Defect engineering on constructing surface active sites in catalysts for environment and energy applications
Received date: 15 Dec 2023
Accepted date: 02 Feb 2024
Copyright
The precise engineering of surface active sites is deemed as an efficient protocol for regulating surfaces and catalytic properties of catalysts. Defect engineering is the most feasible option to modulate the surface active sites of catalysts. Creating specific active sites on the catalyst allows precise modulation of its electronic structure and physicochemical characteristics. Here, we outlined the engineering of several types of defects, including vacancy defects, void defects, dopant-related defects, and defect-based single atomic sites. An overview of progress in fabricating structural defects on catalysts via de novo synthesis or post-synthetic modification was provided. Then, the applications of the well-designed defective catalysts in energy conversion and environmental remediation were carefully elucidated. Finally, current challenges in the precise construction of active defect sites on the catalyst and future perspectives for the development directions of precisely controlled synthesis of defective catalysts were also proposed.
Key words: defect engineering; vacancy; void defects; doping; single atomic sites
Yawen Cai , Baowei Hu , Xiangke Wang . Defect engineering on constructing surface active sites in catalysts for environment and energy applications[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(7) : 74 . DOI: 10.1007/s11705-024-2427-z
1 |
Beller M , Centi G . Catalysis and sustainable development: the marriage for innovation. ChemSusChem, 2009, 2(6): 459–460
|
2 |
Linares N , Silvestre-Albero A M , Serrano E , Silvestre-Albero J , García-Martínez J . Mesoporous materials for clean energy technologies. Chemical Society Reviews, 2014, 43(22): 7681–7717
|
3 |
Roduner E . Understanding catalysis. Chemical Society Reviews, 2014, 43(24): 8226–8239
|
4 |
Vogt C , Weckhuysen B M . The concept of active site in heterogeneous catalysis. Nature Reviews Chemistry, 2022, 6(2): 89–111
|
5 |
Wang Y , Chen L , Cao H , Chi Z , Chen C , Duan X , Xie Y , Qi F , Song W , Liu J .
|
6 |
Hattori H . Solid base catalysts: generation of basic sites and application to organic synthesis. Applied Catalysis A, General, 2001, 222(1-2): 247–259
|
7 |
Wachs I E , Roberts C A . Monitoring surface metal oxide catalytic active sites with Raman spectroscopy. Chemical Society Reviews, 2010, 39(12): 5002–5017
|
8 |
Du Y , Sheng H , Astruc D , Zhu M . Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chemical Reviews, 2020, 120(2): 526–622
|
9 |
Kröger F . Defect chemistry in crystalline solids. Annual Review of Materials Science, 1977, 7(1): 449–475
|
10 |
Tang T , Wang Z , Guan J . A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction. Chinese Journal of Catalysis, 2022, 43(3): 636–678
|
11 |
Thomas J M , Raja R , Lewis D W . Single-site heterogeneous catalysts. Angewandte Chemie International Edition, 2005, 44(40): 6456–6482
|
12 |
Liu L , Corma A . Structural transformations of solid electrocatalysts and photocatalysts. Nature Reviews Chemistry, 2021, 5(4): 256–276
|
13 |
Zambelli T , Wintterlin J , Trost J , Ertl G . Identification of the “active sites” of a surface-catalyzed reaction. Science, 1996, 273(5282): 1688–1690
|
14 |
Sun Y , Gao S , Lei F , Xie Y . Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chemical Society Reviews, 2015, 44(3): 623–636
|
15 |
Yan D , Li Y , Huo J , Chen R , Dai L , Wang S . Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Advanced Materials, 2017, 29(48): 1606459
|
16 |
Xie C , Yan D , Li H , Du S , Chen W , Wang Y , Zou Y , Chen R , Wang S . Defect chemistry in heterogeneous catalysis: recognition, understanding, and utilization. ACS Catalysis, 2020, 10(19): 11082–11098
|
17 |
Lannoo M , Bourgoin J . Atomic configuration of point defects. In: Point Defects in Semiconductors I. Springer Series in Solid-State Sciences. Berlin, Heidelberg: Springer-Verlag, 1981, 22: 1–35
|
18 |
Leonardi A , Scardi P . Dislocation effects on the diffraction line profiles from nanocrystalline domains. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 2016, 47(12): 5722–5732
|
19 |
Hemesath E R , Schreiber D K , Gulsoy E B , Kisielowski C F , Petford-Long A K , Voorhees P W , Lauhon L J . Catalyst incorporation at defects during nanowire growth. Nano Letters, 2012, 12(1): 167–171
|
20 |
Rudolph P . Fundamentals and engineering of defects. Progress in Crystal Growth and Characterization of Materials, 2016, 62(2): 89–110
|
21 |
Murakami Y . Material defects as the basis of fatigue design. International Journal of Fatigue, 2012, 41: 2–10
|
22 |
Schlögl R . Heterogeneous catalysis. Angewandte Chemie International Edition, 2015, 54(11): 3465–3520
|
23 |
Zhang Y , Gao F , You H , Li Z , Zou B , Du Y . Recent advances in one-dimensional noble-metal-based catalysts with multiple structures for efficient fuel-cell electrocatalysis. Coordination Chemistry Reviews, 2022, 450: 214244
|
24 |
Wang B , Liu J , Yao S , Liu F , Li Y , He J , Lin Z , Huang F , Liu C , Wang M . Vacancy engineering in nanostructured semiconductors for enhancing photocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(32): 17143–17172
|
25 |
Sun Y , Wang H , Xing Q , Cui W , Li J , Wu S , Sun L . The pivotal effects of oxygen vacancy on Bi2MoO6: promoted visible light photocatalytic activity and reaction mechanism. Chinese Journal of Catalysis, 2019, 40(5): 647–655
|
26 |
Guan S , Wang L , Xu S , Yang D , Waterhouse G I N , Qu X , Zhou S . Vacancy-enhanced generation of singlet oxygen for photodynamic therapy. Chemical Science, 2019, 10(8): 2336–2341
|
27 |
Zheng X , Li Y , Zhang L , Shen L , Xiao Y , Zhang Y , Au C , Jiang L . Insight into the effect of morphology on catalytic performance of porous CeO2 nanocrystals for H2S selective oxidation. Applied Catalysis B: Environmental, 2019, 252: 98–110
|
28 |
Zhou S , Jin W , Ding Y , Shao B , Wang B , Hu X , Kong Y . In-situ intercalation of Au nanoparticles and magnetic γ-Fe2O3 in the walls of MCM-41 with abundant void defects for highly efficient reduction of 4-nitrophenol and organic dyes. Dalton Transactions, 2018, 47(47): 16862–16875
|
29 |
Tang Q , Ma Y , Wang J . The active sites engineering of catalysts for CO2 activation and conversion. Solar RRL, 2021, 5(2): 2000443
|
30 |
Connell G , Dumesic J A . The generation of Brønsted and Lewis acid sites on the surface of silica by addition of dopant cations. Journal of Catalysis, 1987, 105(2): 285–298
|
31 |
Lee J , Kumar A , Kim M G , Yang T , Shao X , Liu X , Liu Y , Hong Y , Jadhav A R , Liang M .
|
32 |
Zhang Y , Guo L , Tao L , Lu Y , Wang S . Defect-based single-atom electrocatalysts. Small Methods, 2019, 3(9): 1800406
|
33 |
Xue Q , Xie Y , Wu S , Wu T , Soo Y , Day S , Tang C C , Man H W , Yuen S T , Wong K .
|
34 |
Xi J , Jung H S , Xu Y , Xiao F , Bae J W , Wang S . Synthesis strategies, catalytic applications, and performance regulation of single-atom catalysts. Advanced Functional Materials, 2021, 31(12): 2008318
|
35 |
Liu D , He Q , Ding S , Song L . Structural regulation and support coupling effect of single-atom catalysts for heterogeneous catalysis. Advanced Energy Materials, 2020, 10(32): 2001482
|
36 |
Lang R , Du X , Huang Y , Jiang X , Zhang Q , Guo Y , Liu K , Qiao B , Wang A , Zhang T . Single-atom catalysts based on the metal-oxide interaction. Chemical Reviews, 2020, 120(21): 11986–12043
|
37 |
Bai S , Zhang N , Gao C , Xiong Y . Defect engineering in photocatalytic materials. Nano Energy, 2018, 53: 296–336
|
38 |
Zhuang G , Yan J , Wen Y , Zhuang Z , Yu Y . Two-dimensional transition metal oxides and chalcogenides for advanced photocatalysis: progress, challenges, and opportunities. Solar RRL, 2021, 5(6): 2000403
|
39 |
Zhou Y , Wang F , Zhou J , Dong B , Dong Y , Liu X , Liu B , Yu J , Chai Y . Triple captured iron by defect abundant NiO for efficient water oxidation. Inorganic Chemistry Frontiers, 2022, 9(6): 1281–1292
|
40 |
Gao W , Chi J , Wang Z , Lin J , Liu D , Zeng J , Yu J , Wang L , Chai Y , Dong B . Optimized bimetallic nickel-iron phosphides with rich defects as enhanced electrocatalysts for oxygen evolution reaction. Journal of Colloid and Interface Science, 2019, 537: 11–19
|
41 |
Ye G , Wan L , Zhang Q , Liu H , Zhou J , Wu L , Zeng X , Wang H , Chen X , Wang J . Boosting catalytic performance of MOF-808(Zr) by direct generation of rich defective Zr nodes via a solvent-free approach. Inorganic Chemistry, 2023, 62(10): 4248–4259
|
42 |
Fang Z , Bueken B , De Vos D E , Fischer R A . Defect-engineered metal-organic frameworks. Angewandte Chemie International Edition, 2015, 54(25): 7234–7254
|
43 |
ShollD SLivelyR P. Defects in metal-organic frameworks: challenge or opportunity? Journal of Physical Chemistry Letters, 2015, 6(17): 3437–3444
|
44 |
Gao P , Chen Z , Gong Y , Zhang R , Liu H , Tang P , Chen X , Passerini S , Liu J . The role of cation vacancies in electrode materials for enhanced electrochemical energy storage: synthesis, advanced characterization, and fundamentals. Advanced Energy Materials, 2020, 10(14): 1903780
|
45 |
Pang Q , Yang L , Li Q . Vacancies in metal-organic frameworks: formation, arrangement, and functions. Small Structures, 2022, 3(5): 2100203
|
46 |
Wu Y , Li Y , Gao J , Zhang Q . Recent advances in vacancy engineering of metal-organic frameworks and their derivatives for electrocatalysis. SusMat, 2021, 1(1): 66–87
|
47 |
Ren J , Ledwaba M , Musyoka N M , Langmi H W , Mathe M , Liao S , Pang W . Structural defects in metal-organic frameworks (MOFs): formation, detection and control towards practices of interests. Coordination Chemistry Reviews, 2017, 349: 169–197
|
48 |
Cirujano F G , Martin N , Wee L H . Design of hierarchical architectures in metal-oganic frameworks for catalysis and adsorption. Chemistry of Materials, 2020, 32(24): 10268–10295
|
49 |
Lázaro I A , Szalad H , Valiente P , Albero J , García H , Martí-Gastaldo C . Tuning the photocatalytic activity of Ti-based metal-organic frameworks through modulator defect-engineered functionalization. ACS Applied Materials & Interfaces, 2022, 14(18): 21007–21017
|
50 |
Wei R , Gaggioli C A , Li G , Islamoglu T , Zhang Z , Yu P , Farha O K , Cramer C J , Gagliardi L , Yang D .
|
51 |
Barin G , Krungleviciute V , Gutov O , Hupp J T , Yildirim T , Farha O K . Defect creation by linker fragmentation in metal-organic frameworks and its effects on gas uptake properties. Inorganic Chemistry, 2014, 53(13): 6914–6919
|
52 |
El-Gamel N E . Generation of defect-modulated metal-organic frameworks by fragmented-linker co-assembly of CPO-27(M) frameworks. European Journal of Inorganic Chemistry, 2015, 2015(8): 1351–1358
|
53 |
Fan Z , Wang J , Wang W , Burger S , Wang Z , Wang Y , Wöll C , Cokoja M , Fischer R A . Defect engineering of copper paddlewheel-based metal-organic frameworks of type NOTT-100: implementing truncated linkers and its effect on catalytic properties. ACS Applied Materials & Interfaces, 2020, 12(34): 37993–38002
|
54 |
Lei L , Huang D , Cheng M , Deng R , Chen S , Chen Y , Wang W . Defects engineering of bimetallic Ni-based catalysts for electrochemical energy conversion. Coordination Chemistry Reviews, 2020, 418: 213372
|
55 |
Zhang X , Zhang Z , Huang H , Wang Y , Tong N , Lin J , Liu D , Wang X . Oxygen vacancy modulation of two-dimensional γ-Ga2O3 nanosheets as efficient catalysts for photocatalytic hydrogen evolution. Nanoscale, 2018, 10(45): 21509–21517
|
56 |
Chen S , Huang H , Zhao D , Zhou J , Yu J , Qu B , Liu Q , Sun H , Zhao J . Direct growth of polycrystalline GaN porous layer with rich nitrogen vacancies: application to catalyst-free electrochemical detection. ACS Applied Materials & Interfaces, 2020, 12(48): 53807–53815
|
57 |
Wang J , Lin S , Tian N , Ma T , Zhang Y , Huang H . Nanostructured metal sulfides: classification, modification strategy, and solar-driven CO2 reduction application. Advanced Functional Materials, 2021, 31(9): 2008008
|
58 |
Jing X , Lu N , Huang J , Zhang P , Zhang Z . One-step hydrothermal synthesis of S-defect-controlled ZnIn2S4 microflowers with improved kinetics process of charge-carriers for photocatalytic H2 evolution. Journal of Energy Chemistry, 2021, 58: 397–407
|
59 |
Li K , Yang J , Gu J . Hierarchically porous MOFs synthesized by soft-template strategies. Accounts of Chemical Research, 2022, 55(16): 2235–2247
|
60 |
Cai G , Jiang H L . A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability. Angewandte Chemie International Edition, 2017, 56(2): 563–567
|
61 |
Yuan D , Zhao D , Sun D , Zhou H . An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angewandte Chemie, 2010, 122(31): 5485–5489
|
62 |
Zhao D , Yuan D , Sun D , Zhou H . Stabilization of metal-organic frameworks with high surface areas by the incorporation of mesocavities with microwindows. Journal of the American Chemical Society, 2009, 131(26): 9186–9188
|
63 |
Farha O K , Yazaydın A Ö , Eryazici I , Malliakas C D , Hauser B G , Kanatzidis M G , Nguyen S T , Snurr R Q , Hupp J T . De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chemistry, 2010, 2(11): 944–948
|
64 |
Furukawa H , Ko N , Go Y B , Aratani N , Choi S B , Choi E , Yazaydin A Ö , Snurr R Q , O’Keeffe M , Kim J .
|
65 |
Li M , Liu Y , Li F , Shen C , Kaneti Y V , Yamauchi Y , Yuliarto B , Chen B , Wang C . Defect-rich hierarchical porous UiO-66(Zr) for tunable phosphate removal. Environmental Science & Technology, 2021, 55(19): 13209–13218
|
66 |
Tang C , Wang H , Chen X , Li B , Hou T , Zhang B , Zhang Q , Titirici M , Wei F . Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Advanced Materials, 2016, 28(32): 6845–6851
|
67 |
Zoller F , Häringer S , Böhm D , Luxa J , Sofer Z , Fattakhova-Rohlfing D . Carbonaceous oxygen evolution reaction catalysts: from defect and doping-induced activity over hybrid compounds to ordered framework structures. Small, 2021, 17(48): 2007484
|
68 |
Zhang A , Liang Y , Zhang H , Geng Z , Zeng J . Doping regulation in transition metal compounds for electrocatalysis. Chemical Society Reviews, 2021, 50(17): 9817–9844
|
69 |
Karakitsou K E , Verykios X E . Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage. Journal of Physical Chemistry, 1993, 97(6): 1184–1189
|
70 |
Shen Z , Jin X , Tian J , Li M , Yuan Y , Zhang S , Fang S , Fan X , Xu W , Lu H .
|
71 |
Xie J , Lü Q , Qiao W , Bu C , Zhang Y , Zhai X , Lü R , Chai Y , Dong B . Enhancing cobalt-oxygen bond to stabilize defective Co2MnO4 in acidic oxygen evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021
|
72 |
Sun Y , Xu K , Wei Z , Li H , Zhang T , Li X , Cai W , Ma J , Fan H J , Li Y . Strong electronic interaction in dual-cation-incorporated NiSe2 nanosheets with lattice distortion for highly efficient overall water splitting. Advanced Materials, 2018, 30(35): 1802121
|
73 |
Patnaik S , Sahoo D P , Parida K . Recent advances in anion doped g-C3N4 photocatalysts: a review. Carbon, 2021, 172: 682–711
|
74 |
Jiang L , Yuan X , Pan Y , Liang J , Zeng G , Wu Z , Wang H . Doping of graphitic carbon nitride for photocatalysis: a reveiw. Applied Catalysis B: Environmental, 2017, 217: 388–406
|
75 |
Lu C , Zhang P , Jiang S , Wu X , Song S , Zhu M , Lou Z , Li Z , Liu F , Liu Y .
|
76 |
Xu H , Zhang T , Wang D , Cai D , Chen S , Wang H , Shu S , Zhu Y . Degradation of tetracycline using persulfate activated by a honeycomb structured S-doped g-C3N4/biochar under visible light. Separation and Purification Technology, 2022, 300: 121833
|
77 |
Hasija V , Singh P , Thakur S , Stando K , Nguyen V , Van Le Q , Alshehri S M , Ahamad T , Wu K C , Raizada P . Oxygen doping facilitated N-vacancies in g-C3N4 regulates electronic band gap structure for trimethoprim and Cr(VI) mitigation: simulation studies and photocatalytic degradation pathways. Applied Materials Today, 2022, 29: 101676
|
78 |
Zhang X , Li F , Fan R , Zhao J , Dong B , Wang F , Liu H , Yu J , Liu C , Chai Y F . P double-doped Fe3O4 with abundant defect sites for efficient hydrogen evolution at high current density. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(28): 15836–15845
|
79 |
Rong H , Zhan T , Sun Y , Wen Y , Liu X , Teng H . ZIF-8 derived nitrogen, phosphorus and sulfur tri-doped mesoporous carbon for boosting electrocatalysis to oxygen reduction in universal pH range. Electrochimica Acta, 2019, 318: 783–793
|
80 |
Tian L , Pang X , Xu H , Liu D , Lu X , Li J , Wang J , Li Z . Cation-anion dual doping modifying electronic structure of hollow CoP nanoboxes for enhanced water oxidation electrocatalysis. Inorganic Chemistry, 2022, 61(42): 16944–16951
|
81 |
Yuan C , Xu T , Guo M , Zhang T , Yu X . Cation/anion-doping induced electronic structure regulation strategy to boost the catalytic hydrogen evolution from ammonia borane hydrolysis. Applied Catalysis B: Environmental, 2023, 321: 122044
|
82 |
Wang P , Ma X , Hao X , Tang B , Abudula A , Guan G . Oxygen vacancy defect engineering to promote catalytic activity toward the oxidation of VOCs: a critical review. Catalysis Reviews, 2022, 66(2): 586–639
|
83 |
Huang Y , Yu Y , Yu Y , Zhang B . Oxygen vacancy engineering in photocatalysis. Solar RRL, 2020, 4(8): 2000037
|
84 |
Fu L , Chen H , Wang K , Wang X . Oxygen-vacancy generation in MgFe2O4 by high temperature calcination and its improved photocatalytic activity for CO2 reduction. Journal of Alloys and Compounds, 2022, 891: 161925
|
85 |
Su L , Zhang Y , Zhan X , Zhang L , Zhao Y , Zhu X , Wu H , Chen H , Shen C , Wang L . Pr6O11: temperature-dependent oxygen vacancy regulation and catalytic performance for lithium-oxygen batteries. ACS Applied Materials & Interfaces, 2022, 14(36): 40975–40984
|
86 |
Li Z , Yan Q , Jiang Q , Gao Y , Xue T , Li R , Liu Y , Wang Q . Oxygen vacancy mediated CuyCo3–yFe1Ox mixed oxide as highly active and stable toluene oxidation catalyst by multiple phase interfaces formation and metal doping effect. Applied Catalysis B: Environmental, 2020, 269: 118827
|
87 |
Xie Q , Wang M , Xu Y , Li X , Zhou X , Hong L , Jiang L , Lin W . S vacancy modulated ZnxCd1–xS/CoP quantum dots for efficient H2 evolution from water splitting under visible light. Journal of Energy Chemistry, 2021, 61: 210–218
|
88 |
Zhang R , Ning X , Wang Z , Zhao H , He Y , Han Z , Du P , Lu X . Significantly promoting the photogenerated charge separation by introducing an oxygen vacancy regulation strategy on the FeNiOOH co-catalyst. Small, 2022, 18(20): 2107938
|
89 |
Chang Y , Huang H , Yang T , Wang L , Zhu H , Zhong C . Simultaneous introduction of oxygen vacancies and hierarchical pores into titanium-based metal-organic framework for enhanced photocatalytic performance. Journal of Colloid and Interface Science, 2021, 599: 785–794
|
90 |
Gao W , Li S , He H , Li X , Cheng Z , Yang Y , Wang J , Shen Q , Wang X , Xiong Y .
|
91 |
Yi L , Chen L , Lu C , Ni Y , Xu Z . Effects of oxygen defects on structure and properties of Sm0.5Sr0.5CoO3–δ annealed in different atmospheres. Journal of Rare Earths, 2013, 31(12): 1183–1190
|
92 |
Wang K , Chang Y , Lv L , Long Y . Effect of annealing temperature on oxygen vacancy concentrations of nanocrystalline CeO2 film. Applied Surface Science, 2015, 351: 164–168
|
93 |
Li Q , Zhu X , Yang J , Yu Q , Zhu X , Chu J , Du Y , Wang C , Hua Y , Li H .
|
94 |
Li X , Zhang J , Zhou F , Zhang H , Bai J , Wang Y , Wang H . Preparation of N-vacancy-doped g-C3N4 with outstanding photocatalytic H2O2 production ability by dielectric barrier discharge plasma treatment. Chinese Journal of Catalysis, 2018, 39(6): 1090–1098
|
95 |
Wu L , Li Y , Fu Z , Su B . Hierarchically structured porous materials: synthesis strategies and applications in energy storage. National Science Review, 2020, 7(11): 1667–1701
|
96 |
Huang H , Li J , Wang K , Han T , Tong M , Li L , Xie Y , Yang Q , Liu D , Zhong C . An in situ self-assembly template strategy for the preparation of hierarchical-pore metal-organic frameworks. Nature Communications, 2015, 6(1): 8847
|
97 |
Kirchon A , Li J , Xia F , Day G S , Becker B , Chen W , Sue H , Fang Y , Zhou H . Modulation versus templating: fine-tuning of hierarchally porous PCN-250 using fatty acids to engineer guest adsorption. Angewandte Chemie International Edition, 2019, 58(36): 12425–12430
|
98 |
Hu M , Ju Y , Liang K , Suma T , Cui J , Caruso F . Void engineering in metal-organic frameworks via synergistic etching and surface functionalization. Advanced Functional Materials, 2016, 26(32): 5827–5834
|
99 |
Liang X , Fu N , Yao S , Li Z , Li Y . The progress and outlook of metal single-atom-site catalysis. Journal of the American Chemical Society, 2022, 144(40): 18155–18174
|
100 |
Pan Y , Zhang C , Liu Z , Chen C , Li Y . Structural regulation with atomic-level precision: from single-atomic site to diatomic and atomic interface catalysis. Matter, 2020, 2(1): 78–110
|
101 |
Rong X , Wang H , Lu X , Si R , Lu T . Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angewandte Chemie, 2020, 132(5): 1977–1981
|
102 |
Ji S , Chen Y , Wang X , Zhang Z , Wang D , Li Y . Chemical synthesis of single atomic site catalysts. Chemical Reviews, 2020, 120(21): 11900–11955
|
103 |
Yuan L , Tang T , Hu J , Wan L . Confinement strategies for precise synthesis of efficient electrocatalysts from the macroscopic to the atomic level. Accounts of Materials Research, 2021, 2(10): 907–919
|
104 |
Chen Y , Ji S , Chen C , Peng Q , Wang D , Li Y . Single-atom catalysts: synthetic strategies and electrochemical applications. Joule, 2018, 2(7): 1242–1264
|
105 |
Liang S , Zou L , Zheng L , Li L , Wang X , Song L , Xu J . Highly stable Co single atom confined in hierarchical carbon molecular sieve as efficient electrocatalysts in metal-air batteries. Advanced Energy Materials, 2022, 12(11): 2103097
|
106 |
Cheng X , Wang J , Zhao K , Bi Y . Spatially confined iron single-atom and potassium ion in carbon nitride toward efficient CO2 reduction. Applied Catalysis B: Environmental, 2022, 316: 121643
|
107 |
Mo Q , Zhang L , Li S , Song H , Fan Y , Su C . Engineering single-atom sites into pore-confined nanospaces of porphyrinic metal-organic frameworks for the highly efficient photocatalytic hydrogen evolution reaction. Journal of the American Chemical Society, 2022, 144(49): 22747–22758
|
108 |
Wang Y , Wang D , Li Y . Rational design of single-atom site electrocatalysts: from theoretical understandings to practical applications. Advanced Materials, 2021, 33(34): 2008151
|
109 |
Wan J , Chen W , Jia C , Zheng L , Dong J , Zheng X , Wang Y , Yan W , Chen C , Peng Q .
|
110 |
Jin J , Han X , Fang Y , Zhang Z , Li Y , Zhang T , Han A , Liu J . Microenvironment engineering of Ru single-atom catalysts by regulating the cation vacancies in NiFe-layered double hydroxides. Advanced Functional Materials, 2022, 32(8): 2109218
|
111 |
Chen Z , Li X , Zhao J , Zhang S , Wang J , Zhang H , Zhang J , Dong Q , Zhang W , Hu W .
|
112 |
Hejazi S , Mehdi-pour H , Otieno C O , Müller J , Pour-Ali S , Shahsanaei M , Tafreshi S S , Butz B , Killian M S , Mohajernia S . Room-temperature defect-engineered titania: an efficient platform for Pt single atom decoration for photocatalytic H2 evolution. International Journal of Hydrogen Energy, 2024, 51: 222–233
|
113 |
Geng L , Zhang Q , Wang X , Han H , Zhang Y , Li C , Li Z , Zhang D , Zhang X , Abdukayum A .
|
114 |
Huang H , Cho A , Kim S , Jun H , Lee A , Han J W , Lee J . Structural design of amorphous CoMoPx with abundant active sites and synergistic catalysis effect for effective water splitting. Advanced Functional Materials, 2020, 30(43): 2003889
|
115 |
Liu W , Luo C , Zhang S , Zhang B , Ma J , Wang X , Liu W , Li Z , Yang Q , Lv W . Cobalt-doping of molybdenum disulfide for enhanced catalytic polysulfide conversion in lithium-sulfur batteries. ACS Nano, 2021, 15(4): 7491–7499
|
116 |
Zhong X , Yi W , Qu Y , Zhang L , Bai H , Zhu Y , Wan J , Chen S , Yang M , Huang L .
|
117 |
Yang H , Liu X , Hao M , Xie Y , Wang X , Tian H , Waterhouse G I N , Kruger P E , Telfer S G , Ma S . Functionalized iron-nitrogen-carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater. Advanced Materials, 2021, 33(51): 2106621
|
118 |
Yang H , Liu Y , Liu X , Wang X , Tian H , Waterhouse G I N , Kruger P E , Telfer S G , Ma S . Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis. eScience, 2022, 2(2): 227–234
|
119 |
Liu X , Xie Y , Hao M , Chen Z , Yang H , Waterhouse G I N , Ma S , Wang X . Highly efficient electrocatalytic uranium extraction from seawater over an amidoxime-functionalized In-N-C catalyst. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2022, 9(23): 2201735
|
120 |
Liu X , Xie Y , Li Y , Hao M , Chen Z , Yang H , Waterhouse G I N , Ma S , Wang X . Functional carbon capsules supporting ruthenium nanoclusters for efficient electrocatalytic 99TcO4-/ReO4- removal from acidic and alkaline nuclear wastes. Advanced Science, 2023, 10(30): 2303536
|
121 |
Gao W , Yang M , Chi J , Zhang X , Xie J , Guo B , Wang L , Chai Y , Dong B . In situ construction of surface defects of carbon-doped ternary cobalt-nickel-iron phosphide nanocubes for efficient overall water splitting. Science China Materials, 2019, 62: 1285–1296
|
122 |
Zhao G , Busser G M , Froese C , Hu B , Bonke S A , Schnegg A , Ai Y , Wei D , Wang X , Peng B .
|
123 |
Hu Y , Zhao G , Pan Q , Wang H , Shen Z , Peng B , Busser G W , Wang X , Muhler M . Highly selective anaerobic oxidation of alcohols over Fe‐doped SrTiO3 under visible light. ChemCatChem, 2019, 11(20): 5139–5144
|
124 |
Li B , Hong J , Ai Y , Hu Y , Shen Z , Li S , Zou Y , Zhang S , Wang X , Zhao G .
|
125 |
Shen Z , Hu Y , Pan Q , Huang C , Zhu B , Xia W , Wang H , Yue J , Muhler M , Zhao G .
|
126 |
Zou Y , Hu Y , Uhrich A , Shen Z , Peng B , Ji Z , Muhler M , Zhao G , Wang X , Xu X . Steering accessible oxygen vacancies for alcohol oxidation over defective Nb2O5 under visible light illumination. Applied Catalysis B: Environmental, 2021, 298: 120584
|
127 |
Zhang S , Liu Y , Gu P , Ma R , Wen T , Zhao G , Li L , Ai Y , Hu C , Wang X . Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C3N4: mechanism exploration from both experimental and DFT studies. Applied Catalysis B: Environmental, 2019, 248: 1–10
|
128 |
Zhang S , Liu Y , Ma R , Jia D , Wen T , Ai Y , Zhao G , Fang F , Hu B , Wang X . Molybdenum(VI)-oxo clusters incorporation activates g-C3N4 with simultaneously regulating charge transfer and reaction centers for boosting photocatalytic performance. Advanced Functional Materials, 2022, 32(38): 2204175
|
129 |
Li C , Guo Y , Tang D , Guo Y , Wang G , Jiang H , Li J . Optimizing electron structure of Zn-doped AgFeO2 with abundant oxygen vacancies to boost photocatalytic activity for Cr(VI) reduction and organic pollutants decomposition: DFT insights and experimental. Chemical Engineering Journal, 2021, 411: 128515
|
/
〈 | 〉 |