Siliceous mesocellular foam supported Cu catalysts for promoting non-thermal plasma activated CO2 hydrogenation toward methanol synthesis

Yi Chen , Shaowei Chen , Yan Shao , Cui Quan , Ningbo Gao , Xiaolei Fan , Huanhao Chen

Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (7) : 77

PDF (1024KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (7) : 77 DOI: 10.1007/s11705-024-2419-z
RESEARCH ARTICLE

Siliceous mesocellular foam supported Cu catalysts for promoting non-thermal plasma activated CO2 hydrogenation toward methanol synthesis

Author information +
History +
PDF (1024KB)

Abstract

Electrified non-thermal plasma (NTP) catalytic hydrogenation is the promising alternative to the thermal counterparts, being able to be operated under mild conditions and compatible with green electricity/hydrogen. Rational design of the catalysts for such NTP-catalytic systems is one of the keys to improve the process efficiency. Here, we present the development of siliceous mesocellular foam (MCF) supported Cu catalysts for NTP-catalytic CO2 hydrogenation to methanol. The findings show that the pristine MCF support with high specific surface area and large mesopore of 784 m2·g−1 and ~8.5 nm could promote the plasma discharging and the diffusion of species through its framework, outperforming other control porous materials (viz., silicalite-1, SiO2, and SBA-15). Compared to the NTP system employing the bare MCF, the inclusion of Cu and Zn in MCF (i.e., Cu1Zn1/MCF) promoted the methanol formation of the NTP-catalytic system with a higher space-time yield of methanol at ~275 μmol·gcat−1·h−1 and a lower energy consumption of 26.4 kJ·mmolCH3OH−1 (conversely, ~225 μmol·gcat−1·h−1 and ~71 kJ·mmolCH3OH−1, respectively, for the bare MCF system at 10.1 kV). The findings suggest that inclusion of active metal sites (especially Zn species) could stabilize the CO2/CO-related intermediates to facilitate the surface reaction toward methanol formation.

Graphical abstract

Keywords

non-thermal plasma (NTP) catalysis / Cu catalyst / CO2 hydrogenation / methanol / siliceous mesocellular foam (MCF)

Cite this article

Download citation ▾
Yi Chen, Shaowei Chen, Yan Shao, Cui Quan, Ningbo Gao, Xiaolei Fan, Huanhao Chen. Siliceous mesocellular foam supported Cu catalysts for promoting non-thermal plasma activated CO2 hydrogenation toward methanol synthesis. Front. Chem. Sci. Eng., 2024, 18(7): 77 DOI:10.1007/s11705-024-2419-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ou Y , Roney C , Alsalam J , Calvin K , Creason J , Edmonds J , Fawcett A A , Kyle P , Narayan K , O’Rourke P . . Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 degrees C and 2 degrees C futures. Nature Communications, 2021, 12(1): 6245

[2]

Alamer A M , Ouyang M , Alshafei F H , Nadeem M A , Alsalik Y , Miller J T , Flytzani-Stephanopoulos M , Sykes E C H , Manousiouthakis V , Eagan N M . Design of dilute palladium-indium alloy catalysts for the selective hydrogenation of CO2 to methanol. ACS Catalysis, 2023, 13(15): 9987–9996

[3]

Saravanan A , Senthil Kumar P , Vo D V N , Jeevanantham S , Bhuvaneswari V , Anantha Narayanan V , Yaashikaa P R , Swetha S , Reshma B . A comprehensive review on different approaches for CO2 utilization and conversion pathways. Chemical Engineering Science, 2021, 236: 116515

[4]

Kim C , Yoo C-J , Oh H-S , Min B K , Lee U . Review of carbon dioxide utilization technologies and their potential for industrial application. Journal of CO2 Utilization, 2022, 65: 102239

[5]

Sun S , Sun H , Williams P T , Wu C . Recent advances in integrated CO2 capture and utilization: a review. Sustainable Energy & Fuels, 2021, 5(18): 4546–4559

[6]

Ye R P , Ding J , Gong W , Argyle M D , Zhong Q , Wang Y , Russell C K , Xu Z , Russell A G , Li Q , Fan M , Yao Y G . CO2 hydrogenation to high-value products via heterogeneous catalysis. Nature Communications, 2019, 10(1): 5698

[7]

Yang H , Zhang C , Gao P , Wang H , Li X , Zhong L , Wei W , Sun Y . A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catalysis Science & Technology, 2017, 7(20): 4580–4598

[8]

Meunier F C , Dansette I , Paredes-Nunez A , Schuurman Y . Cu-bound formates are main reaction intermediates during CO2 hydrogenation to methanol over Cu/ZrO2. Angewandte Chemie International Edition, 2023, 62(29): e202303939

[9]

Lu B , Wu F , Li X , Luo C , Zhang L . Reconstruction of interface oxygen vacancy for boosting CO2 hydrogenation by Cu/CeO2 catalysts with thermal treatment. Carbon Capture Science & Technology, 2024, 10: 100–173

[10]

Murthy P S , Wilson L , Zhang X , Liang W , Huang J . Ni-doped metal-azolate framework-6 derived carbon as a highly active catalyst for CO2 conversion through the CO2 hydrogenation reaction. Carbon Capture Science & Technology, 2023, 7: 100–104

[11]

Snider J L , Streibel V , Hubert M A , Choksi T S , Valle E , Upham D C , Schumann J , Duyar M S , Gallo A , Abild-Pedersen F . . Revealing the synergy between oxide and alloy phases on the performance of bimetallic In-Pd catalysts for CO2 hydrogenation to methanol. ACS Catalysis, 2019, 9(4): 3399–3412

[12]

Zachopoulos A , Heracleous E . Overcoming the equilibrium barriers of CO2 hydrogenation to methanol via water sorption: a thermodynamic analysis. Journal of CO2 Utilization, 2017, 21: 360–367

[13]

Xu S , Chen H , Fan X . Rational design of catalysts for non-thermal plasma (NTP) catalysis: a reflective review. Catalysis Today, 2023, 419: 114–144

[14]

Zhang Y , Wang B , Ji Z , Jiao Y , Shao Y , Chen H , Fan X . Plasma-catalytic CO2 methanation over NiFen/(Mg, Al)Ox catalysts: catalyst development and process optimisation. Chemical Engineering Journal, 2023, 465: 142855

[15]

Sun Y , Wu J , Wang Y , Li J , Wang N , Harding J , Mo S , Chen L , Chen P , Fu M , Ye D , Huang J , Tu X . Plasma-catalytic CO2 hydrogenation over a Pd/ZnO catalyst: in situ probing of gas-phase and surface reactions. JACS Au, 2022, 2(8): 1800–1810

[16]

Kim D Y , Ham H , Chen X , Liu S , Xu H , Lu B , Furukawa S , Kim H H , Takakusagi S , Sasaki K , Nozaki T . Cooperative catalysis of vibrationally excited CO2 and alloy catalyst breaks the thermodynamic equilibrium limitation. Journal of the American Chemical Society, 2022, 144(31): 14140–14149

[17]

Wang Y , Yang W , Xu S , Zhao S , Chen G , Weidenkaff A , Hardacre C , Fan X , Huang J , Tu X . Shielding protection by mesoporous catalysts for improving plasma-catalytic ambient ammonia synthesis. Journal of the American Chemical Society, 2022, 144(27): 12020–12031

[18]

Xu S , Chansai S , Stere C , Inceesungvorn B , Goguet A , Wangkawong K , Taylor S F R , Al-Janabi N , Hardacre C , Martin P A . . Sustaining metal-organic frameworks for water-gas shift catalysis by non-thermal plasma. Nature Catalysis, 2019, 2(2): 142–148

[19]

Jin Q , Chen S , Meng X , Zhou R , Xu M , Yang M , Xu H , Fan X , Chen H . Methanol steam reforming for hydrogen production over Ni/ZrO2 catalyst: comparison of thermal and non-thermal plasma catalysis. Catalysis Today, 2024, 425: 114360

[20]

Vakili R , Gholami R , Stere C E , Chansai S , Chen H , Holmes S M , Jiao Y , Hardacre C , Fan X . Plasma-assisted catalytic dry reforming of methane (DRM) over metal-organic frameworks (MOFs)-based catalysts. Applied Catalysis B: Environmental, 2020, 260: 118–195

[21]

Jiang X , Nie X , Guo X , Song C , Chen J G . Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chemical Reviews, 2020, 120(15): 7984–8034

[22]

Eliasson B , Kogelschatz U , Xue B , Zhou L M . Hydrogenation of carbon dioxide to methanol with a discharge-activated catalyst. Industrial & Engineering Chemistry Research, 1998, 37(8): 3350–3357

[23]

Bill A , Eliasson B , Kogelschatz U , Zhou L M . Comparison of CO2 hydrogenation in a catalytic reactor and in a dielectric-barrier discharge. Studies in Surface Science and Catalysis, 1998, 114: 541–544

[24]

Wang L , Yi Y , Guo H , Tu X . Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO2. ACS Catalysis, 2018, 8(1): 90–100

[25]

Cui Z , Meng S , Yi Y , Jafarzadeh A , Li S , Neyts E C , Hao Y , Li L , Zhang X , Wang X . . Plasma-catalytic methanol synthesis from CO2 hydrogenation over a supported Cu cluster catalyst: insights into the reaction mechanism. ACS Catalysis, 2022, 12(2): 1326–1337

[26]

Men Y L , Liu Y , Wang Q , Luo Z H , Shao S , Li Y B , Pan Y X . Highly dispersed Pt-based catalysts for selective CO2 hydrogenation to methanol at atmospheric pressure. Chemical Engineering Science, 2019, 200: 167–175

[27]

Zhang X , Sun Z , Shan Y , Pan H , Jin Y , Zhu Z , Zhang L , Li K . Boosting methanol production via plasma catalytic CO2 hydrogenation over a MnOx/ZrO2 catalyst. Catalysis Science & Technology, 2023, 13(8): 2529–2539

[28]

Ronda-Lloret M , Wang Y , Oulego P , Rothenberg G , Tu X , Shiju N R . CO2 hydrogenation at atmospheric pressure and low temperature using plasma-enhanced catalysis over supported cobalt oxide catalysts. ACS Sustainable Chemistry & Engineering, 2020, 8(47): 17397–17407

[29]

Meng S , Wu L , Liu M , Cui Z , Chen Q , Li S , Yan J , Wang L , Wang X , Qian J , Guo H , Niu J , Bogaerts A , Yi Y . Plasma‐driven CO2 hydrogenation to CH3OH over Fe2O3/γ‐Al2O3 catalyst. AIChE Journal. American Institute of Chemical Engineers, 2023, 69(10): e18154

[30]

Michiels R , Engelmann Y , Bogaerts A . Plasma catalysis for CO2 hydrogenation: unlocking new pathways toward CH3OH. Journal of Physical Chemistry C, 2020, 124(47): 25859–25872

[31]

WangJZhangKBogaertsAMeynenV. 3D porous catalysts for plasma-catalytic dry reforming of methane: how does the pore size affect the plasma-catalytic performance? Chemical Engineering Journal, 2023, 464: 142574

[32]

Daoura O , Kaydouh M-N , El-Hassan N , Massiani P , Launay F , Boutros M . Mesocellular silica foam-based Ni catalysts for dry reforming of CH4 (by CO2). Journal of CO2 Utilization, 2018, 24: 112–119

[33]

Yan X , Zhang L , Zhang Y , Qiao K , Yan Z , Komarneni S . Amine-modified mesocellular silica foams for CO2 capture. Chemical Engineering Journal, 2011, 168(2): 918–924

[34]

Bai P , Zhao Z , Zhang Y , He Z , Liu Y , Wang C , Ma S , Wu P , Zhao L , Mintova S . . Rational design of highly efficient PdIn-In2O3 interfaces by a capture-alloying strategy for benzyl alcohol partial oxidation. ACS Applied Materials & Interfaces, 2023, 15(15): 19653–19664

[35]

Wu P , Cao Y , Zhao L , Wang Y , He Z , Xing W , Bai P , Mintova S , Yan Z . Formation of PdO on Au-Pd bimetallic catalysts and the effect on benzyl alcohol oxidation. Journal of Catalysis, 2019, 375: 32–43

[36]

Wang S , Song L , Qu Z . Cu/ZnAl2O4 catalysts prepared by ammonia evaporation method: improving methanol selectivity in CO2 hydrogenation via regulation of metal-support interaction. Chemical Engineering Journal, 2023, 469: 144008

[37]

Kuld S , Thorhauge M , Falsig H , Elkjær C F , Helveg S , Chorkendorff I , Sehested J . Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Science, 2016, 352(6288): 969–974

[38]

Turco M , Bagnasco G , Cammarano C , Senese P , Costantino U , Sisani M . Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: the role of Cu and the dispersing oxide matrix. Applied Catalysis B: Environmental, 2007, 77(1-2): 46–57

[39]

Arena F , Giovenco R , Torre T , Venuto A , Parmaliana A . Activity and resistance to leaching of Cu-based catalysts in the wet oxidation of phenol. Applied Catalysis B: Environmental, 2003, 45(1): 51–62

[40]

Xiao K , Wang Q , Qi X , Zhong L . For better industrial Cu/ZnO/Al2O3 methanol synthesis catalyst: a compositional study. Catalysis Letters, 2017, 147(6): 1581–1591

[41]

Navarro-Jaén S , Virginie M , Thuriot-Roukos J , Wojcieszak R , Khodakov A Y . Structure-performance correlations in the hybrid oxide-supported copper-zinc SAPO-34 catalysts for direct synthesis of dimethyl ether from CO2. Journal of Materials Science, 2022, 57(5): 3268–3279

[42]

Xu S , Chansai S , Xu S , Stere C E , Jiao Y , Yang S , Hardacre C , Fan X . CO poisoning of Ru catalysts in CO2 hydrogenation under thermal and plasma conditions: a combined kinetic and diffuse reflectance infrared fourier transform spectroscopy-mass spectrometry study. ACS Catalysis, 2020, 10(21): 12828–12840

[43]

Chen H , Mu Y , Shao Y , Chansai S , Xu S , Stere C E , Xiang H , Zhang R , Jiao Y , Hardacre C . . Coupling non-thermal plasma with Ni catalysts supported on BETA zeolite for catalytic CO2 methanation. Catalysis Science & Technology, 2019, 9(15): 4135–4145

[44]

Chen H , Mu Y , Shao Y , Chansai S , Xiang H , Jiao Y , Hardacre C , Fan X . Nonthermal plasma (NTP) activated metal-organic frameworks (MOFs) catalyst for catalytic CO2 hydrogenation. AIChE Journal, 2020, 66(4): e16853

[45]

Zhang Q Z , Bogaerts A . Propagation of a plasma streamer in catalyst pores. Plasma Sources Science & Technology, 2018, 27(3): 035009

[46]

Zhang Q Z , Bogaerts A . Plasma streamer propagation in structured catalysts. Plasma Sources Science & Technology, 2018, 27(10): 105013

[47]

Kattel S , Ramírez P J , Chen J G , Rodriguez J A , Liu P . Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science, 2017, 355(6331): 1296–1299

[48]

Yan Y , Wong R J , Ma Z , Donat F , Xi S , Saqline S , Fan Q , Du Y , Borgna A , He Q . . CO2 hydrogenation to methanol on tungsten-doped Cu/CeO2 catalysts. Applied Catalysis B: Environmental, 2022, 306: 121098

[49]

Wang W , Qu Z , Song L , Fu Q . CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: tuning methanol selectivity via metal-support interaction. Journal of Energy Chemistry, 2020, 40: 22–30

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1024KB)

Supplementary files

FCE-23098-OF-CY_suppl_1

1823

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/