Solid-conversion synthesis of three-dimensionally ordered mesoporous ZSM-5 catalysts for the methanol-to-propylene reaction

Weilong Chun, Chenbiao Yang, Xu Wang, Xin Yang, Huiyong Chen

PDF(1294 KB)
PDF(1294 KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (8) : 93. DOI: 10.1007/s11705-024-2446-9
RESEARCH ARTICLE

Solid-conversion synthesis of three-dimensionally ordered mesoporous ZSM-5 catalysts for the methanol-to-propylene reaction

Author information +
History +

Abstract

A facile synthesis of hierarchical ZSM-5 with the three-dimensionally ordered mesoporosity (3DOm ZSM-5) was achieved by solid conversion (SC) of SiO2 colloidal crystals to high-crystalline ZSM-5. The products of 3DZ5_S/C and 3DZ5_S, which were severally transformed from the carbon-padded SiO2 colloidal crystals and the initial SiO2 colloidal crystals, exhibited not only a similar ordered structure and acidity but also higher crystallinity and more balanced meso-/micropore combination in comparison with 3DZ5_C obtained by the conventional confined space crystallization approach. All three synthesized 3DZ5 catalysts showed improved methanol-to-propylene performance than the commercially microporous ZSM-5 (CZ5), embodied in five times longer lifetime, higher propylene selectivity and Spropylene/Sethylene ratio (P/E), and superior coke toleration with lower formation rate of coke (Rcoke). Moreover, the 3DZ5_S catalyst in situ converted from SiO2 colloidal crystals presented the highest selectivities of propylene (42.51%) and light olefins (74.6%) among all three 3DZ5 catalysts. The high efficiency in synthesis and in situ utilization of SiO2 colloidal crystals demonstrate the proposed SC strategy to be more efficiently and eco-friendly for the high-yield production of not only 3DOm ZSM-5 but also other types of hierarchical zeolites.

Graphical abstract

Keywords

hierarchical zeolite / three-dimensionally ordered mesoporosity / ZSM-5 / solid conversion / methanol-to-propylene

Cite this article

Download citation ▾
Weilong Chun, Chenbiao Yang, Xu Wang, Xin Yang, Huiyong Chen. Solid-conversion synthesis of three-dimensionally ordered mesoporous ZSM-5 catalysts for the methanol-to-propylene reaction. Front. Chem. Sci. Eng., 2024, 18(8): 93 https://doi.org/10.1007/s11705-024-2446-9

References

[1]
Davis M E . Ordered porous materials for emerging applications. Nature, 2002, 417(6891): 813–821
CrossRef Google scholar
[2]
Shamzhy M , Opanasenko M , Concepción P , Martínez A . New trends in tailoring active sites in zeolite-based catalysts. Chemical Society Reviews, 2019, 48(4): 1095–1149
CrossRef Google scholar
[3]
Sun Q M , Wang N , Yu J H . Advances in catalytic applications of zeolite-supported metal catalysts. Advanced Materials, 2021, 33(51): 2104442
CrossRef Google scholar
[4]
Liu X L , Wang C M , Zhou J , Liu C , Liu Z C , Shi J , Wang Y D , Teng J W , Xie Z K . Molecular transport in zeolite catalysts: depicting an integrated picture from macroscopic to microscopic scales. Chemical Society Reviews, 2022, 51(19): 8174–8200
CrossRef Google scholar
[5]
Mallette A J , Seo S , Rimer J D . Synthesis strategies and design principles for nanosized and hierarchical zeolites. Nature Synthesis, 2022, 1(7): 521–534
CrossRef Google scholar
[6]
Pérez-Ramírez J , Christensen C H , Egeblad K , Christensen C H , Groen J C . Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 2008, 37(11): 2530–2542
CrossRef Google scholar
[7]
Xu S , Zhang X , Cheng D G , Chen F , Ren X . Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking. Frontiers of Chemical Science and Engineering, 2018, 12(4): 780–789
CrossRef Google scholar
[8]
Mintova S , Jaber M , Valtchev V . Nanosized microporous crystals: emerging applications. Chemical Society Reviews, 2015, 44(20): 7207–7233
CrossRef Google scholar
[9]
Chen L H , Sun M H , Wang Z , Yang W , Su B L . Hierarchically structured zeolites: from design to application. Chemical Reviews, 2020, 120(20): 11194–11294
CrossRef Google scholar
[10]
Chen H Y , Yang M F , Shang W J , Tong Y , Liu B Y , Han X L , Zhang J B , Hao Q Q , Sun M , Ma X X . Organosilane surfactant-directed synthesis of hierarchical ZSM-5 zeolites with improved catalytic performance in methanol-to-propylene reaction. Industrial & Engineering Chemistry Research, 2018, 57(32): 10956–10966
CrossRef Google scholar
[11]
Mendoza-castro M J , Jardim E D O , Trujillo C A , Linares N , Garciamartinez J . Hierarchical catalysts prepared by interzeolite transformation. Journal of the American Chemical Society, 2022, 144(11): 5163–5171
CrossRef Google scholar
[12]
Wang C T , Fang W , Liu Z Q , Wang L , Liao Z W , Yang Y R , Li H J , Liu L , Zhou H , Qin X D . . Fischer-tropsch synthesis to olefins boosted by MFI zeolite nanosheets. Nature Nanotechnology, 2022, 17(7): 714–720
CrossRef Google scholar
[13]
Verboekend D , Milina M , Mitchell S , Pérez-Ramírez J . Hierarchical zeolites by desilication: occurrence and catalytic impact of recrystallization and restructuring. Crystal Growth & Design, 2013, 13(11): 5025–5035
CrossRef Google scholar
[14]
Li J J , Liu M , Guo X W , Xu S T , Wei Y X , Liu Z M , Song C S . Interconnected hierarchical ZSM-5 with tunable acidity prepared by a dealumination-realumination process: a superior MTP catalyst. ACS Applied Materials & Interfaces, 2017, 9(31): 26096–26106
CrossRef Google scholar
[15]
Ivanova I I , Knyazeva E E . Micro-mesoporous materials obtained by zeolite recrystallization: synthesis, characterization and catalytic applications. Chemical Society Reviews, 2013, 42(9): 3671–3688
CrossRef Google scholar
[16]
Wang Z P , Li C , Cho H J , Kung S C , Snyder M A , Fan W . Direct, single-step synthesis of hierarchical zeolites without secondary templating. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(3): 1298–1305
CrossRef Google scholar
[17]
Choi M , Cho H S , Srivastava R , Venkatesan C , Choi D H , Ryoo R . Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials, 2006, 5(9): 718–723
CrossRef Google scholar
[18]
Choi M , Na K , Kim J , Sakamoto Y , Ryoo R . Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249
CrossRef Google scholar
[19]
Hartmann M . Hierarchical zeolites: a proven strategy to combine shape selectivity with efficient mass transport. Angewandte Chemie International Edition, 2004, 43(44): 5880–5882
CrossRef Google scholar
[20]
Dai H , Shen Y F , Yang T M , Lee C S , Fu D L , Agarwal A , Le T T , Tsapatsis M , Palmer J C , Weckhuysen B M . . Finned zeolite catalysts. Nature Materials, 2020, 19(10): 1074–1080
CrossRef Google scholar
[21]
Zhang X Y , Liu D X , Xu D D , Asahina S , Cychosz K A , Agrawal K V , Al Wahedi Y , Bhan A , Al Hashimi S , Terasaki O . . Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science, 2012, 336(6089): 1684–1687
CrossRef Google scholar
[22]
Fan W , Snyder M A , Kumar S , Lee P S , Yoo W C , Mccormick A V , Penn R L , Stein A , Tsapatsis M . Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nature Materials, 2008, 7(12): 984–991
CrossRef Google scholar
[23]
Valtchev V , Majano G , Mintova S , Pérez-Ramírez J . Tailored crystalline microporous materials by post-synthesis modification. Chemical Society Reviews, 2013, 42(1): 263–290
CrossRef Google scholar
[24]
Chen H Y , Shang W J , Yang C B , Liu B Y , Dai C Y , Zhang J B , Hao Q Q , Sun M , Ma X X . Epitaxial growth of layered-bulky ZSM-5 hybrid catalysts for the methanol-to-propylene process. Industrial & Engineering Chemistry Research, 2019, 58(4): 1580–1589
CrossRef Google scholar
[25]
Kim S , Park G , Woo M H , Kwak G , Kim S K . Control of hierarchical structure and framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on methanol conversion. ACS Catalysis, 2019, 9(4): 2880–2892
CrossRef Google scholar
[26]
Mohamed H O , Parsapur R K , Hita I , Ramírez A , Huang K W , Gascon J , Castaño P . Stable and reusable hierarchical ZSM-5 zeolite with superior performance for olefin oligomerization when partially coked. Applied Catalysis B: Environmental, 2022, 316: 121582
CrossRef Google scholar
[27]
Chen H Y , Wydra J , Zhang X Y , Lee P S , Wang Z P , Fan W , Tsapatsis M . Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. Journal of the American Chemical Society, 2011, 133(32): 12390–12393
CrossRef Google scholar
[28]
Wang J , Yang M F , Shang W J , Su X P , Hao Q Q , Chen H Y , Ma X X . Synthesis, characterization, and catalytic application of hierarchical SAPO-34 zeolite with three-dimensionally ordered mesoporous-imprinted structure. Microporous and Mesoporous Materials, 2017, 252: 10–16
CrossRef Google scholar
[29]
Cho H J , Dornath P , Fan W . Synthesis of hierarchical Sn-MFI as lewis acid catalysts for isomerization of cellulosic sugars. ACS Catalysis, 2014, 4(6): 2029–2037
CrossRef Google scholar
[30]
You Q , Wang X , Wu Y S , Bi C Y , Yang X , Sun M , Zhang J B , Hao Q Q , Chen H Y , Ma X X . Hierarchical Ti-beta with a three-dimensional ordered mesoporosity for catalytic epoxidation of bulky cyclic olefins. New Journal of Chemistry, 2021, 45(23): 10303–10314
CrossRef Google scholar
[31]
Chen H Y , Lee P S , Zhang X Y , Lu D . Structure replication and growth development of three-dimensionally ordered mesoporous-imprinted zeolites during confined growth. Journal of Materials Research, 2013, 28(10): 1356–1364
CrossRef Google scholar
[32]
Wang Z P , Dornath P , Chang C C , Chen H Y , Fan W . Confined synthesis of three-dimensionally ordered mesoporous-imprinted zeolites with tunable morphology and Si/Al ratio. Microporous and Mesoporous Materials, 2013, 181: 8–16
CrossRef Google scholar
[33]
Khare R , Bhan A . Mechanistic studies of methanol-to-hydrocarbons conversion on diffusion-free MFI samples. Journal of Catalysis, 2015, 329: 218–228
CrossRef Google scholar
[34]
Fernández-Reyes B , Morales-Jiménez S , Sánchez-Marrero G , Muñoz-Senmache J C , Hernández-Maldonado A J . Hierarchical three-dimensionally ordered mesoporous carbon (3DOm) zeolite composites for the adsorption of contaminants of emerging concern. Journal of Hazardous Materials Letters, 2021, 2: 100017
CrossRef Google scholar
[35]
Lee P S , Zhang X Y , Stoeger J A , Malek A , Fan W , Kumar S , Yoo W C , Al Hashimi S , Penn R L , Stein A . . Sub-40 nm zeolite suspensions via disassembly of three-dimensionally ordered mesoporous-imprinted silicalite-1. Journal of the American Chemical Society, 2011, 133(3): 493–502
CrossRef Google scholar
[36]
Mintova S , Hölzl M , Valtchev V , Mihailova B , Bouizi Y , Bein T . Closely packed zeolite nanocrystals obtained via transformation of porous amorphous silica. Chemistry of Materials, 2004, 16(25): 5452–5459
CrossRef Google scholar
[37]
Han D Z , Yang D Y , Bi C Y , Zhang G Q , Yang F , Hao Q Q , Zhang J B , Chen H Y , Ma X X . Dry-gel conversion synthesis of SAPO-14 zeolites for the selective conversion of methanol to propylene. Inorganic Chemistry Frontiers, 2023, 10(21): 6193–6203
CrossRef Google scholar
[38]
Davis T M , Snyder M A , Krohn J E , Tsapatsis M . Nanoparticles in lysine-silica sols. Chemistry of Materials, 2006, 18(25): 5814–5816
CrossRef Google scholar
[39]
Pérez-Ramírez J , Verboekend D , Bonilla A , Abelló S . Zeolite catalysts with tunable hierarchy factor by pore-growth moderators. Advanced Functional Materials, 2009, 19(24): 3972–3979
CrossRef Google scholar
[40]
Zhao X B , Hong Y , Wang L Y , Fan D , Yan N N , Liu X N , Tian P , Guo X W , Liu Z M . External surface modification of as-made ZSM-5 and their catalytic performance in the methanol to propylene reaction. Chinese Journal of Catalysis, 2018, 39(8): 1418–1426
CrossRef Google scholar
[41]
Ramesh K , Jie C , Han Y F , Borgna A . Synthesis, characterization, and catalytic activity of phosphorus modified H-ZSM-5 catalysts in selective ethanol dehydration. Industrial & Engineering Chemistry Research, 2010, 49(9): 4080–4090
CrossRef Google scholar
[42]
Zhang J X , Zhou A , Gawande K , Li G X , Shang S J , Dai C Y , Fan W , Han Y , Song C S , Ren L M . . B-axis-oriented ZSM-5 nanosheets for efficient alkylation of benzene with methanol: synergy of acid sites and diffusion. ACS Catalysis, 2023, 13(6): 3794–3805
CrossRef Google scholar
[43]
Li J H , Wang Y N , Jia W Z , Xi Z W , Chen H H , Zhu Z R , Hu Z H . Effect of external surface of HZSM-5 zeolite on product distribution in the conversion of methanol to hydrocarbons. Journal of Energy Chemistry, 2014, 23(6): 771–780
CrossRef Google scholar
[44]
Chang C C , Teixeira A R , Li C , Dauenhauer P J , Fan W . Enhanced molecular transport in hierarchical silicalite-1. Langmuir, 2013, 29(45): 13943–13950
CrossRef Google scholar
[45]
Sun M H , Zhou J , Hu Z Y , Chen L H , Li L Y , Wang Y D , Xie Z K , Turner S , Van Tendeloo G , Hasan T . . Hierarchical zeolite single-crystal reactor for excellent catalytic efficiency. Matter, 2020, 3(4): 1226–1245
CrossRef Google scholar
[46]
Beheshti M S , Behzad M , Ahmadpour J , Arabi H . Modification of H-[B]-ZSM-5 zeolite for methanol to propylene (MTP) conversion: investigation of extrusion and steaming treatments on physicochemical characteristics and catalytic performance. Microporous and Mesoporous Materials, 2020, 291: 109699
CrossRef Google scholar
[47]
Zhang Y P , Li M G , Xing E H , Luo Y B , Shu X T . Protective desilication of highly siliceous H-ZSM-5 by sole tetraethylammonium hydroxide for the methanol to propylene (MTP) reaction. RSC Advances, 2018, 8(66): 37842–37854
CrossRef Google scholar
[48]
Wu X Q , Wei Y X , Liu Z M . Dynamic catalytic mechanism of the methanol-to-hydrocarbons reaction over zeolites. Accounts of Chemical Research, 2023, 56(14): 2001–2014
CrossRef Google scholar
[49]
Zhang M Z , Xu S T , Wei Y X , Li J Z , Wang J B , Zhang W N , Gao S S , Liu Z M . Changing the balance of the MTO reaction dual-cycle mechanism: reactions over ZSM-5 with varying contact times. Chinese Journal of Catalysis, 2016, 37(8): 1413–1422
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21978238), the Natural Science Foundation of Shaanxi Provincial Department of Education (Grant No. 21JY041) and the Key R&D Program of Shaanxi Province (Grant No. 2024GX-YBXM-426)

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://dx.doi.org/10.1007/s11705-024-2446-9 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(1294 KB)

Accesses

Citations

Detail

Sections
Recommended

/