Petroleum pitch derived hard carbon via NaCl-template as anode materials with high rate performance for sodium ion battery
Received date: 01 Dec 2023
Accepted date: 16 Feb 2024
Copyright
Sodium-ion batteries (SIBs) have garnered significant interest in energy storage due to their similar working mechanism to lithium ion batteries and abundant reserves of sodium resource. Exploring facile synthesis of a carbon-based anode materials with capable electrochemical performance is key to promoting the practical application of SIBs. In this work, a combination of petroleum pitch and recyclable sodium chloride is selected as the carbon source and template to obtain hard carbon (HC) anode for SIBs. Carbonization times and temperatures are optimized by assessing the sodium ion storage behavior of different HC materials. The optimized HC exhibits a remarkable capacity of over 430 mAh·g–1 after undergoing full activation through 500 cycles at a density of current of 0.1 A·g–1. Furthermore, it demonstrates an initial discharge capacity of 276 mAh·g–1 at a density of current of 0.5 A·g–1. Meanwhile, the optimized HC shows a good capacity retention (170 mAh·g–1 after 750 cycles) and a remarkable rate ability (166 mAh·g–1 at 2 A·g–1). The enhanced capacity is attributed to the suitable degree of graphitization and surface area, which improve the sodium ion transport and storage.
Key words: petroleum pitch; hard carbon; sodium-ion batteries; high rate; recyclable template
Baoyu Wu , Hao Sun , Xiaoxue Li , Yinyi Gao , Tianzeng Bao , Hongbin Wu , Kai Zhu , Dianxue Cao . Petroleum pitch derived hard carbon via NaCl-template as anode materials with high rate performance for sodium ion battery[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(7) : 73 . DOI: 10.1007/s11705-024-2430-4
1 |
Li T , Chen C J , Brozena A H , Zhu J Y , Xu L X , Driemeier C , Dai J Q , Rojas O J , Isogai A .
|
2 |
Sun Z F , Pan J H , Chen W W , Chen H Y , Zhou S H , Wu X Y , Wang Y S , Kim K , Li J , Liu H D .
|
3 |
Fu R N , Pan J H , Wang M Y , Min H H , Dong H H , Cai R , Sun Z F , Xiong Y W , Cui F H , Lei S Y .
|
4 |
Ma M Z , Zhang S P , Wang L F , Yao Y , Shao R W , Shen L , Yu L , Dai J Y , Jiang Y , Cheng X L .
|
5 |
Wang M , Wang Q C , Ding X Y , Wang Y S , Xin Y H , Singh P , Wu F , Gao H C . The prospect and challenges of sodium-ion batteries for low-temperature conditions. Interdisciplinary Materials, 2022, 1(3): 373–395
|
6 |
Ma Y , Shang R X , Liu Y H , Lake R , Ozkan M , Ozkan C S . Enabling fast-charging capability for all-solid-state lithium-ion batteries. Journal of Power Sources, 2023, 559: 232647
|
7 |
Nayak P K , Yang L T , Brehm W , Adelhelm P . From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angewandte Chemie International Edition, 2018, 57(1): 102–120
|
8 |
Zhang L P , Li X L , Yang M R , Chen W H . High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective. Energy Storage Materials, 2021, 41: 522–545
|
9 |
AbrahamK M. How comparable are sodium-ion batteries to lithium-ion counterparts? ACS Energy Letters, 2020, 5(11): 3544–3547
|
10 |
Tian Z H , Zhang Y , Zhu J X , Li Q Y , Liu T X , Antonietti M . A reanalysis of the diverse sodium species in carbon anodes for sodium ion batteries: a thermodynamic view. Advanced Energy Materials, 2021, 11(47): 2102489
|
11 |
Yao H , Li H Y , Ke B Y , Chu S Y , Guo S H , Zhou H S . Recent progress on honeycomb layered oxides as a durable cathode material for sodium-ion batteries. Small Methods, 2023, 7(6): 2201555
|
12 |
Yadav K , Ray N . Aluminene as a low-cost anode material for Li- and Na-ion batteries. ACS Applied Materials & Interfaces, 2023, 15(31): 37337–37343
|
13 |
Qiao S Y , Zhou Q W , Ma M , Liu H K , Dou S X , Chong S K . Advanced anode materials for rechargeable sodium-ion batteries. ACS Nano, 2023, 17(12): 11220–11252
|
14 |
Thangaraj B , Solomon P R , Hassan J . Nanocarbon in sodium-ion batteries—a review. Part 1: Zero-dimensional carbon dots. ChemBioEng Reviews, 2023, 10(5): 628–646
|
15 |
Ding J X , Zhou X Z , Gao J , Lei Z Q . Activating graphite with defects and oxygenic functional groups to boost sodium-ion storage. Nanoscale, 2023, 15(33): 13760–13769
|
16 |
Dai C L , Sun G Q , Hu L Y , Xiao Y K , Zhang Z P , Qu L T . Recent progress in graphene-based electrodes for flexible batteries. InfoMat, 2020, 2(3): 509–526
|
17 |
Li R , Yang B R , Hu A J , Zhou B , Liu M J , Yang L , Yan Z F , Fan Y N , Pan Y , Chen J H , Li T , Li K , Liu J , Long J . Heteroatom screening and microcrystal regulation of coal-derived hard carbon promises high-performance sodium-ion batteries. Carbon, 2023, 215: 118489
|
18 |
Wei H Y , Cheng H K , Yao N , Li G , Du Z Q , Luo R X , Zheng Z . Invasive alien plant biomass-derived hard carbon anode for sodium-ion batteries. Chemosphere, 2023, 343: 140220
|
19 |
Tai C W , Jao W Y , Tseng L , Wang P , Tu A P , Hu C C . Lithium-ion storage mechanism in closed pore-rich hard carbon with ultrahigh extra plateau capacity. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2023, 11(36): 19669–19684
|
20 |
Liu R F , Li Y L , Wang C L , Xiao N , He L , Guo H Y , Wan P , Zhou Y , Qiu J S . Enhanced electrochemical performances of coal liquefaction residue derived hard carbon coated by graphene as anode materials for sodium-ion batteries. Fuel Processing Technology, 2018, 178: 35–40
|
21 |
Saha B , Vedachalam S , Paul A K , Dalai A K , Saxena S , Roberts W L , Dryer F L . Microwave-assisted solvent deasphalting of heavy fuel oil and process parameters optimization. Fuel, 2023, 351: 128818
|
22 |
Saad S , Zeraati A S , Roy S , Shahriar Rahman Saadi M A , Radović J R , Rajeev A , Miller K A , Bhattacharyya S , Larter S R , Natale G , Sundararaj U , Ajayan P M , Rahman M M , Kibria M G . Transformation of petroleum asphaltenes to carbon fibers. Carbon, 2022, 190: 92–103
|
23 |
Tazikeh S , Sayyad Amin J , Zendehboudi S , Dejam M , Chatzis I . Bi-fractal and bi-Gaussian theories to evaluate impact of polythiophene-coated Fe3O4 nanoparticles on asphaltene precipitation and surface topography. Fuel, 2020, 272: 117535
|
24 |
Kamkar M , Natale G . A review on novel applications of asphaltenes: a valuable waste. Fuel, 2021, 285: 119272
|
25 |
Hung A M , Fini E H . Absorption spectroscopy to determine the extent and mechanisms of aging in bitumen and asphaltenes. Fuel, 2019, 242: 408–415
|
26 |
Kim J W , Kim D W , Lee S Y , Park S J . A study on pre-oxidation of petroleum pitch-based activated carbons for electric double-layer capacitors. Molecules, 2022, 27(10): 3241
|
27 |
Scherschel A , Harrell T , Sushchenko A , Li X D . Exploration of fibers produced from petroleum based-mesophase pitch and pet blends for carbon fiber production. Journal of Polymer Research, 2023, 30(9): 351
|
28 |
Ma W , Li W L , Ran S , Yang G F , Wang T M . A superior microwave absorption material of porous carbon nanosheet/Fe3O4 composites from petroleum asphalt as carbon source. Journal of Materials Science, 2023, 58(33): 13279–13294
|
29 |
Yang W , Deng B J , Hou L Q , Wang T H , Tian J B , Wang S , Li R , Yang F , Li Y F . Sulfur-fixation strategy toward controllable synthesis of molybdenum-based/carbon nanosheets derived from petroleum asphalt. Chemical Engineering Journal, 2020, 380: 122552
|
30 |
Ning H , Wang X S , Wang W H , Mao Q H , Yang Z X , Zhao Q S , Song Y , Wu M B . Cubic Cu2O on nitrogen-doped carbon shells for electrocatalytic CO2 reduction to C2H4. Carbon, 2019, 146: 218–223
|
31 |
Lu Y X , Zhao C L , Qi X G , Qi Y R , Li H , Huang X J , Chen L Q , Hu Y S . Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance. Advanced Energy Materials, 2018, 8(27): 1800108
|
32 |
Cao B , Liu H , Xu B , Lei Y F , Chen X H , Song H H . Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(17): 6472–6478
|
33 |
Kamiyama A , Kubota K , Igarashi D , Youn Y , Tateyama Y , Ando H , Gotoh K , Komaba S . MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery. Angewandte Chemie International Edition, 2021, 60(10): 5114–5120
|
34 |
Li Y Q , Lu Y X , Meng Q S , Jensen A C S , Zhang Q Q , Zhang Q H , Tong Y X , Qi Y , Gu L , Titirici M M .
|
35 |
Üstün B , Aydın H , Koç S N , Uluslu A , Kurtan Ü . Electrospun polyethylenimine (PEI)-derived nitrogen enriched carbon nanofiber for supercapacitors with artificial neural network modeling. Journal of Energy Storage, 2023, 73: 108970
|
36 |
Wang J F , Yuan Y F , Lin Z C , Lin J J , Li S B , Huang Y Z , Guo S Y , Yan W W . Boosting lithium storage performance of Co-Sn double hydroxide nanocubes in-situ grown in mesoporous hollow carbon nanospheres. Electrochimica Acta, 2023, 465: 142971
|
37 |
Tang Z , Zhang R , Wang H Y , Zhou S Y , Pan Z Y , Huang Y C , Sun D , Tang Y G , Ji X B , Amine K , Shao M . Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery. Nature Communications, 2023, 14(1): 6024
|
38 |
Long B J , Zhao R , Zhang J , Wang L , Chen X Q , Du Y X , Yuan G M , Dong Z J , Li X K . Stabilization residual oxygen reduces sulfur activity in hard carbon anode for sodium-ion batteries. Journal of Materials Science, 2022, 57(37): 17711–17721
|
39 |
Li W B , Guo X N , Song K M , Chen J C , Zhang J Y , Tang G C , Liu C T , Chen W H , Shen C Y . Binder-induced ultrathin SEI for defect-passivated hard carbon enables highly reversible sodium-ion storage. Advanced Energy Materials, 2023, 13(22): 2300648
|
40 |
Ma L A , Buckel A , Hofmann A , Nyholm L , Younesi R . Fundamental understanding and quantification of capacity losses involving the negative electrode in sodium-ion batteries. Advancement of Science, 2023, 20: 2306771
|
41 |
Glatthaar C , Wang M , Wagner L Q , Breckwoldt F , Guo Z Y , Zheng K T , Kriechbaum M , Amenitsch H , Titirici M M , Smarsly B M . Lignin-derived mesoporous carbon for sodium-ion batteries: block copolymer soft templating and carbon microstructure analysis. Chemistry of Materials, 2023, 35(24): 10416–10433
|
42 |
Chen H , Sun N , Wang Y X , Soomro R A , Xu B . One stone two birds: pitch assisted microcrystalline regulation and defect engineering in coal-based carbon anodes for sodium-ion batteries. Energy Storage Materials, 2023, 56: 532–541
|
43 |
Xie F , Xu Z , Jensen A C S , Au H , Lu Y X , Araullo-Peters V , Drew A J , Hu Y S , Titirici M M . Hard-soft carbon composite anodes with synergistic sodium storage performance. Advanced Functional Materials, 2019, 29(24): 1901072
|
44 |
Wang M H , Ji S , Wang H , Linkov V , Wang X Y , Wang R F . Electrocatalytic performance of Ni-promoted Co nanoclusters supported by N-doped carbon foams for rechargeable Zn-air batteries. Journal of Power Sources, 2023, 571: 233069
|
45 |
Zhang P , Shu Y R , Wang Y , Ye J H , Yang L . Simple and efficient synthesis methods for fabricating anode materials of sodium-ion batteries and their sodium-ion storage mechanism study. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2023, 11(6): 2920–2932
|
46 |
Zhang Z H , Huang G X , Qu X X , Liu Y H , Liu Z Y , Jia J B , Xing B L , Zhang C X . An effective strategy to prepare non-graphitic carbon with increased pseudo-graphitic content for sodium-ion battery anode with enhanced plateau capacity. Chemical Engineering Journal, 2023, 477: 147188
|
47 |
Siebert A , Dou X W , Garcia-Diez R , Buchholz D , Félix R , Handick E , Wilks R G , Passerini S , Bär M . Solid electrolyte interphase formation on anatase TiO2 nanoparticle-based electrodes for sodium-ion batteries. ACS Applied Energy Materials, 2024, 7(1): 125–132
|
48 |
Liang Y Z , Song N , Zhang M Z , An X G , Song K P , Chen W H , Feng J K , Xiong S L , Xi B J . Robust interfacial chemistry induced by B-doping enables rapid, stable sodium storage. Advanced Energy Materials, 2023, 13(47): 2302825
|
49 |
Han B , Zou Y C , Zhang Z , Yang X M , Shi X B , Meng H , Wang H , Xu K , Deng Y H , Gu M . Probing the Na metal solid electrolyte interphase via cryo-transmission electron microscopy. Nature Communications, 2021, 12(1): 3066
|
/
〈 | 〉 |