Synthesis of tetrahedrally coordinated CoO for higher alcohol synthesis directly from syngas

  • Zhuoshi Li 1,2 ,
  • Han Yang 1 ,
  • Xiaofeng Pei 1 ,
  • Jiahui Li 1 ,
  • Jing Lv 1,3 ,
  • Shouying Huang 1,3 ,
  • Yue Wang , 1,2,3 ,
  • Xinbin Ma 1,3
Expand
  • 1. Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • 2. Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
  • 3. Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
yuewang@tju.edu.cn

Received date: 31 Dec 2023

Accepted date: 13 Mar 2024

Copyright

2024 Higher Education Press

Abstract

Higher alcohol synthesis directly from syngas is highly desirable as one of the efficient non-petroleum energy conversion routes. Co0–CoO catalysts showed great potential for this reaction, but the alcohol selectivity still needs to be improved and the crystal structure effect of CoO on catalytic behaviors lacks investigation. Here, a series of tetrahedrally coordinated CoO polymorphs were prepared by a thermal decomposition method, which consisted of wurtzite CoO and zinc blende CoO with varied contents. After diluting with SiO2, the catalyst showed excellent performance for higher alcohol synthesis with ROH selectivity of 45.8% and higher alcohol distribution of 84.1 wt % under the CO conversion of 38.0%. With increasing the content of wurtzite CoO, the Co0/Co2+ ratio gradually increased in the spent catalysts, while the proportion of highly active hexagonal close packed cobalt in Co0 decreased, leading to first decreased then increased CO conversion. Moreover, the higher content of zinc blende CoO in fresh catalyst facilitated the retention of more Co2+ sites in spent catalysts, promoting the ROH selectivity but slightly decreasing the distribution of higher alcohols. The catalyst with 40% wurtzite CoO obtained the optimal performance with a space time yield toward higher alcohols of 7.9 mmol·gcat–1·h–1.

Cite this article

Zhuoshi Li , Han Yang , Xiaofeng Pei , Jiahui Li , Jing Lv , Shouying Huang , Yue Wang , Xinbin Ma . Synthesis of tetrahedrally coordinated CoO for higher alcohol synthesis directly from syngas[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(8) : 92 . DOI: 10.1007/s11705-024-2448-7

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

We gratefully acknowledge support from the National Natural Science Foundation of China (Grant Nos. 22108199, 22278317, and 22022811) and the China Postdoctoral Science Foundation (Grant No. 2021TQ0239). We also gratefully acknowledge the support from the Haihe Laboratory of Sustainable Chemical Transformations.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2448-7 and is accessible for authorized users.
1
Lin T , Yu F , An Y , Qin T , Li L , Gong K , Zhong L , Sun Y . Cobalt carbide nanocatalysts for efficient syngas conversion to value-added chemicals with high selectivity. Accounts of Chemical Research, 2021, 54(8): 1961–1971

DOI

2
Gupta M , Smith M , Spivey J . Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on Cu-based catalysts. ACS Catalysis, 2011, 1(6): 641–656

DOI

3
Fang K , Li D , Lin M , Xiang M , Wei W , Sun Y . A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas. Catalysis Today, 2009, 147(2): 133–138

DOI

4
Xue X , Weng Y , Yang S , Meng S , Sun Q , Zhang Y . Research progress of catalysts for synthesis of low-carbon alcohols from synthesis gas. RSC Advances, 2021, 11(11): 6163–6172

DOI

5
Luk H , Mondelli C , Ferre D , Stewart J , Perez-Ramirez J . Status and prospects in higher alcohols synthesis from syngas. Chemical Society Reviews, 2017, 46(5): 1358–1426

DOI

6
Fan Z , Chen W , Pan X , Bao X . Catalytic conversion of syngas into C2 oxygenates over Rh-based catalysts-effect of carbon supports. Catalysis Today, 2009, 147(2): 86–93

DOI

7
Zeng Z , Li Z , Kang L , Han X , Qi Z , Guo S , Wang J , Rykov A , Lv J , Wang Y . . A monodisperse ε′-(CoxFe1−x)2.2C bimetallic carbide catalyst for direct conversion of syngas to higher alcohols. ACS Catalysis, 2022, 12(10): 6016–6028

DOI

8
Guo S , Li Z , Yin R , Li J , Zeng Z , Hu Z , Luo G , Lv J , Huang S , Wang Y . . Oxygen vacancy over CoMnOx catalysts boosts selective ethanol production in the higher alcohol synthesis from syngas. ACS Catalysis, 2023, 13(21): 14404–14414

DOI

9
Liu S , Zhao Q , Han X , Wei C , Liang H , Wang Y , Huang S , Ma X . Proximity effect of Fe–Zn bimetallic catalysts on CO2 hydrogenation performance. Transactions of Tianjin University, 2023, 29(4): 293–303

DOI

10
Torshizi H O , Nakhaei Pour A , Mohammadi A , Zamani Y , Kamali Shahri S M . Fischer-Tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: role of support and metal nanoparticle size on catalyst activity and products selectivity. Frontiers of Chemical Science and Engineering, 2021, 15(2): 299–309

DOI

11
Du H , Jiang M , Zhao M , Ma X , Xu Z , Zhao Z . Activity and selectivity enhancement of silica supported cobalt catalyst for alcohols production from syngas via Fischer-Tropsch synthesis. International Journal of Hydrogen Energy, 2022, 47(7): 4559–4567

DOI

12
Guo L , Liu P , Gong K , Qi X , Lin T . Effect of metal promoters on catalytic performance of Co/AC for higher alcohols synthesis from syngas. Journal of Fuel Chemistry & Technology, 2023, 51(11): 1663–1672

DOI

13
Cui W , Li Y , Zhang H , Wei Z , Gao B , Dai J , Hu T . In situ encapsulated Co/MnOx nanoparticles inside quasi-MOF-74 for the higher alcohols synthesis from syngas. Applied Catalysis B: Environmental, 2020, 278: 119262

DOI

14
Chen T , Su J , Zhang Z , Cao C , Wang X , Si R , Liu X , Shi B , Xu J , Han Y . Structure evolution of Co–CoOx interface for higher alcohol synthesis from syngas over Co/CeO2 catalysts. ACS Catalysis, 2018, 8(9): 8606–8617

DOI

15
Have I , Kromwijk J , Monai M , Ferri D , Sterk E , Meirer F , Weckhuysen B . Uncovering the reaction mechanism behind CoO as active phase for CO2 hydrogenation. Nature Communications, 2022, 13(1): 324

DOI

16
Wang M , Zhang G , Zhu J , Li W , Wang J , Bian K , Liu Y , Ding F , Song C , Guo X . Unraveling the tunable selectivity on cobalt oxide and metallic cobalt sites for CO2 hydrogenation. Chemical Engineering Journal, 2022, 446: 137217

DOI

17
Sun W , Kuang T , Wei G , Li Y , Liu Y , Lyu S , Zhang Y , Li J , Wang L . Design and construction of size-controlled CoO/CS catalysts for Fischer-Tropsch synthesis. Nano Research, 2024, 17(4): 2520–2527

DOI

18
Lyu S , Wang L , Zhang J , Liu C , Sun J , Peng B , Wang Y , Rappé K , Zhang Y , Li J . . Role of active phase in Fischer-Tropsch synthesis: experimental evidence of CO activation over single-phase cobalt catalysts. ACS Catalysis, 2018, 8(9): 7787–7798

DOI

19
Li Z , Luo G , Hu Z , Pei X , Zeng Z , Guo S , Lv J , Huang S , Wang Y , Ma X . Zinc blende CoO as an efficient CO non-dissociative adsorption site for direct synthesis of higher alcohols from syngas. ACS Catalysis, 2024, 14(4): 2181–2193

DOI

20
Golosovsky I , Estrader M , López-Ortega A , Roca A , López-Conesa L , Del Corro E , Estradé S , Peiró F , Puente-Orench I , Nogués J . Zinc blende and wurtzite CoO polymorph nanoparticles: rational synthesis and commensurate and incommensurate magnetic order. Applied Materials Today, 2019, 16: 322–331

DOI

21
Li Z , Zhong L , Yu F , An Y , Dai Y , Yang Y , Lin T , Li S , Wang H , Gao P . . Effects of sodium on the catalytic performance of CoMn catalysts for Fischer-Tropsch to olefin reactions. ACS Catalysis, 2017, 7(5): 3622–3631

DOI

22
Shi H , He X . Large-scale synthesis and magnetic properties of cubic CoO nanoparticles. Journal of Physics and Chemistry of Solids, 2012, 73(5): 646–650

DOI

23
Roca A , Golosovsky I , Winkler E , Lopez-Ortega A , Estrader M , Zysler R , Baro M , Nogues J . Unravelling the elusive antiferromagnetic order in wurtzite and zinc blende CoO polymorph nanoparticles. Small, 2018, 14(15): e1703963

DOI

24
Grimes R , Fitch A . Thermal decomposition of cobalt(II) acetate tetrahydrate studied with time-resolved neutron diffraction and thermogravimetric analysis. Journal of Materials Chemistry, 1991, 1(3): 461–468

DOI

25
Grimes R , Lagerlöf K . Polymorphs of cobalt oxide. Journal of the American Ceramic Society, 1991, 74(2): 270–273

DOI

26
Huang F , Banfield J . Size-dependent phase transformation kinetics in nanocrystalline ZnS. Journal of the American Chemical Society, 2005, 127(12): 4523–4529

DOI

27
Windisch C Jr , Exarhos G , Sharma S . Influence of temperature and electronic disorder on the Raman spectra of nickel cobalt oxides. Journal of Applied Physics, 2002, 92(9): 5572–5574

DOI

28
Ravindra A , Behera B , Padhan P . Laser induced structural phase transformation of cobalt oxides nanostructures. Journal of Nanoscience and Nanotechnology, 2014, 14(7): 5591–5595

DOI

29
Mo S , Zhang Q , Li S , Ren Q , Zhang M , Xue Y , Peng R , Xiao H , Chen Y , Ye D . Integrated cobalt oxide based nanoarray catalysts with hierarchical architectures: in situ Raman spectroscopy investigation on the carbon monoxide reaction mechanism. ChemCatChem, 2018, 10(14): 3012–3026

DOI

30
Xu J , Ji W , Wang X , Shu H , Shen Z , Tang S . Temperature dependence of the Raman scattering spectra of Zn/ZnO nanoparticles. Journal of Raman Spectroscopy, 1998, 29(7): 613–615

DOI

31
Wang P , Chen S , Bai Y , Gao X , Li X , Sun K , Xie H , Yang G , Han Y , Tan Y . Effect of the promoter and support on cobalt-based catalysts for higher alcohols synthesis through CO hydrogenation. Fuel, 2017, 195: 69–81

DOI

32
Yu Y , You S , Du J , Xing Z , Dai Y , Chen H , Cai Z , Ren N , Zou J . ZIF-67-derived CoO (tetrahedral Co2+)@nitrogen-doped porous carbon protected by oxygen vacancies-enriched SnO2 as highly active catalyst for oxygen reduction and Pt co-catalyst for methanol oxidation. Applied Catalysis B: Environmental, 2019, 259: 118043

DOI

33
Pei Y , Liu J , Zhao Y , Ding Y , Liu T , Dong W , Zhu H , Su H , Yan L , Li J . . High alcohols synthesis via Fischer-Tropsch reaction at cobalt metal/carbide interface. ACS Catalysis, 2015, 5(6): 3620–3624

DOI

34
Anton J , Nebel J , Göbel C , Gabrysch T , Song H , Froese C , Ruland H , Muhler M , Kaluza S . CO hydrogenation to higher alcohols over Cu–Co-based catalysts derived from hydrotalcite-type precursors. Topics in Catalysis, 2016, 59(15–16): 1361–1370

DOI

35
Luo G , Li Z , Liu Q , Guo S , Pei X , Lv J , Huang S , Wang Y , Ma X . Enhanced synthesis of C2+ alcohols from syngas over a Co–Co2C catalyst supported on mesoporous carbon-silica composites. Chemical Engineering Journal, 2023, 475: 146206

DOI

36
Cheng K , Subramanian V , Carvalho A , Ordomsky V , Wang Y , Khodakov A . The role of carbon pre-coating for the synthesis of highly efficient cobalt catalysts for Fischer-Tropsch synthesis. Journal of Catalysis, 2016, 337: 260–271

DOI

37
Qin T , Lin T , Qi X , Wang C , Li L , Tang Z , Zhong L , Sun Y . Tuning chemical environment and synergistic relay reaction to promote higher alcohols synthesis via syngas conversion. Applied Catalysis B: Environmental, 2021, 285: 119840

DOI

38
Zhao L , Mu X , Yu M , Fang K . A novel catalyst for higher alcohol synthesis from syngas: CoZn supported on MnAl oxide. Fuel Processing Technology, 2018, 177: 16–29

DOI

39
Liu Y , Jia L , Hou B , Sun D , Li D . Cobalt aluminate-modified alumina as a carrier for cobalt in Fischer-Tropsch synthesis. Applied Catalysis A: General, 2017, 530: 30–36

DOI

40
Wang J , Wang J , Huang X , Chen C , Ma Z , Jia L , Hou B , Li D . CoAl spinel oxide modified ordered mesoporous alumina supported cobalt-based catalysts for Fischer-Tropsch synthesis. International Journal of Hydrogen Energy, 2018, 43(29): 13122–13132

DOI

41
Kang N , Yang Q , An K , Li S , Zhang L , Liu Y . Mixed oxides of La–Ga–O modified Co/ZrO2 for higher alcohols synthesis from syngas. Catalysis Today, 2019, 330: 46–53

DOI

42
Wang T , Ding Y , Xiong J , Yan L , Zhu H , Lu Y , Lin L . Effect of vanadium promotion on activated carbon-supported cobalt catalysts in Fischer-Tropsch synthesis. Catalysis Letters, 2006, 107(1–2): 47–52

DOI

Outlines

/