Yu J H . Advances in catalytic applications of zeolite-supported metal catalysts. Advanced Materials, 2021, 33(51): 2104442

[4]

Liu X L , Wang C M , Zhou J , Liu C , Liu Z C , Shi J , Wang Y D , Teng J W , Xie Z K . Molecular transport in zeolite catalysts: depicting an integrated picture from macroscopic to microscopic scales. Chemical Society Reviews, 2022, 51(19): 8174–8200

[5]

Mallette A J , Seo S , Rimer J D . Synthesis strategies and design principles for nanosized and hierarchical zeolites. Nature Synthesis, 2022, 1(7): 521–534

[6]

Pérez-Ramírez J , Christensen C H , Egeblad K , Christensen C H , Groen J C . Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 2008, 37(11): 2530–2542

[7]

Xu S , Zhang X , Cheng D G , Chen F , Ren X . Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking. Frontiers of Chemical Science and Engineering, 2018, 12(4): 780–789

[8]

Mintova S , Jaber M , Valtchev V . Nanosized microporous crystals: emerging applications. Chemical Society Reviews, 2015, 44(20): 7207–7233

[9]

Chen L H , Sun M H , Wang Z , Yang W , Su B L . Hierarchically structured zeolites: from design to application. Chemical Reviews, 2020, 120(20): 11194–11294

[10]

Chen H Y , Yang M F , Shang W J , Tong Y , Liu B Y , Han X L , Zhang J B , Hao Q Q , Sun M , Ma X X . Organosilane surfactant-directed synthesis of hierarchical ZSM-5 zeolites with improved catalytic performance in methanol-to-propylene reaction. Industrial & Engineering Chemistry Research, 2018, 57(32): 10956–10966

[11]

Mendoza-castro M J , Jardim E D O , Trujillo C A , Linares N , Garciamartinez J . Hierarchical catalysts prepared by interzeolite transformation. Journal of the American Chemical Society, 2022, 144(11): 5163–5171

[12]

Wang C T , Fang W , Liu Z Q , Wang L , Liao Z W , Yang Y R , Li H J , Liu L , Zhou H , Qin X D . . Fischer-tropsch synthesis to olefins boosted by MFI zeolite nanosheets. Nature Nanotechnology, 2022, 17(7): 714–720

[13]

Verboekend D , Milina M , Mitchell S , Pérez-Ramírez J . Hierarchical zeolites by desilication: occurrence and catalytic impact of recrystallization and restructuring. Crystal Growth & Design, 2013, 13(11): 5025–5035

[14]

Li J J , Liu M , Guo X W , Xu S T , Wei Y X , Liu Z M , Song C S . Interconnected hierarchical ZSM-5 with tunable acidity prepared by a dealumination-realumination process: a superior MTP catalyst. ACS Applied Materials & Interfaces, 2017, 9(31): 26096–26106

[15]

Ivanova I I , Knyazeva E E . Micro-mesoporous materials obtained by zeolite recrystallization: synthesis, characterization and catalytic applications. Chemical Society Reviews, 2013, 42(9): 3671–3688

[16]

Wang Z P , Li C , Cho H J , Kung S C , Snyder M A , Fan W . Direct, single-step synthesis of hierarchical zeolites without secondary templating. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(3): 1298–1305

[17]

Choi M , Cho H S , Srivastava R , Venkatesan C , Choi D H , Ryoo R . Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials, 2006, 5(9): 718–723

[18]

Choi M , Na K , Kim J , Sakamoto Y , Ryoo R . Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249

[19]

Hartmann M . Hierarchical zeolites: a proven strategy to combine shape selectivity with efficient mass transport. Angewandte Chemie International Edition, 2004, 43(44): 5880–5882

[20]

Dai H , Shen Y F , Yang T M , Lee C S , Fu D L , Agarwal A , Le T T , Tsapatsis M , Palmer J C , Weckhuysen B M . . Finned zeolite catalysts. Nature Materials, 2020, 19(10): 1074–1080

[21]

Zhang X Y , Liu D X , Xu D D , Asahina S , Cychosz K A , Agrawal K V , Al Wahedi Y , Bhan A , Al Hashimi S , Terasaki O . . Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science, 2012, 336(6089): 1684–1687

[22]

Fan W , Snyder M A , Kumar S , Lee P S , Yoo W C , Mccormick A V , Penn R L , Stein A , Tsapatsis M . Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nature Materials, 2008, 7(12): 984–991

[23]

Valtchev V , Majano G , Mintova S , Pérez-Ramírez J . Tailored crystalline microporous materials by post-synthesis modification. Chemical Society Reviews, 2013, 42(1): 263–290

[24]

Chen H Y , Shang W J , Yang C B , Liu B Y , Dai C Y , Zhang J B , Hao Q Q , Sun M , Ma X X . Epitaxial growth of layered-bulky ZSM-5 hybrid catalysts for the methanol-to-propylene process. Industrial & Engineering Chemistry Research, 2019, 58(4): 1580–1589

[25]

Kim S , Park G , Woo M H , Kwak G , Kim S K . Control of hierarchical structure and framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on methanol conversion. ACS Catalysis, 2019, 9(4): 2880–2892

[26]

Mohamed H O , Parsapur R K , Hita I , Ramírez A , Huang K W , Gascon J , Castaño P . Stable and reusable hierarchical ZSM-5 zeolite with superior performance for olefin oligomerization when partially coked. Applied Catalysis B: Environmental, 2022, 316: 121582

[27]

Chen H Y , Wydra J , Zhang X Y , Lee P S , Wang Z P , Fan W , Tsapatsis M . Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. Journal of the American Chemical Society, 2011, 133(32): 12390–12393

[28]

Wang J , Yang M F , Shang W J , Su X P , Hao Q Q , Chen H Y , Ma X X . Synthesis, characterization, and catalytic application of hierarchical SAPO-34 zeolite with three-dimensionally ordered mesoporous-imprinted structure. Microporous and Mesoporous Materials, 2017, 252: 10–16

[29]

Cho H J , Dornath P , Fan W . Synthesis of hierarchical Sn-MFI as lewis acid catalysts for isomerization of cellulosic sugars. ACS Catalysis, 2014, 4(6): 2029–2037

[30]

You Q , Wang X , Wu Y S , Bi C Y , Yang X , Sun M , Zhang J B , Hao Q Q , Chen H Y , Ma X X . Hierarchical Ti-beta with a three-dimensional ordered mesoporosity for catalytic epoxidation of bulky cyclic olefins. New Journal of Chemistry, 2021, 45(23): 10303–10314

[31]

Chen H Y , Lee P S , Zhang X Y , Lu D . Structure replication and growth development of three-dimensionally ordered mesoporous-imprinted zeolites during confined growth. Journal of Materials Research, 2013, 28(10): 1356–1364

[32]

Wang Z P , Dornath P , Chang C C , Chen H Y , Fan W . Confined synthesis of three-dimensionally ordered mesoporous-imprinted zeolites with tunable morphology and Si/Al ratio. Microporous and Mesoporous Materials, 2013, 181: 8–16

[33]

Khare R , Bhan A . Mechanistic studies of methanol-to-hydrocarbons conversion on diffusion-free MFI samples. Journal of Catalysis, 2015, 329: 218–228

[34]

Fernández-Reyes B , Morales-Jiménez S , Sánchez-Marrero G , Muñoz-Senmache J C , Hernández-Maldonado A J . Hierarchical three-dimensionally ordered mesoporous carbon (3DOm) zeolite composites for the adsorption of contaminants of emerging concern. Journal of Hazardous Materials Letters, 2021, 2: 100017

[35]

Lee P S , Zhang X Y , Stoeger J A , Malek A , Fan W , Kumar S , Yoo W C , Al Hashimi S , Penn R L , Stein A . . Sub-40 nm zeolite suspensions via disassembly of three-dimensionally ordered mesoporous-imprinted silicalite-1. Journal of the American Chemical Society, 2011, 133(3): 493–502

[36]

Mintova S , Hölzl M , Valtchev V , Mihailova B , Bouizi Y , Bein T . Closely packed zeolite nanocrystals obtained via transformation of porous amorphous silica. Chemistry of Materials, 2004, 16(25): 5452–5459

[37]

Han D Z , Yang D Y , Bi C Y , Zhang G Q , Yang F , Hao Q Q , Zhang J B , Chen H Y , Ma X X . Dry-gel conversion synthesis of SAPO-14 zeolites for the selective conversion of methanol to propylene. Inorganic Chemistry Frontiers, 2023, 10(21): 6193–6203

[38]

Davis T M , Snyder M A , Krohn J E , Tsapatsis M . Nanoparticles in lysine-silica sols. Chemistry of Materials, 2006, 18(25): 5814–5816

[39]

Pérez-Ramírez J , Verboekend D , Bonilla A , Abelló S . Zeolite catalysts with tunable hierarchy factor by pore-growth moderators. Advanced Functional Materials, 2009, 19(24): 3972–3979

[40]

Zhao X B , Hong Y , Wang L Y , Fan D , Yan N N , Liu X N , Tian P , Guo X W , Liu Z M . External surface modification of as-made ZSM-5 and their catalytic performance in the methanol to propylene reaction. Chinese Journal of Catalysis, 2018, 39(8): 1418–1426

[41]

Ramesh K , Jie C , Han Y F , Borgna A . Synthesis, characterization, and catalytic activity of phosphorus modified H-ZSM-5 catalysts in selective ethanol dehydration. Industrial & Engineering Chemistry Research, 2010, 49(9): 4080–4090

[42]

Zhang J X , Zhou A , Gawande K , Li G X , Shang S J , Dai C Y , Fan W , Han Y , Song C S , Ren L M . . B-axis-oriented ZSM-5 nanosheets for efficient alkylation of benzene with methanol: synergy of acid sites and diffusion. ACS Catalysis, 2023, 13(6): 3794–3805

[43]

Li J H , Wang Y N , Jia W Z , Xi Z W , Chen H H , Zhu Z R , Hu Z H . Effect of external surface of HZSM-5 zeolite on product distribution in the conversion of methanol to hydrocarbons. Journal of Energy Chemistry, 2014, 23(6): 771–780

[44]

Chang C C , Teixeira A R , Li C , Dauenhauer P J , Fan W . Enhanced molecular transport in hierarchical silicalite-1. Langmuir, 2013, 29(45): 13943–13950

[45]

Sun M H , Zhou J , Hu Z Y , Chen L H , Li L Y , Wang Y D , Xie Z K , Turner S , Van Tendeloo G , Hasan T . . Hierarchical zeolite single-crystal reactor for excellent catalytic efficiency. Matter, 2020, 3(4): 1226–1245

[46]

Beheshti M S , Behzad M , Ahmadpour J , Arabi H . Modification of H-[B]-ZSM-5 zeolite for methanol to propylene (MTP) conversion: investigation of extrusion and steaming treatments on physicochemical characteristics and catalytic performance. Microporous and Mesoporous Materials, 2020, 291: 109699

[47]

Zhang Y P , Li M G , Xing E H , Luo Y B , Shu X T . Protective desilication of highly siliceous H-ZSM-5 by sole tetraethylammonium hydroxide for the methanol to propylene (MTP) reaction. RSC Advances, 2018, 8(66): 37842–37854

[48]

Wu X Q , Wei Y X , Liu Z M . Dynamic catalytic mechanism of the methanol-to-hydrocarbons reaction over zeolites. Accounts of Chemical Research, 2023, 56(14): 2001–2014

[49]

Zhang M Z , Xu S T , Wei Y X , Li J Z , Wang J B , Zhang W N , Gao S S , Liu Z M . Changing the balance of the MTO reaction dual-cycle mechanism: reactions over ZSM-5 with varying contact times. Chinese Journal of Catalysis, 2016, 37(8): 1413–1422

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1294KB)

Supplementary files

FCE-24004-OF-CW_suppl_1

1651

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/