Siliceous mesocellular foam supported Cu catalysts for promoting non-thermal plasma activated CO2 hydrogenation toward methanol synthesis
Yi Chen, Shaowei Chen, Yan Shao, Cui Quan, Ningbo Gao, Xiaolei Fan, Huanhao Chen
Siliceous mesocellular foam supported Cu catalysts for promoting non-thermal plasma activated CO2 hydrogenation toward methanol synthesis
Electrified non-thermal plasma (NTP) catalytic hydrogenation is the promising alternative to the thermal counterparts, being able to be operated under mild conditions and compatible with green electricity/hydrogen. Rational design of the catalysts for such NTP-catalytic systems is one of the keys to improve the process efficiency. Here, we present the development of siliceous mesocellular foam (MCF) supported Cu catalysts for NTP-catalytic CO2 hydrogenation to methanol. The findings show that the pristine MCF support with high specific surface area and large mesopore of 784 m2·g−1 and ~8.5 nm could promote the plasma discharging and the diffusion of species through its framework, outperforming other control porous materials (viz., silicalite-1, SiO2, and SBA-15). Compared to the NTP system employing the bare MCF, the inclusion of Cu and Zn in MCF (i.e., Cu1Zn1/MCF) promoted the methanol formation of the NTP-catalytic system with a higher space-time yield of methanol at ~275 μmol·gcat−1·h−1 and a lower energy consumption of 26.4 kJ·−1 (conversely, ~225 μmol·gcat−1·h−1 and ~71 kJ·−1, respectively, for the bare MCF system at 10.1 kV). The findings suggest that inclusion of active metal sites (especially Zn species) could stabilize the CO2/CO-related intermediates to facilitate the surface reaction toward methanol formation.
non-thermal plasma (NTP) catalysis / Cu catalyst / CO2 hydrogenation / methanol / siliceous mesocellular foam (MCF)
[1] |
Ou Y , Roney C , Alsalam J , Calvin K , Creason J , Edmonds J , Fawcett A A , Kyle P , Narayan K , O’Rourke P .
CrossRef
Google scholar
|
[2] |
Alamer A M , Ouyang M , Alshafei F H , Nadeem M A , Alsalik Y , Miller J T , Flytzani-Stephanopoulos M , Sykes E C H , Manousiouthakis V , Eagan N M . Design of dilute palladium-indium alloy catalysts for the selective hydrogenation of CO2 to methanol. ACS Catalysis, 2023, 13(15): 9987–9996
CrossRef
Google scholar
|
[3] |
Saravanan A , Senthil Kumar P , Vo D V N , Jeevanantham S , Bhuvaneswari V , Anantha Narayanan V , Yaashikaa P R , Swetha S , Reshma B . A comprehensive review on different approaches for CO2 utilization and conversion pathways. Chemical Engineering Science, 2021, 236: 116515
CrossRef
Google scholar
|
[4] |
Kim C , Yoo C-J , Oh H-S , Min B K , Lee U . Review of carbon dioxide utilization technologies and their potential for industrial application. Journal of CO2 Utilization, 2022, 65: 102239
|
[5] |
Sun S , Sun H , Williams P T , Wu C . Recent advances in integrated CO2 capture and utilization: a review. Sustainable Energy & Fuels, 2021, 5(18): 4546–4559
CrossRef
Google scholar
|
[6] |
Ye R P , Ding J , Gong W , Argyle M D , Zhong Q , Wang Y , Russell C K , Xu Z , Russell A G , Li Q , Fan M , Yao Y G . CO2 hydrogenation to high-value products via heterogeneous catalysis. Nature Communications, 2019, 10(1): 5698
CrossRef
Google scholar
|
[7] |
Yang H , Zhang C , Gao P , Wang H , Li X , Zhong L , Wei W , Sun Y . A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catalysis Science & Technology, 2017, 7(20): 4580–4598
CrossRef
Google scholar
|
[8] |
Meunier F C , Dansette I , Paredes-Nunez A , Schuurman Y . Cu-bound formates are main reaction intermediates during CO2 hydrogenation to methanol over Cu/ZrO2. Angewandte Chemie International Edition, 2023, 62(29): e202303939
CrossRef
Google scholar
|
[9] |
Lu B , Wu F , Li X , Luo C , Zhang L . Reconstruction of interface oxygen vacancy for boosting CO2 hydrogenation by Cu/CeO2 catalysts with thermal treatment. Carbon Capture Science & Technology, 2024, 10: 100–173
CrossRef
Google scholar
|
[10] |
Murthy P S , Wilson L , Zhang X , Liang W , Huang J . Ni-doped metal-azolate framework-6 derived carbon as a highly active catalyst for CO2 conversion through the CO2 hydrogenation reaction. Carbon Capture Science & Technology, 2023, 7: 100–104
CrossRef
Google scholar
|
[11] |
Snider J L , Streibel V , Hubert M A , Choksi T S , Valle E , Upham D C , Schumann J , Duyar M S , Gallo A , Abild-Pedersen F .
CrossRef
Google scholar
|
[12] |
Zachopoulos A , Heracleous E . Overcoming the equilibrium barriers of CO2 hydrogenation to methanol via water sorption: a thermodynamic analysis. Journal of CO2 Utilization, 2017, 21: 360–367
|
[13] |
Xu S , Chen H , Fan X . Rational design of catalysts for non-thermal plasma (NTP) catalysis: a reflective review. Catalysis Today, 2023, 419: 114–144
CrossRef
Google scholar
|
[14] |
Zhang Y , Wang B , Ji Z , Jiao Y , Shao Y , Chen H , Fan X . Plasma-catalytic CO2 methanation over NiFen/(Mg, Al)Ox catalysts: catalyst development and process optimisation. Chemical Engineering Journal, 2023, 465: 142855
CrossRef
Google scholar
|
[15] |
Sun Y , Wu J , Wang Y , Li J , Wang N , Harding J , Mo S , Chen L , Chen P , Fu M , Ye D , Huang J , Tu X . Plasma-catalytic CO2 hydrogenation over a Pd/ZnO catalyst: in situ probing of gas-phase and surface reactions. JACS Au, 2022, 2(8): 1800–1810
CrossRef
Google scholar
|
[16] |
Kim D Y , Ham H , Chen X , Liu S , Xu H , Lu B , Furukawa S , Kim H H , Takakusagi S , Sasaki K , Nozaki T . Cooperative catalysis of vibrationally excited CO2 and alloy catalyst breaks the thermodynamic equilibrium limitation. Journal of the American Chemical Society, 2022, 144(31): 14140–14149
CrossRef
Google scholar
|
[17] |
Wang Y , Yang W , Xu S , Zhao S , Chen G , Weidenkaff A , Hardacre C , Fan X , Huang J , Tu X . Shielding protection by mesoporous catalysts for improving plasma-catalytic ambient ammonia synthesis. Journal of the American Chemical Society, 2022, 144(27): 12020–12031
CrossRef
Google scholar
|
[18] |
Xu S , Chansai S , Stere C , Inceesungvorn B , Goguet A , Wangkawong K , Taylor S F R , Al-Janabi N , Hardacre C , Martin P A .
CrossRef
Google scholar
|
[19] |
Jin Q , Chen S , Meng X , Zhou R , Xu M , Yang M , Xu H , Fan X , Chen H . Methanol steam reforming for hydrogen production over Ni/ZrO2 catalyst: comparison of thermal and non-thermal plasma catalysis. Catalysis Today, 2024, 425: 114360
CrossRef
Google scholar
|
[20] |
Vakili R , Gholami R , Stere C E , Chansai S , Chen H , Holmes S M , Jiao Y , Hardacre C , Fan X . Plasma-assisted catalytic dry reforming of methane (DRM) over metal-organic frameworks (MOFs)-based catalysts. Applied Catalysis B: Environmental, 2020, 260: 118–195
CrossRef
Google scholar
|
[21] |
Jiang X , Nie X , Guo X , Song C , Chen J G . Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chemical Reviews, 2020, 120(15): 7984–8034
CrossRef
Google scholar
|
[22] |
Eliasson B , Kogelschatz U , Xue B , Zhou L M . Hydrogenation of carbon dioxide to methanol with a discharge-activated catalyst. Industrial & Engineering Chemistry Research, 1998, 37(8): 3350–3357
CrossRef
Google scholar
|
[23] |
Bill A , Eliasson B , Kogelschatz U , Zhou L M . Comparison of CO2 hydrogenation in a catalytic reactor and in a dielectric-barrier discharge. Studies in Surface Science and Catalysis, 1998, 114: 541–544
CrossRef
Google scholar
|
[24] |
Wang L , Yi Y , Guo H , Tu X . Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO2. ACS Catalysis, 2018, 8(1): 90–100
CrossRef
Google scholar
|
[25] |
Cui Z , Meng S , Yi Y , Jafarzadeh A , Li S , Neyts E C , Hao Y , Li L , Zhang X , Wang X .
CrossRef
Google scholar
|
[26] |
Men Y L , Liu Y , Wang Q , Luo Z H , Shao S , Li Y B , Pan Y X . Highly dispersed Pt-based catalysts for selective CO2 hydrogenation to methanol at atmospheric pressure. Chemical Engineering Science, 2019, 200: 167–175
CrossRef
Google scholar
|
[27] |
Zhang X , Sun Z , Shan Y , Pan H , Jin Y , Zhu Z , Zhang L , Li K . Boosting methanol production via plasma catalytic CO2 hydrogenation over a MnOx/ZrO2 catalyst. Catalysis Science & Technology, 2023, 13(8): 2529–2539
CrossRef
Google scholar
|
[28] |
Ronda-Lloret M , Wang Y , Oulego P , Rothenberg G , Tu X , Shiju N R . CO2 hydrogenation at atmospheric pressure and low temperature using plasma-enhanced catalysis over supported cobalt oxide catalysts. ACS Sustainable Chemistry & Engineering, 2020, 8(47): 17397–17407
CrossRef
Google scholar
|
[29] |
Meng S , Wu L , Liu M , Cui Z , Chen Q , Li S , Yan J , Wang L , Wang X , Qian J , Guo H , Niu J , Bogaerts A , Yi Y . Plasma‐driven CO2 hydrogenation to CH3OH over Fe2O3/γ‐Al2O3 catalyst. AIChE Journal. American Institute of Chemical Engineers, 2023, 69(10): e18154
CrossRef
Google scholar
|
[30] |
Michiels R , Engelmann Y , Bogaerts A . Plasma catalysis for CO2 hydrogenation: unlocking new pathways toward CH3OH. Journal of Physical Chemistry C, 2020, 124(47): 25859–25872
CrossRef
Google scholar
|
[31] |
WangJZhangKBogaertsAMeynenV. 3D porous catalysts for plasma-catalytic dry reforming of methane: how does the pore size affect the plasma-catalytic performance? Chemical Engineering Journal, 2023, 464: 142574
|
[32] |
Daoura O , Kaydouh M-N , El-Hassan N , Massiani P , Launay F , Boutros M . Mesocellular silica foam-based Ni catalysts for dry reforming of CH4 (by CO2). Journal of CO2 Utilization, 2018, 24: 112–119
|
[33] |
Yan X , Zhang L , Zhang Y , Qiao K , Yan Z , Komarneni S . Amine-modified mesocellular silica foams for CO2 capture. Chemical Engineering Journal, 2011, 168(2): 918–924
CrossRef
Google scholar
|
[34] |
Bai P , Zhao Z , Zhang Y , He Z , Liu Y , Wang C , Ma S , Wu P , Zhao L , Mintova S .
CrossRef
Google scholar
|
[35] |
Wu P , Cao Y , Zhao L , Wang Y , He Z , Xing W , Bai P , Mintova S , Yan Z . Formation of PdO on Au-Pd bimetallic catalysts and the effect on benzyl alcohol oxidation. Journal of Catalysis, 2019, 375: 32–43
CrossRef
Google scholar
|
[36] |
Wang S , Song L , Qu Z . Cu/ZnAl2O4 catalysts prepared by ammonia evaporation method: improving methanol selectivity in CO2 hydrogenation via regulation of metal-support interaction. Chemical Engineering Journal, 2023, 469: 144008
CrossRef
Google scholar
|
[37] |
Kuld S , Thorhauge M , Falsig H , Elkjær C F , Helveg S , Chorkendorff I , Sehested J . Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Science, 2016, 352(6288): 969–974
CrossRef
Google scholar
|
[38] |
Turco M , Bagnasco G , Cammarano C , Senese P , Costantino U , Sisani M . Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: the role of Cu and the dispersing oxide matrix. Applied Catalysis B: Environmental, 2007, 77(1-2): 46–57
CrossRef
Google scholar
|
[39] |
Arena F , Giovenco R , Torre T , Venuto A , Parmaliana A . Activity and resistance to leaching of Cu-based catalysts in the wet oxidation of phenol. Applied Catalysis B: Environmental, 2003, 45(1): 51–62
CrossRef
Google scholar
|
[40] |
Xiao K , Wang Q , Qi X , Zhong L . For better industrial Cu/ZnO/Al2O3 methanol synthesis catalyst: a compositional study. Catalysis Letters, 2017, 147(6): 1581–1591
CrossRef
Google scholar
|
[41] |
Navarro-Jaén S , Virginie M , Thuriot-Roukos J , Wojcieszak R , Khodakov A Y . Structure-performance correlations in the hybrid oxide-supported copper-zinc SAPO-34 catalysts for direct synthesis of dimethyl ether from CO2. Journal of Materials Science, 2022, 57(5): 3268–3279
CrossRef
Google scholar
|
[42] |
Xu S , Chansai S , Xu S , Stere C E , Jiao Y , Yang S , Hardacre C , Fan X . CO poisoning of Ru catalysts in CO2 hydrogenation under thermal and plasma conditions: a combined kinetic and diffuse reflectance infrared fourier transform spectroscopy-mass spectrometry study. ACS Catalysis, 2020, 10(21): 12828–12840
CrossRef
Google scholar
|
[43] |
Chen H , Mu Y , Shao Y , Chansai S , Xu S , Stere C E , Xiang H , Zhang R , Jiao Y , Hardacre C .
CrossRef
Google scholar
|
[44] |
Chen H , Mu Y , Shao Y , Chansai S , Xiang H , Jiao Y , Hardacre C , Fan X . Nonthermal plasma (NTP) activated metal-organic frameworks (MOFs) catalyst for catalytic CO2 hydrogenation. AIChE Journal, 2020, 66(4): e16853
CrossRef
Google scholar
|
[45] |
Zhang Q Z , Bogaerts A . Propagation of a plasma streamer in catalyst pores. Plasma Sources Science & Technology, 2018, 27(3): 035009
CrossRef
Google scholar
|
[46] |
Zhang Q Z , Bogaerts A . Plasma streamer propagation in structured catalysts. Plasma Sources Science & Technology, 2018, 27(10): 105013
CrossRef
Google scholar
|
[47] |
Kattel S , Ramírez P J , Chen J G , Rodriguez J A , Liu P . Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science, 2017, 355(6331): 1296–1299
CrossRef
Google scholar
|
[48] |
Yan Y , Wong R J , Ma Z , Donat F , Xi S , Saqline S , Fan Q , Du Y , Borgna A , He Q .
CrossRef
Google scholar
|
[49] |
Wang W , Qu Z , Song L , Fu Q . CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: tuning methanol selectivity via metal-support interaction. Journal of Energy Chemistry, 2020, 40: 22–30
CrossRef
Google scholar
|
/
〈 | 〉 |