Siliceous mesocellular foam supported Cu catalysts for promoting non-thermal plasma activated CO2 hydrogenation toward methanol synthesis
Received date: 15 Dec 2023
Accepted date: 20 Jan 2024
Copyright
Electrified non-thermal plasma (NTP) catalytic hydrogenation is the promising alternative to the thermal counterparts, being able to be operated under mild conditions and compatible with green electricity/hydrogen. Rational design of the catalysts for such NTP-catalytic systems is one of the keys to improve the process efficiency. Here, we present the development of siliceous mesocellular foam (MCF) supported Cu catalysts for NTP-catalytic CO2 hydrogenation to methanol. The findings show that the pristine MCF support with high specific surface area and large mesopore of 784 m2·g−1 and ~8.5 nm could promote the plasma discharging and the diffusion of species through its framework, outperforming other control porous materials (viz., silicalite-1, SiO2, and SBA-15). Compared to the NTP system employing the bare MCF, the inclusion of Cu and Zn in MCF (i.e., Cu1Zn1/MCF) promoted the methanol formation of the NTP-catalytic system with a higher space-time yield of methanol at ~275 μmol·gcat−1·h−1 and a lower energy consumption of 26.4 kJ·−1 (conversely, ~225 μmol·gcat−1·h−1 and ~71 kJ·−1, respectively, for the bare MCF system at 10.1 kV). The findings suggest that inclusion of active metal sites (especially Zn species) could stabilize the CO2/CO-related intermediates to facilitate the surface reaction toward methanol formation.
Yi Chen , Shaowei Chen , Yan Shao , Cui Quan , Ningbo Gao , Xiaolei Fan , Huanhao Chen . Siliceous mesocellular foam supported Cu catalysts for promoting non-thermal plasma activated CO2 hydrogenation toward methanol synthesis[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(7) : 77 . DOI: 10.1007/s11705-024-2419-z
1 |
Ou Y , Roney C , Alsalam J , Calvin K , Creason J , Edmonds J , Fawcett A A , Kyle P , Narayan K , O’Rourke P .
|
2 |
Alamer A M , Ouyang M , Alshafei F H , Nadeem M A , Alsalik Y , Miller J T , Flytzani-Stephanopoulos M , Sykes E C H , Manousiouthakis V , Eagan N M . Design of dilute palladium-indium alloy catalysts for the selective hydrogenation of CO2 to methanol. ACS Catalysis, 2023, 13(15): 9987–9996
|
3 |
Saravanan A , Senthil Kumar P , Vo D V N , Jeevanantham S , Bhuvaneswari V , Anantha Narayanan V , Yaashikaa P R , Swetha S , Reshma B . A comprehensive review on different approaches for CO2 utilization and conversion pathways. Chemical Engineering Science, 2021, 236: 116515
|
4 |
Kim C , Yoo C-J , Oh H-S , Min B K , Lee U . Review of carbon dioxide utilization technologies and their potential for industrial application. Journal of CO2 Utilization, 2022, 65: 102239
|
5 |
Sun S , Sun H , Williams P T , Wu C . Recent advances in integrated CO2 capture and utilization: a review. Sustainable Energy & Fuels, 2021, 5(18): 4546–4559
|
6 |
Ye R P , Ding J , Gong W , Argyle M D , Zhong Q , Wang Y , Russell C K , Xu Z , Russell A G , Li Q , Fan M , Yao Y G . CO2 hydrogenation to high-value products via heterogeneous catalysis. Nature Communications, 2019, 10(1): 5698
|
7 |
Yang H , Zhang C , Gao P , Wang H , Li X , Zhong L , Wei W , Sun Y . A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catalysis Science & Technology, 2017, 7(20): 4580–4598
|
8 |
Meunier F C , Dansette I , Paredes-Nunez A , Schuurman Y . Cu-bound formates are main reaction intermediates during CO2 hydrogenation to methanol over Cu/ZrO2. Angewandte Chemie International Edition, 2023, 62(29): e202303939
|
9 |
Lu B , Wu F , Li X , Luo C , Zhang L . Reconstruction of interface oxygen vacancy for boosting CO2 hydrogenation by Cu/CeO2 catalysts with thermal treatment. Carbon Capture Science & Technology, 2024, 10: 100–173
|
10 |
Murthy P S , Wilson L , Zhang X , Liang W , Huang J . Ni-doped metal-azolate framework-6 derived carbon as a highly active catalyst for CO2 conversion through the CO2 hydrogenation reaction. Carbon Capture Science & Technology, 2023, 7: 100–104
|
11 |
Snider J L , Streibel V , Hubert M A , Choksi T S , Valle E , Upham D C , Schumann J , Duyar M S , Gallo A , Abild-Pedersen F .
|
12 |
Zachopoulos A , Heracleous E . Overcoming the equilibrium barriers of CO2 hydrogenation to methanol via water sorption: a thermodynamic analysis. Journal of CO2 Utilization, 2017, 21: 360–367
|
13 |
Xu S , Chen H , Fan X . Rational design of catalysts for non-thermal plasma (NTP) catalysis: a reflective review. Catalysis Today, 2023, 419: 114–144
|
14 |
Zhang Y , Wang B , Ji Z , Jiao Y , Shao Y , Chen H , Fan X . Plasma-catalytic CO2 methanation over NiFen/(Mg, Al)Ox catalysts: catalyst development and process optimisation. Chemical Engineering Journal, 2023, 465: 142855
|
15 |
Sun Y , Wu J , Wang Y , Li J , Wang N , Harding J , Mo S , Chen L , Chen P , Fu M , Ye D , Huang J , Tu X . Plasma-catalytic CO2 hydrogenation over a Pd/ZnO catalyst: in situ probing of gas-phase and surface reactions. JACS Au, 2022, 2(8): 1800–1810
|
16 |
Kim D Y , Ham H , Chen X , Liu S , Xu H , Lu B , Furukawa S , Kim H H , Takakusagi S , Sasaki K , Nozaki T . Cooperative catalysis of vibrationally excited CO2 and alloy catalyst breaks the thermodynamic equilibrium limitation. Journal of the American Chemical Society, 2022, 144(31): 14140–14149
|
17 |
Wang Y , Yang W , Xu S , Zhao S , Chen G , Weidenkaff A , Hardacre C , Fan X , Huang J , Tu X . Shielding protection by mesoporous catalysts for improving plasma-catalytic ambient ammonia synthesis. Journal of the American Chemical Society, 2022, 144(27): 12020–12031
|
18 |
Xu S , Chansai S , Stere C , Inceesungvorn B , Goguet A , Wangkawong K , Taylor S F R , Al-Janabi N , Hardacre C , Martin P A .
|
19 |
Jin Q , Chen S , Meng X , Zhou R , Xu M , Yang M , Xu H , Fan X , Chen H . Methanol steam reforming for hydrogen production over Ni/ZrO2 catalyst: comparison of thermal and non-thermal plasma catalysis. Catalysis Today, 2024, 425: 114360
|
20 |
Vakili R , Gholami R , Stere C E , Chansai S , Chen H , Holmes S M , Jiao Y , Hardacre C , Fan X . Plasma-assisted catalytic dry reforming of methane (DRM) over metal-organic frameworks (MOFs)-based catalysts. Applied Catalysis B: Environmental, 2020, 260: 118–195
|
21 |
Jiang X , Nie X , Guo X , Song C , Chen J G . Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chemical Reviews, 2020, 120(15): 7984–8034
|
22 |
Eliasson B , Kogelschatz U , Xue B , Zhou L M . Hydrogenation of carbon dioxide to methanol with a discharge-activated catalyst. Industrial & Engineering Chemistry Research, 1998, 37(8): 3350–3357
|
23 |
Bill A , Eliasson B , Kogelschatz U , Zhou L M . Comparison of CO2 hydrogenation in a catalytic reactor and in a dielectric-barrier discharge. Studies in Surface Science and Catalysis, 1998, 114: 541–544
|
24 |
Wang L , Yi Y , Guo H , Tu X . Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO2. ACS Catalysis, 2018, 8(1): 90–100
|
25 |
Cui Z , Meng S , Yi Y , Jafarzadeh A , Li S , Neyts E C , Hao Y , Li L , Zhang X , Wang X .
|
26 |
Men Y L , Liu Y , Wang Q , Luo Z H , Shao S , Li Y B , Pan Y X . Highly dispersed Pt-based catalysts for selective CO2 hydrogenation to methanol at atmospheric pressure. Chemical Engineering Science, 2019, 200: 167–175
|
27 |
Zhang X , Sun Z , Shan Y , Pan H , Jin Y , Zhu Z , Zhang L , Li K . Boosting methanol production via plasma catalytic CO2 hydrogenation over a MnOx/ZrO2 catalyst. Catalysis Science & Technology, 2023, 13(8): 2529–2539
|
28 |
Ronda-Lloret M , Wang Y , Oulego P , Rothenberg G , Tu X , Shiju N R . CO2 hydrogenation at atmospheric pressure and low temperature using plasma-enhanced catalysis over supported cobalt oxide catalysts. ACS Sustainable Chemistry & Engineering, 2020, 8(47): 17397–17407
|
29 |
Meng S , Wu L , Liu M , Cui Z , Chen Q , Li S , Yan J , Wang L , Wang X , Qian J , Guo H , Niu J , Bogaerts A , Yi Y . Plasma‐driven CO2 hydrogenation to CH3OH over Fe2O3/γ‐Al2O3 catalyst. AIChE Journal. American Institute of Chemical Engineers, 2023, 69(10): e18154
|
30 |
Michiels R , Engelmann Y , Bogaerts A . Plasma catalysis for CO2 hydrogenation: unlocking new pathways toward CH3OH. Journal of Physical Chemistry C, 2020, 124(47): 25859–25872
|
31 |
WangJZhangKBogaertsAMeynenV. 3D porous catalysts for plasma-catalytic dry reforming of methane: how does the pore size affect the plasma-catalytic performance? Chemical Engineering Journal, 2023, 464: 142574
|
32 |
Daoura O , Kaydouh M-N , El-Hassan N , Massiani P , Launay F , Boutros M . Mesocellular silica foam-based Ni catalysts for dry reforming of CH4 (by CO2). Journal of CO2 Utilization, 2018, 24: 112–119
|
33 |
Yan X , Zhang L , Zhang Y , Qiao K , Yan Z , Komarneni S . Amine-modified mesocellular silica foams for CO2 capture. Chemical Engineering Journal, 2011, 168(2): 918–924
|
34 |
Bai P , Zhao Z , Zhang Y , He Z , Liu Y , Wang C , Ma S , Wu P , Zhao L , Mintova S .
|
35 |
Wu P , Cao Y , Zhao L , Wang Y , He Z , Xing W , Bai P , Mintova S , Yan Z . Formation of PdO on Au-Pd bimetallic catalysts and the effect on benzyl alcohol oxidation. Journal of Catalysis, 2019, 375: 32–43
|
36 |
Wang S , Song L , Qu Z . Cu/ZnAl2O4 catalysts prepared by ammonia evaporation method: improving methanol selectivity in CO2 hydrogenation via regulation of metal-support interaction. Chemical Engineering Journal, 2023, 469: 144008
|
37 |
Kuld S , Thorhauge M , Falsig H , Elkjær C F , Helveg S , Chorkendorff I , Sehested J . Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Science, 2016, 352(6288): 969–974
|
38 |
Turco M , Bagnasco G , Cammarano C , Senese P , Costantino U , Sisani M . Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: the role of Cu and the dispersing oxide matrix. Applied Catalysis B: Environmental, 2007, 77(1-2): 46–57
|
39 |
Arena F , Giovenco R , Torre T , Venuto A , Parmaliana A . Activity and resistance to leaching of Cu-based catalysts in the wet oxidation of phenol. Applied Catalysis B: Environmental, 2003, 45(1): 51–62
|
40 |
Xiao K , Wang Q , Qi X , Zhong L . For better industrial Cu/ZnO/Al2O3 methanol synthesis catalyst: a compositional study. Catalysis Letters, 2017, 147(6): 1581–1591
|
41 |
Navarro-Jaén S , Virginie M , Thuriot-Roukos J , Wojcieszak R , Khodakov A Y . Structure-performance correlations in the hybrid oxide-supported copper-zinc SAPO-34 catalysts for direct synthesis of dimethyl ether from CO2. Journal of Materials Science, 2022, 57(5): 3268–3279
|
42 |
Xu S , Chansai S , Xu S , Stere C E , Jiao Y , Yang S , Hardacre C , Fan X . CO poisoning of Ru catalysts in CO2 hydrogenation under thermal and plasma conditions: a combined kinetic and diffuse reflectance infrared fourier transform spectroscopy-mass spectrometry study. ACS Catalysis, 2020, 10(21): 12828–12840
|
43 |
Chen H , Mu Y , Shao Y , Chansai S , Xu S , Stere C E , Xiang H , Zhang R , Jiao Y , Hardacre C .
|
44 |
Chen H , Mu Y , Shao Y , Chansai S , Xiang H , Jiao Y , Hardacre C , Fan X . Nonthermal plasma (NTP) activated metal-organic frameworks (MOFs) catalyst for catalytic CO2 hydrogenation. AIChE Journal, 2020, 66(4): e16853
|
45 |
Zhang Q Z , Bogaerts A . Propagation of a plasma streamer in catalyst pores. Plasma Sources Science & Technology, 2018, 27(3): 035009
|
46 |
Zhang Q Z , Bogaerts A . Plasma streamer propagation in structured catalysts. Plasma Sources Science & Technology, 2018, 27(10): 105013
|
47 |
Kattel S , Ramírez P J , Chen J G , Rodriguez J A , Liu P . Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science, 2017, 355(6331): 1296–1299
|
48 |
Yan Y , Wong R J , Ma Z , Donat F , Xi S , Saqline S , Fan Q , Du Y , Borgna A , He Q .
|
49 |
Wang W , Qu Z , Song L , Fu Q . CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: tuning methanol selectivity via metal-support interaction. Journal of Energy Chemistry, 2020, 40: 22–30
|
/
〈 | 〉 |