Petroleum pitch derived hard carbon via NaCl-template as anode materials with high rate performance for sodium ion battery

  • Baoyu Wu 1 ,
  • Hao Sun 1 ,
  • Xiaoxue Li 1 ,
  • Yinyi Gao 1 ,
  • Tianzeng Bao 2 ,
  • Hongbin Wu 2 ,
  • Kai Zhu , 1 ,
  • Dianxue Cao , 1
Expand
  • 1. Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
  • 2. Hunan Hongshan New Energy Technology Co., Ltd, Yiyang 413000, China
kzhu@hrbeu.edu.cn
caodianxue@hrbeu.edu.cn

Received date: 01 Dec 2023

Accepted date: 16 Feb 2024

Copyright

2024 Higher Education Press

Abstract

Sodium-ion batteries (SIBs) have garnered significant interest in energy storage due to their similar working mechanism to lithium ion batteries and abundant reserves of sodium resource. Exploring facile synthesis of a carbon-based anode materials with capable electrochemical performance is key to promoting the practical application of SIBs. In this work, a combination of petroleum pitch and recyclable sodium chloride is selected as the carbon source and template to obtain hard carbon (HC) anode for SIBs. Carbonization times and temperatures are optimized by assessing the sodium ion storage behavior of different HC materials. The optimized HC exhibits a remarkable capacity of over 430 mAh·g–1 after undergoing full activation through 500 cycles at a density of current of 0.1 A·g–1. Furthermore, it demonstrates an initial discharge capacity of 276 mAh·g–1 at a density of current of 0.5 A·g–1. Meanwhile, the optimized HC shows a good capacity retention (170 mAh·g–1 after 750 cycles) and a remarkable rate ability (166 mAh·g–1 at 2 A·g–1). The enhanced capacity is attributed to the suitable degree of graphitization and surface area, which improve the sodium ion transport and storage.

Cite this article

Baoyu Wu , Hao Sun , Xiaoxue Li , Yinyi Gao , Tianzeng Bao , Hongbin Wu , Kai Zhu , Dianxue Cao . Petroleum pitch derived hard carbon via NaCl-template as anode materials with high rate performance for sodium ion battery[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(7) : 73 . DOI: 10.1007/s11705-024-2430-4

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by Heilongjiang Province Key R&D Program (Grant No. GA22A014).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2430-4 and is accessible for authorized users.
1
Li T , Chen C J , Brozena A H , Zhu J Y , Xu L X , Driemeier C , Dai J Q , Rojas O J , Isogai A . . Developing fibrillated cellulose as a sustainable technological material. Nature, 2021, 590(7844): 47–56

DOI

2
Sun Z F , Pan J H , Chen W W , Chen H Y , Zhou S H , Wu X Y , Wang Y S , Kim K , Li J , Liu H D . . Electrochemical processes and reactions in rechargeable battery materials revealed via in situ transmission electron microscopy. Advanced Energy Materials, 2024, 14(2): 2303165

DOI

3
Fu R N , Pan J H , Wang M Y , Min H H , Dong H H , Cai R , Sun Z F , Xiong Y W , Cui F H , Lei S Y . . In situ atomic-scale deciphering of multiple dynamic phase transformations and reversible sodium storage in ternary metal sulfide anode. ACS Nano, 2023, 17(13): 12483–12498

DOI

4
Ma M Z , Zhang S P , Wang L F , Yao Y , Shao R W , Shen L , Yu L , Dai J Y , Jiang Y , Cheng X L . . Harnessing the volume expansion of MoS3 anode by structure engineering to achieve high performance beyond lithium-based rechargeable batteries. Advanced Materials, 2021, 33(45): 2106232

DOI

5
Wang M , Wang Q C , Ding X Y , Wang Y S , Xin Y H , Singh P , Wu F , Gao H C . The prospect and challenges of sodium-ion batteries for low-temperature conditions. Interdisciplinary Materials, 2022, 1(3): 373–395

DOI

6
Ma Y , Shang R X , Liu Y H , Lake R , Ozkan M , Ozkan C S . Enabling fast-charging capability for all-solid-state lithium-ion batteries. Journal of Power Sources, 2023, 559: 232647

DOI

7
Nayak P K , Yang L T , Brehm W , Adelhelm P . From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angewandte Chemie International Edition, 2018, 57(1): 102–120

DOI

8
Zhang L P , Li X L , Yang M R , Chen W H . High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective. Energy Storage Materials, 2021, 41: 522–545

DOI

9
AbrahamK M. How comparable are sodium-ion batteries to lithium-ion counterparts? ACS Energy Letters, 2020, 5(11): 3544–3547

10
Tian Z H , Zhang Y , Zhu J X , Li Q Y , Liu T X , Antonietti M . A reanalysis of the diverse sodium species in carbon anodes for sodium ion batteries: a thermodynamic view. Advanced Energy Materials, 2021, 11(47): 2102489

DOI

11
Yao H , Li H Y , Ke B Y , Chu S Y , Guo S H , Zhou H S . Recent progress on honeycomb layered oxides as a durable cathode material for sodium-ion batteries. Small Methods, 2023, 7(6): 2201555

DOI

12
Yadav K , Ray N . Aluminene as a low-cost anode material for Li- and Na-ion batteries. ACS Applied Materials & Interfaces, 2023, 15(31): 37337–37343

DOI

13
Qiao S Y , Zhou Q W , Ma M , Liu H K , Dou S X , Chong S K . Advanced anode materials for rechargeable sodium-ion batteries. ACS Nano, 2023, 17(12): 11220–11252

DOI

14
Thangaraj B , Solomon P R , Hassan J . Nanocarbon in sodium-ion batteries—a review. Part 1: Zero-dimensional carbon dots. ChemBioEng Reviews, 2023, 10(5): 628–646

DOI

15
Ding J X , Zhou X Z , Gao J , Lei Z Q . Activating graphite with defects and oxygenic functional groups to boost sodium-ion storage. Nanoscale, 2023, 15(33): 13760–13769

DOI

16
Dai C L , Sun G Q , Hu L Y , Xiao Y K , Zhang Z P , Qu L T . Recent progress in graphene-based electrodes for flexible batteries. InfoMat, 2020, 2(3): 509–526

DOI

17
Li R , Yang B R , Hu A J , Zhou B , Liu M J , Yang L , Yan Z F , Fan Y N , Pan Y , Chen J H , Li T , Li K , Liu J , Long J . Heteroatom screening and microcrystal regulation of coal-derived hard carbon promises high-performance sodium-ion batteries. Carbon, 2023, 215: 118489

DOI

18
Wei H Y , Cheng H K , Yao N , Li G , Du Z Q , Luo R X , Zheng Z . Invasive alien plant biomass-derived hard carbon anode for sodium-ion batteries. Chemosphere, 2023, 343: 140220

DOI

19
Tai C W , Jao W Y , Tseng L , Wang P , Tu A P , Hu C C . Lithium-ion storage mechanism in closed pore-rich hard carbon with ultrahigh extra plateau capacity. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2023, 11(36): 19669–19684

DOI

20
Liu R F , Li Y L , Wang C L , Xiao N , He L , Guo H Y , Wan P , Zhou Y , Qiu J S . Enhanced electrochemical performances of coal liquefaction residue derived hard carbon coated by graphene as anode materials for sodium-ion batteries. Fuel Processing Technology, 2018, 178: 35–40

DOI

21
Saha B , Vedachalam S , Paul A K , Dalai A K , Saxena S , Roberts W L , Dryer F L . Microwave-assisted solvent deasphalting of heavy fuel oil and process parameters optimization. Fuel, 2023, 351: 128818

DOI

22
Saad S , Zeraati A S , Roy S , Shahriar Rahman Saadi M A , Radović J R , Rajeev A , Miller K A , Bhattacharyya S , Larter S R , Natale G , Sundararaj U , Ajayan P M , Rahman M M , Kibria M G . Transformation of petroleum asphaltenes to carbon fibers. Carbon, 2022, 190: 92–103

DOI

23
Tazikeh S , Sayyad Amin J , Zendehboudi S , Dejam M , Chatzis I . Bi-fractal and bi-Gaussian theories to evaluate impact of polythiophene-coated Fe3O4 nanoparticles on asphaltene precipitation and surface topography. Fuel, 2020, 272: 117535

DOI

24
Kamkar M , Natale G . A review on novel applications of asphaltenes: a valuable waste. Fuel, 2021, 285: 119272

DOI

25
Hung A M , Fini E H . Absorption spectroscopy to determine the extent and mechanisms of aging in bitumen and asphaltenes. Fuel, 2019, 242: 408–415

DOI

26
Kim J W , Kim D W , Lee S Y , Park S J . A study on pre-oxidation of petroleum pitch-based activated carbons for electric double-layer capacitors. Molecules, 2022, 27(10): 3241

DOI

27
Scherschel A , Harrell T , Sushchenko A , Li X D . Exploration of fibers produced from petroleum based-mesophase pitch and pet blends for carbon fiber production. Journal of Polymer Research, 2023, 30(9): 351

DOI

28
Ma W , Li W L , Ran S , Yang G F , Wang T M . A superior microwave absorption material of porous carbon nanosheet/Fe3O4 composites from petroleum asphalt as carbon source. Journal of Materials Science, 2023, 58(33): 13279–13294

DOI

29
Yang W , Deng B J , Hou L Q , Wang T H , Tian J B , Wang S , Li R , Yang F , Li Y F . Sulfur-fixation strategy toward controllable synthesis of molybdenum-based/carbon nanosheets derived from petroleum asphalt. Chemical Engineering Journal, 2020, 380: 122552

DOI

30
Ning H , Wang X S , Wang W H , Mao Q H , Yang Z X , Zhao Q S , Song Y , Wu M B . Cubic Cu2O on nitrogen-doped carbon shells for electrocatalytic CO2 reduction to C2H4. Carbon, 2019, 146: 218–223

DOI

31
Lu Y X , Zhao C L , Qi X G , Qi Y R , Li H , Huang X J , Chen L Q , Hu Y S . Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance. Advanced Energy Materials, 2018, 8(27): 1800108

DOI

32
Cao B , Liu H , Xu B , Lei Y F , Chen X H , Song H H . Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(17): 6472–6478

DOI

33
Kamiyama A , Kubota K , Igarashi D , Youn Y , Tateyama Y , Ando H , Gotoh K , Komaba S . MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery. Angewandte Chemie International Edition, 2021, 60(10): 5114–5120

DOI

34
Li Y Q , Lu Y X , Meng Q S , Jensen A C S , Zhang Q Q , Zhang Q H , Tong Y X , Qi Y , Gu L , Titirici M M . . Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Advanced Energy Materials, 2019, 9(48): 1902852

DOI

35
Üstün B , Aydın H , Koç S N , Uluslu A , Kurtan Ü . Electrospun polyethylenimine (PEI)-derived nitrogen enriched carbon nanofiber for supercapacitors with artificial neural network modeling. Journal of Energy Storage, 2023, 73: 108970

DOI

36
Wang J F , Yuan Y F , Lin Z C , Lin J J , Li S B , Huang Y Z , Guo S Y , Yan W W . Boosting lithium storage performance of Co-Sn double hydroxide nanocubes in-situ grown in mesoporous hollow carbon nanospheres. Electrochimica Acta, 2023, 465: 142971

DOI

37
Tang Z , Zhang R , Wang H Y , Zhou S Y , Pan Z Y , Huang Y C , Sun D , Tang Y G , Ji X B , Amine K , Shao M . Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery. Nature Communications, 2023, 14(1): 6024

DOI

38
Long B J , Zhao R , Zhang J , Wang L , Chen X Q , Du Y X , Yuan G M , Dong Z J , Li X K . Stabilization residual oxygen reduces sulfur activity in hard carbon anode for sodium-ion batteries. Journal of Materials Science, 2022, 57(37): 17711–17721

DOI

39
Li W B , Guo X N , Song K M , Chen J C , Zhang J Y , Tang G C , Liu C T , Chen W H , Shen C Y . Binder-induced ultrathin SEI for defect-passivated hard carbon enables highly reversible sodium-ion storage. Advanced Energy Materials, 2023, 13(22): 2300648

DOI

40
Ma L A , Buckel A , Hofmann A , Nyholm L , Younesi R . Fundamental understanding and quantification of capacity losses involving the negative electrode in sodium-ion batteries. Advancement of Science, 2023, 20: 2306771

41
Glatthaar C , Wang M , Wagner L Q , Breckwoldt F , Guo Z Y , Zheng K T , Kriechbaum M , Amenitsch H , Titirici M M , Smarsly B M . Lignin-derived mesoporous carbon for sodium-ion batteries: block copolymer soft templating and carbon microstructure analysis. Chemistry of Materials, 2023, 35(24): 10416–10433

DOI

42
Chen H , Sun N , Wang Y X , Soomro R A , Xu B . One stone two birds: pitch assisted microcrystalline regulation and defect engineering in coal-based carbon anodes for sodium-ion batteries. Energy Storage Materials, 2023, 56: 532–541

DOI

43
Xie F , Xu Z , Jensen A C S , Au H , Lu Y X , Araullo-Peters V , Drew A J , Hu Y S , Titirici M M . Hard-soft carbon composite anodes with synergistic sodium storage performance. Advanced Functional Materials, 2019, 29(24): 1901072

DOI

44
Wang M H , Ji S , Wang H , Linkov V , Wang X Y , Wang R F . Electrocatalytic performance of Ni-promoted Co nanoclusters supported by N-doped carbon foams for rechargeable Zn-air batteries. Journal of Power Sources, 2023, 571: 233069

DOI

45
Zhang P , Shu Y R , Wang Y , Ye J H , Yang L . Simple and efficient synthesis methods for fabricating anode materials of sodium-ion batteries and their sodium-ion storage mechanism study. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2023, 11(6): 2920–2932

DOI

46
Zhang Z H , Huang G X , Qu X X , Liu Y H , Liu Z Y , Jia J B , Xing B L , Zhang C X . An effective strategy to prepare non-graphitic carbon with increased pseudo-graphitic content for sodium-ion battery anode with enhanced plateau capacity. Chemical Engineering Journal, 2023, 477: 147188

DOI

47
Siebert A , Dou X W , Garcia-Diez R , Buchholz D , Félix R , Handick E , Wilks R G , Passerini S , Bär M . Solid electrolyte interphase formation on anatase TiO2 nanoparticle-based electrodes for sodium-ion batteries. ACS Applied Energy Materials, 2024, 7(1): 125–132

DOI

48
Liang Y Z , Song N , Zhang M Z , An X G , Song K P , Chen W H , Feng J K , Xiong S L , Xi B J . Robust interfacial chemistry induced by B-doping enables rapid, stable sodium storage. Advanced Energy Materials, 2023, 13(47): 2302825

DOI

49
Han B , Zou Y C , Zhang Z , Yang X M , Shi X B , Meng H , Wang H , Xu K , Deng Y H , Gu M . Probing the Na metal solid electrolyte interphase via cryo-transmission electron microscopy. Nature Communications, 2021, 12(1): 3066

DOI

Outlines

/