Siliceous mesocellular foam supported Cu catalysts for promoting non-thermal plasma activated CO2 hydrogenation toward methanol synthesis

Yi Chen, Shaowei Chen, Yan Shao, Cui Quan, Ningbo Gao, Xiaolei Fan, Huanhao Chen

PDF(1024 KB)
PDF(1024 KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (7) : 77. DOI: 10.1007/s11705-024-2419-z
RESEARCH ARTICLE

Siliceous mesocellular foam supported Cu catalysts for promoting non-thermal plasma activated CO2 hydrogenation toward methanol synthesis

Author information +
History +

Abstract

Electrified non-thermal plasma (NTP) catalytic hydrogenation is the promising alternative to the thermal counterparts, being able to be operated under mild conditions and compatible with green electricity/hydrogen. Rational design of the catalysts for such NTP-catalytic systems is one of the keys to improve the process efficiency. Here, we present the development of siliceous mesocellular foam (MCF) supported Cu catalysts for NTP-catalytic CO2 hydrogenation to methanol. The findings show that the pristine MCF support with high specific surface area and large mesopore of 784 m2·g−1 and ~8.5 nm could promote the plasma discharging and the diffusion of species through its framework, outperforming other control porous materials (viz., silicalite-1, SiO2, and SBA-15). Compared to the NTP system employing the bare MCF, the inclusion of Cu and Zn in MCF (i.e., Cu1Zn1/MCF) promoted the methanol formation of the NTP-catalytic system with a higher space-time yield of methanol at ~275 μmol·gcat−1·h−1 and a lower energy consumption of 26.4 kJ·mmolCH3OH−1 (conversely, ~225 μmol·gcat−1·h−1 and ~71 kJ·mmolCH3OH−1, respectively, for the bare MCF system at 10.1 kV). The findings suggest that inclusion of active metal sites (especially Zn species) could stabilize the CO2/CO-related intermediates to facilitate the surface reaction toward methanol formation.

Graphical abstract

Keywords

non-thermal plasma (NTP) catalysis / Cu catalyst / CO2 hydrogenation / methanol / siliceous mesocellular foam (MCF)

Cite this article

Download citation ▾
Yi Chen, Shaowei Chen, Yan Shao, Cui Quan, Ningbo Gao, Xiaolei Fan, Huanhao Chen. Siliceous mesocellular foam supported Cu catalysts for promoting non-thermal plasma activated CO2 hydrogenation toward methanol synthesis. Front. Chem. Sci. Eng., 2024, 18(7): 77 https://doi.org/10.1007/s11705-024-2419-z

References

[1]
Ou Y , Roney C , Alsalam J , Calvin K , Creason J , Edmonds J , Fawcett A A , Kyle P , Narayan K , O’Rourke P . . Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 degrees C and 2 degrees C futures. Nature Communications, 2021, 12(1): 6245
CrossRef Google scholar
[2]
Alamer A M , Ouyang M , Alshafei F H , Nadeem M A , Alsalik Y , Miller J T , Flytzani-Stephanopoulos M , Sykes E C H , Manousiouthakis V , Eagan N M . Design of dilute palladium-indium alloy catalysts for the selective hydrogenation of CO2 to methanol. ACS Catalysis, 2023, 13(15): 9987–9996
CrossRef Google scholar
[3]
Saravanan A , Senthil Kumar P , Vo D V N , Jeevanantham S , Bhuvaneswari V , Anantha Narayanan V , Yaashikaa P R , Swetha S , Reshma B . A comprehensive review on different approaches for CO2 utilization and conversion pathways. Chemical Engineering Science, 2021, 236: 116515
CrossRef Google scholar
[4]
Kim C , Yoo C-J , Oh H-S , Min B K , Lee U . Review of carbon dioxide utilization technologies and their potential for industrial application. Journal of CO2 Utilization, 2022, 65: 102239
[5]
Sun S , Sun H , Williams P T , Wu C . Recent advances in integrated CO2 capture and utilization: a review. Sustainable Energy & Fuels, 2021, 5(18): 4546–4559
CrossRef Google scholar
[6]
Ye R P , Ding J , Gong W , Argyle M D , Zhong Q , Wang Y , Russell C K , Xu Z , Russell A G , Li Q , Fan M , Yao Y G . CO2 hydrogenation to high-value products via heterogeneous catalysis. Nature Communications, 2019, 10(1): 5698
CrossRef Google scholar
[7]
Yang H , Zhang C , Gao P , Wang H , Li X , Zhong L , Wei W , Sun Y . A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catalysis Science & Technology, 2017, 7(20): 4580–4598
CrossRef Google scholar
[8]
Meunier F C , Dansette I , Paredes-Nunez A , Schuurman Y . Cu-bound formates are main reaction intermediates during CO2 hydrogenation to methanol over Cu/ZrO2. Angewandte Chemie International Edition, 2023, 62(29): e202303939
CrossRef Google scholar
[9]
Lu B , Wu F , Li X , Luo C , Zhang L . Reconstruction of interface oxygen vacancy for boosting CO2 hydrogenation by Cu/CeO2 catalysts with thermal treatment. Carbon Capture Science & Technology, 2024, 10: 100–173
CrossRef Google scholar
[10]
Murthy P S , Wilson L , Zhang X , Liang W , Huang J . Ni-doped metal-azolate framework-6 derived carbon as a highly active catalyst for CO2 conversion through the CO2 hydrogenation reaction. Carbon Capture Science & Technology, 2023, 7: 100–104
CrossRef Google scholar
[11]
Snider J L , Streibel V , Hubert M A , Choksi T S , Valle E , Upham D C , Schumann J , Duyar M S , Gallo A , Abild-Pedersen F . . Revealing the synergy between oxide and alloy phases on the performance of bimetallic In-Pd catalysts for CO2 hydrogenation to methanol. ACS Catalysis, 2019, 9(4): 3399–3412
CrossRef Google scholar
[12]
Zachopoulos A , Heracleous E . Overcoming the equilibrium barriers of CO2 hydrogenation to methanol via water sorption: a thermodynamic analysis. Journal of CO2 Utilization, 2017, 21: 360–367
[13]
Xu S , Chen H , Fan X . Rational design of catalysts for non-thermal plasma (NTP) catalysis: a reflective review. Catalysis Today, 2023, 419: 114–144
CrossRef Google scholar
[14]
Zhang Y , Wang B , Ji Z , Jiao Y , Shao Y , Chen H , Fan X . Plasma-catalytic CO2 methanation over NiFen/(Mg, Al)Ox catalysts: catalyst development and process optimisation. Chemical Engineering Journal, 2023, 465: 142855
CrossRef Google scholar
[15]
Sun Y , Wu J , Wang Y , Li J , Wang N , Harding J , Mo S , Chen L , Chen P , Fu M , Ye D , Huang J , Tu X . Plasma-catalytic CO2 hydrogenation over a Pd/ZnO catalyst: in situ probing of gas-phase and surface reactions. JACS Au, 2022, 2(8): 1800–1810
CrossRef Google scholar
[16]
Kim D Y , Ham H , Chen X , Liu S , Xu H , Lu B , Furukawa S , Kim H H , Takakusagi S , Sasaki K , Nozaki T . Cooperative catalysis of vibrationally excited CO2 and alloy catalyst breaks the thermodynamic equilibrium limitation. Journal of the American Chemical Society, 2022, 144(31): 14140–14149
CrossRef Google scholar
[17]
Wang Y , Yang W , Xu S , Zhao S , Chen G , Weidenkaff A , Hardacre C , Fan X , Huang J , Tu X . Shielding protection by mesoporous catalysts for improving plasma-catalytic ambient ammonia synthesis. Journal of the American Chemical Society, 2022, 144(27): 12020–12031
CrossRef Google scholar
[18]
Xu S , Chansai S , Stere C , Inceesungvorn B , Goguet A , Wangkawong K , Taylor S F R , Al-Janabi N , Hardacre C , Martin P A . . Sustaining metal-organic frameworks for water-gas shift catalysis by non-thermal plasma. Nature Catalysis, 2019, 2(2): 142–148
CrossRef Google scholar
[19]
Jin Q , Chen S , Meng X , Zhou R , Xu M , Yang M , Xu H , Fan X , Chen H . Methanol steam reforming for hydrogen production over Ni/ZrO2 catalyst: comparison of thermal and non-thermal plasma catalysis. Catalysis Today, 2024, 425: 114360
CrossRef Google scholar
[20]
Vakili R , Gholami R , Stere C E , Chansai S , Chen H , Holmes S M , Jiao Y , Hardacre C , Fan X . Plasma-assisted catalytic dry reforming of methane (DRM) over metal-organic frameworks (MOFs)-based catalysts. Applied Catalysis B: Environmental, 2020, 260: 118–195
CrossRef Google scholar
[21]
Jiang X , Nie X , Guo X , Song C , Chen J G . Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chemical Reviews, 2020, 120(15): 7984–8034
CrossRef Google scholar
[22]
Eliasson B , Kogelschatz U , Xue B , Zhou L M . Hydrogenation of carbon dioxide to methanol with a discharge-activated catalyst. Industrial & Engineering Chemistry Research, 1998, 37(8): 3350–3357
CrossRef Google scholar
[23]
Bill A , Eliasson B , Kogelschatz U , Zhou L M . Comparison of CO2 hydrogenation in a catalytic reactor and in a dielectric-barrier discharge. Studies in Surface Science and Catalysis, 1998, 114: 541–544
CrossRef Google scholar
[24]
Wang L , Yi Y , Guo H , Tu X . Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO2. ACS Catalysis, 2018, 8(1): 90–100
CrossRef Google scholar
[25]
Cui Z , Meng S , Yi Y , Jafarzadeh A , Li S , Neyts E C , Hao Y , Li L , Zhang X , Wang X . . Plasma-catalytic methanol synthesis from CO2 hydrogenation over a supported Cu cluster catalyst: insights into the reaction mechanism. ACS Catalysis, 2022, 12(2): 1326–1337
CrossRef Google scholar
[26]
Men Y L , Liu Y , Wang Q , Luo Z H , Shao S , Li Y B , Pan Y X . Highly dispersed Pt-based catalysts for selective CO2 hydrogenation to methanol at atmospheric pressure. Chemical Engineering Science, 2019, 200: 167–175
CrossRef Google scholar
[27]
Zhang X , Sun Z , Shan Y , Pan H , Jin Y , Zhu Z , Zhang L , Li K . Boosting methanol production via plasma catalytic CO2 hydrogenation over a MnOx/ZrO2 catalyst. Catalysis Science & Technology, 2023, 13(8): 2529–2539
CrossRef Google scholar
[28]
Ronda-Lloret M , Wang Y , Oulego P , Rothenberg G , Tu X , Shiju N R . CO2 hydrogenation at atmospheric pressure and low temperature using plasma-enhanced catalysis over supported cobalt oxide catalysts. ACS Sustainable Chemistry & Engineering, 2020, 8(47): 17397–17407
CrossRef Google scholar
[29]
Meng S , Wu L , Liu M , Cui Z , Chen Q , Li S , Yan J , Wang L , Wang X , Qian J , Guo H , Niu J , Bogaerts A , Yi Y . Plasma‐driven CO2 hydrogenation to CH3OH over Fe2O3/γ‐Al2O3 catalyst. AIChE Journal. American Institute of Chemical Engineers, 2023, 69(10): e18154
CrossRef Google scholar
[30]
Michiels R , Engelmann Y , Bogaerts A . Plasma catalysis for CO2 hydrogenation: unlocking new pathways toward CH3OH. Journal of Physical Chemistry C, 2020, 124(47): 25859–25872
CrossRef Google scholar
[31]
WangJZhangKBogaertsAMeynenV. 3D porous catalysts for plasma-catalytic dry reforming of methane: how does the pore size affect the plasma-catalytic performance? Chemical Engineering Journal, 2023, 464: 142574
[32]
Daoura O , Kaydouh M-N , El-Hassan N , Massiani P , Launay F , Boutros M . Mesocellular silica foam-based Ni catalysts for dry reforming of CH4 (by CO2). Journal of CO2 Utilization, 2018, 24: 112–119
[33]
Yan X , Zhang L , Zhang Y , Qiao K , Yan Z , Komarneni S . Amine-modified mesocellular silica foams for CO2 capture. Chemical Engineering Journal, 2011, 168(2): 918–924
CrossRef Google scholar
[34]
Bai P , Zhao Z , Zhang Y , He Z , Liu Y , Wang C , Ma S , Wu P , Zhao L , Mintova S . . Rational design of highly efficient PdIn-In2O3 interfaces by a capture-alloying strategy for benzyl alcohol partial oxidation. ACS Applied Materials & Interfaces, 2023, 15(15): 19653–19664
CrossRef Google scholar
[35]
Wu P , Cao Y , Zhao L , Wang Y , He Z , Xing W , Bai P , Mintova S , Yan Z . Formation of PdO on Au-Pd bimetallic catalysts and the effect on benzyl alcohol oxidation. Journal of Catalysis, 2019, 375: 32–43
CrossRef Google scholar
[36]
Wang S , Song L , Qu Z . Cu/ZnAl2O4 catalysts prepared by ammonia evaporation method: improving methanol selectivity in CO2 hydrogenation via regulation of metal-support interaction. Chemical Engineering Journal, 2023, 469: 144008
CrossRef Google scholar
[37]
Kuld S , Thorhauge M , Falsig H , Elkjær C F , Helveg S , Chorkendorff I , Sehested J . Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Science, 2016, 352(6288): 969–974
CrossRef Google scholar
[38]
Turco M , Bagnasco G , Cammarano C , Senese P , Costantino U , Sisani M . Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: the role of Cu and the dispersing oxide matrix. Applied Catalysis B: Environmental, 2007, 77(1-2): 46–57
CrossRef Google scholar
[39]
Arena F , Giovenco R , Torre T , Venuto A , Parmaliana A . Activity and resistance to leaching of Cu-based catalysts in the wet oxidation of phenol. Applied Catalysis B: Environmental, 2003, 45(1): 51–62
CrossRef Google scholar
[40]
Xiao K , Wang Q , Qi X , Zhong L . For better industrial Cu/ZnO/Al2O3 methanol synthesis catalyst: a compositional study. Catalysis Letters, 2017, 147(6): 1581–1591
CrossRef Google scholar
[41]
Navarro-Jaén S , Virginie M , Thuriot-Roukos J , Wojcieszak R , Khodakov A Y . Structure-performance correlations in the hybrid oxide-supported copper-zinc SAPO-34 catalysts for direct synthesis of dimethyl ether from CO2. Journal of Materials Science, 2022, 57(5): 3268–3279
CrossRef Google scholar
[42]
Xu S , Chansai S , Xu S , Stere C E , Jiao Y , Yang S , Hardacre C , Fan X . CO poisoning of Ru catalysts in CO2 hydrogenation under thermal and plasma conditions: a combined kinetic and diffuse reflectance infrared fourier transform spectroscopy-mass spectrometry study. ACS Catalysis, 2020, 10(21): 12828–12840
CrossRef Google scholar
[43]
Chen H , Mu Y , Shao Y , Chansai S , Xu S , Stere C E , Xiang H , Zhang R , Jiao Y , Hardacre C . . Coupling non-thermal plasma with Ni catalysts supported on BETA zeolite for catalytic CO2 methanation. Catalysis Science & Technology, 2019, 9(15): 4135–4145
CrossRef Google scholar
[44]
Chen H , Mu Y , Shao Y , Chansai S , Xiang H , Jiao Y , Hardacre C , Fan X . Nonthermal plasma (NTP) activated metal-organic frameworks (MOFs) catalyst for catalytic CO2 hydrogenation. AIChE Journal, 2020, 66(4): e16853
CrossRef Google scholar
[45]
Zhang Q Z , Bogaerts A . Propagation of a plasma streamer in catalyst pores. Plasma Sources Science & Technology, 2018, 27(3): 035009
CrossRef Google scholar
[46]
Zhang Q Z , Bogaerts A . Plasma streamer propagation in structured catalysts. Plasma Sources Science & Technology, 2018, 27(10): 105013
CrossRef Google scholar
[47]
Kattel S , Ramírez P J , Chen J G , Rodriguez J A , Liu P . Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science, 2017, 355(6331): 1296–1299
CrossRef Google scholar
[48]
Yan Y , Wong R J , Ma Z , Donat F , Xi S , Saqline S , Fan Q , Du Y , Borgna A , He Q . . CO2 hydrogenation to methanol on tungsten-doped Cu/CeO2 catalysts. Applied Catalysis B: Environmental, 2022, 306: 121098
CrossRef Google scholar
[49]
Wang W , Qu Z , Song L , Fu Q . CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: tuning methanol selectivity via metal-support interaction. Journal of Energy Chemistry, 2020, 40: 22–30
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This project has received funding from the International Science and Technology Cooperation Project of Innovative Supporting Plan from Jiangsu Provincial Department of Science and Technology (Grant No. BZ2022040), the National Natural Science Foundation of China (Grant No. 22278204), and the Jiangsu Specially-Appointed Professors Program. This Project was also partially supported by Ningbo Natural Science Foundation (Project ID 2023J245), the special innovation project fund (Grant No. XMGL-KJZX-202204, 52376207, 52276211) from the Institute of Wenzhou, Zhejiang University.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://doi.org/10.1007/s11705-024-2419-z and is accessible for authorized users.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(1024 KB)

Accesses

Citations

Detail

Sections
Recommended

/