Synthesis of tetrahedrally coordinated CoO for higher alcohol synthesis directly from syngas

Zhuoshi Li, Han Yang, Xiaofeng Pei, Jiahui Li, Jing Lv, Shouying Huang, Yue Wang, Xinbin Ma

PDF(2463 KB)
PDF(2463 KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (8) : 92. DOI: 10.1007/s11705-024-2448-7
RESEARCH ARTICLE

Synthesis of tetrahedrally coordinated CoO for higher alcohol synthesis directly from syngas

Author information +
History +

Abstract

Higher alcohol synthesis directly from syngas is highly desirable as one of the efficient non-petroleum energy conversion routes. Co0–CoO catalysts showed great potential for this reaction, but the alcohol selectivity still needs to be improved and the crystal structure effect of CoO on catalytic behaviors lacks investigation. Here, a series of tetrahedrally coordinated CoO polymorphs were prepared by a thermal decomposition method, which consisted of wurtzite CoO and zinc blende CoO with varied contents. After diluting with SiO2, the catalyst showed excellent performance for higher alcohol synthesis with ROH selectivity of 45.8% and higher alcohol distribution of 84.1 wt % under the CO conversion of 38.0%. With increasing the content of wurtzite CoO, the Co0/Co2+ ratio gradually increased in the spent catalysts, while the proportion of highly active hexagonal close packed cobalt in Co0 decreased, leading to first decreased then increased CO conversion. Moreover, the higher content of zinc blende CoO in fresh catalyst facilitated the retention of more Co2+ sites in spent catalysts, promoting the ROH selectivity but slightly decreasing the distribution of higher alcohols. The catalyst with 40% wurtzite CoO obtained the optimal performance with a space time yield toward higher alcohols of 7.9 mmol·gcat–1·h–1.

Graphical abstract

Keywords

higher alcohol synthesis / CO hydrogenation / wurtzite CoO / zinc blende CoO / hexagonal-closest-packed Co

Cite this article

Download citation ▾
Zhuoshi Li, Han Yang, Xiaofeng Pei, Jiahui Li, Jing Lv, Shouying Huang, Yue Wang, Xinbin Ma. Synthesis of tetrahedrally coordinated CoO for higher alcohol synthesis directly from syngas. Front. Chem. Sci. Eng., 2024, 18(8): 92 https://doi.org/10.1007/s11705-024-2448-7

References

[1]
Lin T , Yu F , An Y , Qin T , Li L , Gong K , Zhong L , Sun Y . Cobalt carbide nanocatalysts for efficient syngas conversion to value-added chemicals with high selectivity. Accounts of Chemical Research, 2021, 54(8): 1961–1971
CrossRef Google scholar
[2]
Gupta M , Smith M , Spivey J . Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on Cu-based catalysts. ACS Catalysis, 2011, 1(6): 641–656
CrossRef Google scholar
[3]
Fang K , Li D , Lin M , Xiang M , Wei W , Sun Y . A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas. Catalysis Today, 2009, 147(2): 133–138
CrossRef Google scholar
[4]
Xue X , Weng Y , Yang S , Meng S , Sun Q , Zhang Y . Research progress of catalysts for synthesis of low-carbon alcohols from synthesis gas. RSC Advances, 2021, 11(11): 6163–6172
CrossRef Google scholar
[5]
Luk H , Mondelli C , Ferre D , Stewart J , Perez-Ramirez J . Status and prospects in higher alcohols synthesis from syngas. Chemical Society Reviews, 2017, 46(5): 1358–1426
CrossRef Google scholar
[6]
Fan Z , Chen W , Pan X , Bao X . Catalytic conversion of syngas into C2 oxygenates over Rh-based catalysts-effect of carbon supports. Catalysis Today, 2009, 147(2): 86–93
CrossRef Google scholar
[7]
Zeng Z , Li Z , Kang L , Han X , Qi Z , Guo S , Wang J , Rykov A , Lv J , Wang Y . . A monodisperse ε′-(CoxFe1−x)2.2C bimetallic carbide catalyst for direct conversion of syngas to higher alcohols. ACS Catalysis, 2022, 12(10): 6016–6028
CrossRef Google scholar
[8]
Guo S , Li Z , Yin R , Li J , Zeng Z , Hu Z , Luo G , Lv J , Huang S , Wang Y . . Oxygen vacancy over CoMnOx catalysts boosts selective ethanol production in the higher alcohol synthesis from syngas. ACS Catalysis, 2023, 13(21): 14404–14414
CrossRef Google scholar
[9]
Liu S , Zhao Q , Han X , Wei C , Liang H , Wang Y , Huang S , Ma X . Proximity effect of Fe–Zn bimetallic catalysts on CO2 hydrogenation performance. Transactions of Tianjin University, 2023, 29(4): 293–303
CrossRef Google scholar
[10]
Torshizi H O , Nakhaei Pour A , Mohammadi A , Zamani Y , Kamali Shahri S M . Fischer-Tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: role of support and metal nanoparticle size on catalyst activity and products selectivity. Frontiers of Chemical Science and Engineering, 2021, 15(2): 299–309
CrossRef Google scholar
[11]
Du H , Jiang M , Zhao M , Ma X , Xu Z , Zhao Z . Activity and selectivity enhancement of silica supported cobalt catalyst for alcohols production from syngas via Fischer-Tropsch synthesis. International Journal of Hydrogen Energy, 2022, 47(7): 4559–4567
CrossRef Google scholar
[12]
Guo L , Liu P , Gong K , Qi X , Lin T . Effect of metal promoters on catalytic performance of Co/AC for higher alcohols synthesis from syngas. Journal of Fuel Chemistry & Technology, 2023, 51(11): 1663–1672
CrossRef Google scholar
[13]
Cui W , Li Y , Zhang H , Wei Z , Gao B , Dai J , Hu T . In situ encapsulated Co/MnOx nanoparticles inside quasi-MOF-74 for the higher alcohols synthesis from syngas. Applied Catalysis B: Environmental, 2020, 278: 119262
CrossRef Google scholar
[14]
Chen T , Su J , Zhang Z , Cao C , Wang X , Si R , Liu X , Shi B , Xu J , Han Y . Structure evolution of Co–CoOx interface for higher alcohol synthesis from syngas over Co/CeO2 catalysts. ACS Catalysis, 2018, 8(9): 8606–8617
CrossRef Google scholar
[15]
Have I , Kromwijk J , Monai M , Ferri D , Sterk E , Meirer F , Weckhuysen B . Uncovering the reaction mechanism behind CoO as active phase for CO2 hydrogenation. Nature Communications, 2022, 13(1): 324
CrossRef Google scholar
[16]
Wang M , Zhang G , Zhu J , Li W , Wang J , Bian K , Liu Y , Ding F , Song C , Guo X . Unraveling the tunable selectivity on cobalt oxide and metallic cobalt sites for CO2 hydrogenation. Chemical Engineering Journal, 2022, 446: 137217
CrossRef Google scholar
[17]
Sun W , Kuang T , Wei G , Li Y , Liu Y , Lyu S , Zhang Y , Li J , Wang L . Design and construction of size-controlled CoO/CS catalysts for Fischer-Tropsch synthesis. Nano Research, 2024, 17(4): 2520–2527
CrossRef Google scholar
[18]
Lyu S , Wang L , Zhang J , Liu C , Sun J , Peng B , Wang Y , Rappé K , Zhang Y , Li J . . Role of active phase in Fischer-Tropsch synthesis: experimental evidence of CO activation over single-phase cobalt catalysts. ACS Catalysis, 2018, 8(9): 7787–7798
CrossRef Google scholar
[19]
Li Z , Luo G , Hu Z , Pei X , Zeng Z , Guo S , Lv J , Huang S , Wang Y , Ma X . Zinc blende CoO as an efficient CO non-dissociative adsorption site for direct synthesis of higher alcohols from syngas. ACS Catalysis, 2024, 14(4): 2181–2193
CrossRef Google scholar
[20]
Golosovsky I , Estrader M , López-Ortega A , Roca A , López-Conesa L , Del Corro E , Estradé S , Peiró F , Puente-Orench I , Nogués J . Zinc blende and wurtzite CoO polymorph nanoparticles: rational synthesis and commensurate and incommensurate magnetic order. Applied Materials Today, 2019, 16: 322–331
CrossRef Google scholar
[21]
Li Z , Zhong L , Yu F , An Y , Dai Y , Yang Y , Lin T , Li S , Wang H , Gao P . . Effects of sodium on the catalytic performance of CoMn catalysts for Fischer-Tropsch to olefin reactions. ACS Catalysis, 2017, 7(5): 3622–3631
CrossRef Google scholar
[22]
Shi H , He X . Large-scale synthesis and magnetic properties of cubic CoO nanoparticles. Journal of Physics and Chemistry of Solids, 2012, 73(5): 646–650
CrossRef Google scholar
[23]
Roca A , Golosovsky I , Winkler E , Lopez-Ortega A , Estrader M , Zysler R , Baro M , Nogues J . Unravelling the elusive antiferromagnetic order in wurtzite and zinc blende CoO polymorph nanoparticles. Small, 2018, 14(15): e1703963
CrossRef Google scholar
[24]
Grimes R , Fitch A . Thermal decomposition of cobalt(II) acetate tetrahydrate studied with time-resolved neutron diffraction and thermogravimetric analysis. Journal of Materials Chemistry, 1991, 1(3): 461–468
CrossRef Google scholar
[25]
Grimes R , Lagerlöf K . Polymorphs of cobalt oxide. Journal of the American Ceramic Society, 1991, 74(2): 270–273
CrossRef Google scholar
[26]
Huang F , Banfield J . Size-dependent phase transformation kinetics in nanocrystalline ZnS. Journal of the American Chemical Society, 2005, 127(12): 4523–4529
CrossRef Google scholar
[27]
Windisch C Jr , Exarhos G , Sharma S . Influence of temperature and electronic disorder on the Raman spectra of nickel cobalt oxides. Journal of Applied Physics, 2002, 92(9): 5572–5574
CrossRef Google scholar
[28]
Ravindra A , Behera B , Padhan P . Laser induced structural phase transformation of cobalt oxides nanostructures. Journal of Nanoscience and Nanotechnology, 2014, 14(7): 5591–5595
CrossRef Google scholar
[29]
Mo S , Zhang Q , Li S , Ren Q , Zhang M , Xue Y , Peng R , Xiao H , Chen Y , Ye D . Integrated cobalt oxide based nanoarray catalysts with hierarchical architectures: in situ Raman spectroscopy investigation on the carbon monoxide reaction mechanism. ChemCatChem, 2018, 10(14): 3012–3026
CrossRef Google scholar
[30]
Xu J , Ji W , Wang X , Shu H , Shen Z , Tang S . Temperature dependence of the Raman scattering spectra of Zn/ZnO nanoparticles. Journal of Raman Spectroscopy, 1998, 29(7): 613–615
CrossRef Google scholar
[31]
Wang P , Chen S , Bai Y , Gao X , Li X , Sun K , Xie H , Yang G , Han Y , Tan Y . Effect of the promoter and support on cobalt-based catalysts for higher alcohols synthesis through CO hydrogenation. Fuel, 2017, 195: 69–81
CrossRef Google scholar
[32]
Yu Y , You S , Du J , Xing Z , Dai Y , Chen H , Cai Z , Ren N , Zou J . ZIF-67-derived CoO (tetrahedral Co2+)@nitrogen-doped porous carbon protected by oxygen vacancies-enriched SnO2 as highly active catalyst for oxygen reduction and Pt co-catalyst for methanol oxidation. Applied Catalysis B: Environmental, 2019, 259: 118043
CrossRef Google scholar
[33]
Pei Y , Liu J , Zhao Y , Ding Y , Liu T , Dong W , Zhu H , Su H , Yan L , Li J . . High alcohols synthesis via Fischer-Tropsch reaction at cobalt metal/carbide interface. ACS Catalysis, 2015, 5(6): 3620–3624
CrossRef Google scholar
[34]
Anton J , Nebel J , Göbel C , Gabrysch T , Song H , Froese C , Ruland H , Muhler M , Kaluza S . CO hydrogenation to higher alcohols over Cu–Co-based catalysts derived from hydrotalcite-type precursors. Topics in Catalysis, 2016, 59(15–16): 1361–1370
CrossRef Google scholar
[35]
Luo G , Li Z , Liu Q , Guo S , Pei X , Lv J , Huang S , Wang Y , Ma X . Enhanced synthesis of C2+ alcohols from syngas over a Co–Co2C catalyst supported on mesoporous carbon-silica composites. Chemical Engineering Journal, 2023, 475: 146206
CrossRef Google scholar
[36]
Cheng K , Subramanian V , Carvalho A , Ordomsky V , Wang Y , Khodakov A . The role of carbon pre-coating for the synthesis of highly efficient cobalt catalysts for Fischer-Tropsch synthesis. Journal of Catalysis, 2016, 337: 260–271
CrossRef Google scholar
[37]
Qin T , Lin T , Qi X , Wang C , Li L , Tang Z , Zhong L , Sun Y . Tuning chemical environment and synergistic relay reaction to promote higher alcohols synthesis via syngas conversion. Applied Catalysis B: Environmental, 2021, 285: 119840
CrossRef Google scholar
[38]
Zhao L , Mu X , Yu M , Fang K . A novel catalyst for higher alcohol synthesis from syngas: CoZn supported on MnAl oxide. Fuel Processing Technology, 2018, 177: 16–29
CrossRef Google scholar
[39]
Liu Y , Jia L , Hou B , Sun D , Li D . Cobalt aluminate-modified alumina as a carrier for cobalt in Fischer-Tropsch synthesis. Applied Catalysis A: General, 2017, 530: 30–36
CrossRef Google scholar
[40]
Wang J , Wang J , Huang X , Chen C , Ma Z , Jia L , Hou B , Li D . CoAl spinel oxide modified ordered mesoporous alumina supported cobalt-based catalysts for Fischer-Tropsch synthesis. International Journal of Hydrogen Energy, 2018, 43(29): 13122–13132
CrossRef Google scholar
[41]
Kang N , Yang Q , An K , Li S , Zhang L , Liu Y . Mixed oxides of La–Ga–O modified Co/ZrO2 for higher alcohols synthesis from syngas. Catalysis Today, 2019, 330: 46–53
CrossRef Google scholar
[42]
Wang T , Ding Y , Xiong J , Yan L , Zhu H , Lu Y , Lin L . Effect of vanadium promotion on activated carbon-supported cobalt catalysts in Fischer-Tropsch synthesis. Catalysis Letters, 2006, 107(1–2): 47–52
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

We gratefully acknowledge support from the National Natural Science Foundation of China (Grant Nos. 22108199, 22278317, and 22022811) and the China Postdoctoral Science Foundation (Grant No. 2021TQ0239). We also gratefully acknowledge the support from the Haihe Laboratory of Sustainable Chemical Transformations.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2448-7 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(2463 KB)

Accesses

Citations

Detail

Sections
Recommended

/