Defect engineering on constructing surface active sites in catalysts for environment and energy applications

  • Yawen Cai 1,2 ,
  • Baowei Hu 1 ,
  • Xiangke Wang , 1,2
Expand
  • 1. School of Life Science, Shaoxing University, Shaoxing 312000, China
  • 2. College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
xkwang@ncepu.edu.cn

Received date: 15 Dec 2023

Accepted date: 02 Feb 2024

Copyright

2024 Higher Education Press

Abstract

The precise engineering of surface active sites is deemed as an efficient protocol for regulating surfaces and catalytic properties of catalysts. Defect engineering is the most feasible option to modulate the surface active sites of catalysts. Creating specific active sites on the catalyst allows precise modulation of its electronic structure and physicochemical characteristics. Here, we outlined the engineering of several types of defects, including vacancy defects, void defects, dopant-related defects, and defect-based single atomic sites. An overview of progress in fabricating structural defects on catalysts via de novo synthesis or post-synthetic modification was provided. Then, the applications of the well-designed defective catalysts in energy conversion and environmental remediation were carefully elucidated. Finally, current challenges in the precise construction of active defect sites on the catalyst and future perspectives for the development directions of precisely controlled synthesis of defective catalysts were also proposed.

Cite this article

Yawen Cai , Baowei Hu , Xiangke Wang . Defect engineering on constructing surface active sites in catalysts for environment and energy applications[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(7) : 74 . DOI: 10.1007/s11705-024-2427-z

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

We gratefully acknowledge funding support from the National Science Foundation of China (Grant No. 22306124), the Beijing Outstanding Young Scientist Program.
1
Beller M , Centi G . Catalysis and sustainable development: the marriage for innovation. ChemSusChem, 2009, 2(6): 459–460

DOI

2
Linares N , Silvestre-Albero A M , Serrano E , Silvestre-Albero J , García-Martínez J . Mesoporous materials for clean energy technologies. Chemical Society Reviews, 2014, 43(22): 7681–7717

DOI

3
Roduner E . Understanding catalysis. Chemical Society Reviews, 2014, 43(24): 8226–8239

DOI

4
Vogt C , Weckhuysen B M . The concept of active site in heterogeneous catalysis. Nature Reviews Chemistry, 2022, 6(2): 89–111

DOI

5
Wang Y , Chen L , Cao H , Chi Z , Chen C , Duan X , Xie Y , Qi F , Song W , Liu J . . Role of oxygen vacancies and Mn sites in hierarchical Mn2O3/LaMnO3–δ perovskite composites for aqueous organic pollutants decontamination. Applied Catalysis B: Environmental, 2019, 245: 546–554

DOI

6
Hattori H . Solid base catalysts: generation of basic sites and application to organic synthesis. Applied Catalysis A, General, 2001, 222(1-2): 247–259

DOI

7
Wachs I E , Roberts C A . Monitoring surface metal oxide catalytic active sites with Raman spectroscopy. Chemical Society Reviews, 2010, 39(12): 5002–5017

DOI

8
Du Y , Sheng H , Astruc D , Zhu M . Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chemical Reviews, 2020, 120(2): 526–622

DOI

9
Kröger F . Defect chemistry in crystalline solids. Annual Review of Materials Science, 1977, 7(1): 449–475

DOI

10
Tang T , Wang Z , Guan J . A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction. Chinese Journal of Catalysis, 2022, 43(3): 636–678

DOI

11
Thomas J M , Raja R , Lewis D W . Single-site heterogeneous catalysts. Angewandte Chemie International Edition, 2005, 44(40): 6456–6482

DOI

12
Liu L , Corma A . Structural transformations of solid electrocatalysts and photocatalysts. Nature Reviews Chemistry, 2021, 5(4): 256–276

DOI

13
Zambelli T , Wintterlin J , Trost J , Ertl G . Identification of the “active sites” of a surface-catalyzed reaction. Science, 1996, 273(5282): 1688–1690

DOI

14
Sun Y , Gao S , Lei F , Xie Y . Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chemical Society Reviews, 2015, 44(3): 623–636

DOI

15
Yan D , Li Y , Huo J , Chen R , Dai L , Wang S . Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Advanced Materials, 2017, 29(48): 1606459

DOI

16
Xie C , Yan D , Li H , Du S , Chen W , Wang Y , Zou Y , Chen R , Wang S . Defect chemistry in heterogeneous catalysis: recognition, understanding, and utilization. ACS Catalysis, 2020, 10(19): 11082–11098

DOI

17
Lannoo M , Bourgoin J . Atomic configuration of point defects. In: Point Defects in Semiconductors I. Springer Series in Solid-State Sciences. Berlin, Heidelberg: Springer-Verlag, 1981, 22: 1–35

18
Leonardi A , Scardi P . Dislocation effects on the diffraction line profiles from nanocrystalline domains. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 2016, 47(12): 5722–5732

DOI

19
Hemesath E R , Schreiber D K , Gulsoy E B , Kisielowski C F , Petford-Long A K , Voorhees P W , Lauhon L J . Catalyst incorporation at defects during nanowire growth. Nano Letters, 2012, 12(1): 167–171

DOI

20
Rudolph P . Fundamentals and engineering of defects. Progress in Crystal Growth and Characterization of Materials, 2016, 62(2): 89–110

DOI

21
Murakami Y . Material defects as the basis of fatigue design. International Journal of Fatigue, 2012, 41: 2–10

DOI

22
Schlögl R . Heterogeneous catalysis. Angewandte Chemie International Edition, 2015, 54(11): 3465–3520

DOI

23
Zhang Y , Gao F , You H , Li Z , Zou B , Du Y . Recent advances in one-dimensional noble-metal-based catalysts with multiple structures for efficient fuel-cell electrocatalysis. Coordination Chemistry Reviews, 2022, 450: 214244

DOI

24
Wang B , Liu J , Yao S , Liu F , Li Y , He J , Lin Z , Huang F , Liu C , Wang M . Vacancy engineering in nanostructured semiconductors for enhancing photocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(32): 17143–17172

DOI

25
Sun Y , Wang H , Xing Q , Cui W , Li J , Wu S , Sun L . The pivotal effects of oxygen vacancy on Bi2MoO6: promoted visible light photocatalytic activity and reaction mechanism. Chinese Journal of Catalysis, 2019, 40(5): 647–655

DOI

26
Guan S , Wang L , Xu S , Yang D , Waterhouse G I N , Qu X , Zhou S . Vacancy-enhanced generation of singlet oxygen for photodynamic therapy. Chemical Science, 2019, 10(8): 2336–2341

DOI

27
Zheng X , Li Y , Zhang L , Shen L , Xiao Y , Zhang Y , Au C , Jiang L . Insight into the effect of morphology on catalytic performance of porous CeO2 nanocrystals for H2S selective oxidation. Applied Catalysis B: Environmental, 2019, 252: 98–110

DOI

28
Zhou S , Jin W , Ding Y , Shao B , Wang B , Hu X , Kong Y . In-situ intercalation of Au nanoparticles and magnetic γ-Fe2O3 in the walls of MCM-41 with abundant void defects for highly efficient reduction of 4-nitrophenol and organic dyes. Dalton Transactions, 2018, 47(47): 16862–16875

DOI

29
Tang Q , Ma Y , Wang J . The active sites engineering of catalysts for CO2 activation and conversion. Solar RRL, 2021, 5(2): 2000443

DOI

30
Connell G , Dumesic J A . The generation of Brønsted and Lewis acid sites on the surface of silica by addition of dopant cations. Journal of Catalysis, 1987, 105(2): 285–298

DOI

31
Lee J , Kumar A , Kim M G , Yang T , Shao X , Liu X , Liu Y , Hong Y , Jadhav A R , Liang M . . Single-metal-atom dopants increase the Lewis acidity of metal oxides and promote nitrogen fixation. ACS Energy Letters, 2021, 6(12): 4299–4308

DOI

32
Zhang Y , Guo L , Tao L , Lu Y , Wang S . Defect-based single-atom electrocatalysts. Small Methods, 2019, 3(9): 1800406

DOI

33
Xue Q , Xie Y , Wu S , Wu T , Soo Y , Day S , Tang C C , Man H W , Yuen S T , Wong K . . A rational study on the geometric and electronic properties of single-atom catalysts for enhanced catalytic performance. Nanoscale, 2020, 12(45): 23206–23212

DOI

34
Xi J , Jung H S , Xu Y , Xiao F , Bae J W , Wang S . Synthesis strategies, catalytic applications, and performance regulation of single-atom catalysts. Advanced Functional Materials, 2021, 31(12): 2008318

DOI

35
Liu D , He Q , Ding S , Song L . Structural regulation and support coupling effect of single-atom catalysts for heterogeneous catalysis. Advanced Energy Materials, 2020, 10(32): 2001482

DOI

36
Lang R , Du X , Huang Y , Jiang X , Zhang Q , Guo Y , Liu K , Qiao B , Wang A , Zhang T . Single-atom catalysts based on the metal-oxide interaction. Chemical Reviews, 2020, 120(21): 11986–12043

DOI

37
Bai S , Zhang N , Gao C , Xiong Y . Defect engineering in photocatalytic materials. Nano Energy, 2018, 53: 296–336

DOI

38
Zhuang G , Yan J , Wen Y , Zhuang Z , Yu Y . Two-dimensional transition metal oxides and chalcogenides for advanced photocatalysis: progress, challenges, and opportunities. Solar RRL, 2021, 5(6): 2000403

DOI

39
Zhou Y , Wang F , Zhou J , Dong B , Dong Y , Liu X , Liu B , Yu J , Chai Y . Triple captured iron by defect abundant NiO for efficient water oxidation. Inorganic Chemistry Frontiers, 2022, 9(6): 1281–1292

DOI

40
Gao W , Chi J , Wang Z , Lin J , Liu D , Zeng J , Yu J , Wang L , Chai Y , Dong B . Optimized bimetallic nickel-iron phosphides with rich defects as enhanced electrocatalysts for oxygen evolution reaction. Journal of Colloid and Interface Science, 2019, 537: 11–19

DOI

41
Ye G , Wan L , Zhang Q , Liu H , Zhou J , Wu L , Zeng X , Wang H , Chen X , Wang J . Boosting catalytic performance of MOF-808(Zr) by direct generation of rich defective Zr nodes via a solvent-free approach. Inorganic Chemistry, 2023, 62(10): 4248–4259

DOI

42
Fang Z , Bueken B , De Vos D E , Fischer R A . Defect-engineered metal-organic frameworks. Angewandte Chemie International Edition, 2015, 54(25): 7234–7254

DOI

43
ShollD SLivelyR P. Defects in metal-organic frameworks: challenge or opportunity? Journal of Physical Chemistry Letters, 2015, 6(17): 3437–3444

44
Gao P , Chen Z , Gong Y , Zhang R , Liu H , Tang P , Chen X , Passerini S , Liu J . The role of cation vacancies in electrode materials for enhanced electrochemical energy storage: synthesis, advanced characterization, and fundamentals. Advanced Energy Materials, 2020, 10(14): 1903780

DOI

45
Pang Q , Yang L , Li Q . Vacancies in metal-organic frameworks: formation, arrangement, and functions. Small Structures, 2022, 3(5): 2100203

DOI

46
Wu Y , Li Y , Gao J , Zhang Q . Recent advances in vacancy engineering of metal-organic frameworks and their derivatives for electrocatalysis. SusMat, 2021, 1(1): 66–87

DOI

47
Ren J , Ledwaba M , Musyoka N M , Langmi H W , Mathe M , Liao S , Pang W . Structural defects in metal-organic frameworks (MOFs): formation, detection and control towards practices of interests. Coordination Chemistry Reviews, 2017, 349: 169–197

DOI

48
Cirujano F G , Martin N , Wee L H . Design of hierarchical architectures in metal-oganic frameworks for catalysis and adsorption. Chemistry of Materials, 2020, 32(24): 10268–10295

DOI

49
Lázaro I A , Szalad H , Valiente P , Albero J , García H , Martí-Gastaldo C . Tuning the photocatalytic activity of Ti-based metal-organic frameworks through modulator defect-engineered functionalization. ACS Applied Materials & Interfaces, 2022, 14(18): 21007–21017

DOI

50
Wei R , Gaggioli C A , Li G , Islamoglu T , Zhang Z , Yu P , Farha O K , Cramer C J , Gagliardi L , Yang D . . Tuning the properties of Zr6O8 nodes in the metal organic framework UiO-66 by selection of node-bound ligands and linkers. Chemistry of Materials, 2019, 31(5): 1655–1663

DOI

51
Barin G , Krungleviciute V , Gutov O , Hupp J T , Yildirim T , Farha O K . Defect creation by linker fragmentation in metal-organic frameworks and its effects on gas uptake properties. Inorganic Chemistry, 2014, 53(13): 6914–6919

DOI

52
El-Gamel N E . Generation of defect-modulated metal-organic frameworks by fragmented-linker co-assembly of CPO-27(M) frameworks. European Journal of Inorganic Chemistry, 2015, 2015(8): 1351–1358

DOI

53
Fan Z , Wang J , Wang W , Burger S , Wang Z , Wang Y , Wöll C , Cokoja M , Fischer R A . Defect engineering of copper paddlewheel-based metal-organic frameworks of type NOTT-100: implementing truncated linkers and its effect on catalytic properties. ACS Applied Materials & Interfaces, 2020, 12(34): 37993–38002

DOI

54
Lei L , Huang D , Cheng M , Deng R , Chen S , Chen Y , Wang W . Defects engineering of bimetallic Ni-based catalysts for electrochemical energy conversion. Coordination Chemistry Reviews, 2020, 418: 213372

DOI

55
Zhang X , Zhang Z , Huang H , Wang Y , Tong N , Lin J , Liu D , Wang X . Oxygen vacancy modulation of two-dimensional γ-Ga2O3 nanosheets as efficient catalysts for photocatalytic hydrogen evolution. Nanoscale, 2018, 10(45): 21509–21517

DOI

56
Chen S , Huang H , Zhao D , Zhou J , Yu J , Qu B , Liu Q , Sun H , Zhao J . Direct growth of polycrystalline GaN porous layer with rich nitrogen vacancies: application to catalyst-free electrochemical detection. ACS Applied Materials & Interfaces, 2020, 12(48): 53807–53815

DOI

57
Wang J , Lin S , Tian N , Ma T , Zhang Y , Huang H . Nanostructured metal sulfides: classification, modification strategy, and solar-driven CO2 reduction application. Advanced Functional Materials, 2021, 31(9): 2008008

DOI

58
Jing X , Lu N , Huang J , Zhang P , Zhang Z . One-step hydrothermal synthesis of S-defect-controlled ZnIn2S4 microflowers with improved kinetics process of charge-carriers for photocatalytic H2 evolution. Journal of Energy Chemistry, 2021, 58: 397–407

DOI

59
Li K , Yang J , Gu J . Hierarchically porous MOFs synthesized by soft-template strategies. Accounts of Chemical Research, 2022, 55(16): 2235–2247

DOI

60
Cai G , Jiang H L . A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability. Angewandte Chemie International Edition, 2017, 56(2): 563–567

DOI

61
Yuan D , Zhao D , Sun D , Zhou H . An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angewandte Chemie, 2010, 122(31): 5485–5489

DOI

62
Zhao D , Yuan D , Sun D , Zhou H . Stabilization of metal-organic frameworks with high surface areas by the incorporation of mesocavities with microwindows. Journal of the American Chemical Society, 2009, 131(26): 9186–9188

DOI

63
Farha O K , Yazaydın A Ö , Eryazici I , Malliakas C D , Hauser B G , Kanatzidis M G , Nguyen S T , Snurr R Q , Hupp J T . De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chemistry, 2010, 2(11): 944–948

DOI

64
Furukawa H , Ko N , Go Y B , Aratani N , Choi S B , Choi E , Yazaydin A Ö , Snurr R Q , O’Keeffe M , Kim J . . Ultrahigh porosity in metal-organic frameworks. Science, 2010, 329(5990): 424–428

DOI

65
Li M , Liu Y , Li F , Shen C , Kaneti Y V , Yamauchi Y , Yuliarto B , Chen B , Wang C . Defect-rich hierarchical porous UiO-66(Zr) for tunable phosphate removal. Environmental Science & Technology, 2021, 55(19): 13209–13218

DOI

66
Tang C , Wang H , Chen X , Li B , Hou T , Zhang B , Zhang Q , Titirici M , Wei F . Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Advanced Materials, 2016, 28(32): 6845–6851

DOI

67
Zoller F , Häringer S , Böhm D , Luxa J , Sofer Z , Fattakhova-Rohlfing D . Carbonaceous oxygen evolution reaction catalysts: from defect and doping-induced activity over hybrid compounds to ordered framework structures. Small, 2021, 17(48): 2007484

DOI

68
Zhang A , Liang Y , Zhang H , Geng Z , Zeng J . Doping regulation in transition metal compounds for electrocatalysis. Chemical Society Reviews, 2021, 50(17): 9817–9844

DOI

69
Karakitsou K E , Verykios X E . Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage. Journal of Physical Chemistry, 1993, 97(6): 1184–1189

DOI

70
Shen Z , Jin X , Tian J , Li M , Yuan Y , Zhang S , Fang S , Fan X , Xu W , Lu H . . Cation-doped ZnS catalysts for polysulfide conversion in lithium-sulfur batteries. Nature Catalysis, 2022, 5(6): 555–563

DOI

71
Xie J , Lü Q , Qiao W , Bu C , Zhang Y , Zhai X , Lü R , Chai Y , Dong B . Enhancing cobalt-oxygen bond to stabilize defective Co2MnO4 in acidic oxygen evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021

72
Sun Y , Xu K , Wei Z , Li H , Zhang T , Li X , Cai W , Ma J , Fan H J , Li Y . Strong electronic interaction in dual-cation-incorporated NiSe2 nanosheets with lattice distortion for highly efficient overall water splitting. Advanced Materials, 2018, 30(35): 1802121

DOI

73
Patnaik S , Sahoo D P , Parida K . Recent advances in anion doped g-C3N4 photocatalysts: a review. Carbon, 2021, 172: 682–711

DOI

74
Jiang L , Yuan X , Pan Y , Liang J , Zeng G , Wu Z , Wang H . Doping of graphitic carbon nitride for photocatalysis: a reveiw. Applied Catalysis B: Environmental, 2017, 217: 388–406

DOI

75
Lu C , Zhang P , Jiang S , Wu X , Song S , Zhu M , Lou Z , Li Z , Liu F , Liu Y . . Photocatalytic reduction elimination of UO22+ pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst. Applied Catalysis B: Environmental, 2017, 200: 378–385

DOI

76
Xu H , Zhang T , Wang D , Cai D , Chen S , Wang H , Shu S , Zhu Y . Degradation of tetracycline using persulfate activated by a honeycomb structured S-doped g-C3N4/biochar under visible light. Separation and Purification Technology, 2022, 300: 121833

DOI

77
Hasija V , Singh P , Thakur S , Stando K , Nguyen V , Van Le Q , Alshehri S M , Ahamad T , Wu K C , Raizada P . Oxygen doping facilitated N-vacancies in g-C3N4 regulates electronic band gap structure for trimethoprim and Cr(VI) mitigation: simulation studies and photocatalytic degradation pathways. Applied Materials Today, 2022, 29: 101676

DOI

78
Zhang X , Li F , Fan R , Zhao J , Dong B , Wang F , Liu H , Yu J , Liu C , Chai Y F . P double-doped Fe3O4 with abundant defect sites for efficient hydrogen evolution at high current density. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(28): 15836–15845

DOI

79
Rong H , Zhan T , Sun Y , Wen Y , Liu X , Teng H . ZIF-8 derived nitrogen, phosphorus and sulfur tri-doped mesoporous carbon for boosting electrocatalysis to oxygen reduction in universal pH range. Electrochimica Acta, 2019, 318: 783–793

DOI

80
Tian L , Pang X , Xu H , Liu D , Lu X , Li J , Wang J , Li Z . Cation-anion dual doping modifying electronic structure of hollow CoP nanoboxes for enhanced water oxidation electrocatalysis. Inorganic Chemistry, 2022, 61(42): 16944–16951

DOI

81
Yuan C , Xu T , Guo M , Zhang T , Yu X . Cation/anion-doping induced electronic structure regulation strategy to boost the catalytic hydrogen evolution from ammonia borane hydrolysis. Applied Catalysis B: Environmental, 2023, 321: 122044

DOI

82
Wang P , Ma X , Hao X , Tang B , Abudula A , Guan G . Oxygen vacancy defect engineering to promote catalytic activity toward the oxidation of VOCs: a critical review. Catalysis Reviews, 2022, 66(2): 586–639

DOI

83
Huang Y , Yu Y , Yu Y , Zhang B . Oxygen vacancy engineering in photocatalysis. Solar RRL, 2020, 4(8): 2000037

DOI

84
Fu L , Chen H , Wang K , Wang X . Oxygen-vacancy generation in MgFe2O4 by high temperature calcination and its improved photocatalytic activity for CO2 reduction. Journal of Alloys and Compounds, 2022, 891: 161925

DOI

85
Su L , Zhang Y , Zhan X , Zhang L , Zhao Y , Zhu X , Wu H , Chen H , Shen C , Wang L . Pr6O11: temperature-dependent oxygen vacancy regulation and catalytic performance for lithium-oxygen batteries. ACS Applied Materials & Interfaces, 2022, 14(36): 40975–40984

DOI

86
Li Z , Yan Q , Jiang Q , Gao Y , Xue T , Li R , Liu Y , Wang Q . Oxygen vacancy mediated CuyCo3–yFe1Ox mixed oxide as highly active and stable toluene oxidation catalyst by multiple phase interfaces formation and metal doping effect. Applied Catalysis B: Environmental, 2020, 269: 118827

DOI

87
Xie Q , Wang M , Xu Y , Li X , Zhou X , Hong L , Jiang L , Lin W . S vacancy modulated ZnxCd1–xS/CoP quantum dots for efficient H2 evolution from water splitting under visible light. Journal of Energy Chemistry, 2021, 61: 210–218

DOI

88
Zhang R , Ning X , Wang Z , Zhao H , He Y , Han Z , Du P , Lu X . Significantly promoting the photogenerated charge separation by introducing an oxygen vacancy regulation strategy on the FeNiOOH co-catalyst. Small, 2022, 18(20): 2107938

DOI

89
Chang Y , Huang H , Yang T , Wang L , Zhu H , Zhong C . Simultaneous introduction of oxygen vacancies and hierarchical pores into titanium-based metal-organic framework for enhanced photocatalytic performance. Journal of Colloid and Interface Science, 2021, 599: 785–794

DOI

90
Gao W , Li S , He H , Li X , Cheng Z , Yang Y , Wang J , Shen Q , Wang X , Xiong Y . . Vacancy-defect modulated pathway of photoreduction of CO2 on single atomically thin AgInP2S6 sheets into olefiant gas. Nature Communications, 2021, 12(1): 4747

DOI

91
Yi L , Chen L , Lu C , Ni Y , Xu Z . Effects of oxygen defects on structure and properties of Sm0.5Sr0.5CoO3–δ annealed in different atmospheres. Journal of Rare Earths, 2013, 31(12): 1183–1190

DOI

92
Wang K , Chang Y , Lv L , Long Y . Effect of annealing temperature on oxygen vacancy concentrations of nanocrystalline CeO2 film. Applied Surface Science, 2015, 351: 164–168

DOI

93
Li Q , Zhu X , Yang J , Yu Q , Zhu X , Chu J , Du Y , Wang C , Hua Y , Li H . . Plasma treated Bi2WO6 ultrathin nanosheets with oxygen vacancies for improved photocatalytic CO2 reduction. Inorganic Chemistry Frontiers, 2020, 7(3): 597–602

DOI

94
Li X , Zhang J , Zhou F , Zhang H , Bai J , Wang Y , Wang H . Preparation of N-vacancy-doped g-C3N4 with outstanding photocatalytic H2O2 production ability by dielectric barrier discharge plasma treatment. Chinese Journal of Catalysis, 2018, 39(6): 1090–1098

DOI

95
Wu L , Li Y , Fu Z , Su B . Hierarchically structured porous materials: synthesis strategies and applications in energy storage. National Science Review, 2020, 7(11): 1667–1701

DOI

96
Huang H , Li J , Wang K , Han T , Tong M , Li L , Xie Y , Yang Q , Liu D , Zhong C . An in situ self-assembly template strategy for the preparation of hierarchical-pore metal-organic frameworks. Nature Communications, 2015, 6(1): 8847

DOI

97
Kirchon A , Li J , Xia F , Day G S , Becker B , Chen W , Sue H , Fang Y , Zhou H . Modulation versus templating: fine-tuning of hierarchally porous PCN-250 using fatty acids to engineer guest adsorption. Angewandte Chemie International Edition, 2019, 58(36): 12425–12430

DOI

98
Hu M , Ju Y , Liang K , Suma T , Cui J , Caruso F . Void engineering in metal-organic frameworks via synergistic etching and surface functionalization. Advanced Functional Materials, 2016, 26(32): 5827–5834

DOI

99
Liang X , Fu N , Yao S , Li Z , Li Y . The progress and outlook of metal single-atom-site catalysis. Journal of the American Chemical Society, 2022, 144(40): 18155–18174

DOI

100
Pan Y , Zhang C , Liu Z , Chen C , Li Y . Structural regulation with atomic-level precision: from single-atomic site to diatomic and atomic interface catalysis. Matter, 2020, 2(1): 78–110

DOI

101
Rong X , Wang H , Lu X , Si R , Lu T . Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angewandte Chemie, 2020, 132(5): 1977–1981

DOI

102
Ji S , Chen Y , Wang X , Zhang Z , Wang D , Li Y . Chemical synthesis of single atomic site catalysts. Chemical Reviews, 2020, 120(21): 11900–11955

DOI

103
Yuan L , Tang T , Hu J , Wan L . Confinement strategies for precise synthesis of efficient electrocatalysts from the macroscopic to the atomic level. Accounts of Materials Research, 2021, 2(10): 907–919

DOI

104
Chen Y , Ji S , Chen C , Peng Q , Wang D , Li Y . Single-atom catalysts: synthetic strategies and electrochemical applications. Joule, 2018, 2(7): 1242–1264

DOI

105
Liang S , Zou L , Zheng L , Li L , Wang X , Song L , Xu J . Highly stable Co single atom confined in hierarchical carbon molecular sieve as efficient electrocatalysts in metal-air batteries. Advanced Energy Materials, 2022, 12(11): 2103097

DOI

106
Cheng X , Wang J , Zhao K , Bi Y . Spatially confined iron single-atom and potassium ion in carbon nitride toward efficient CO2 reduction. Applied Catalysis B: Environmental, 2022, 316: 121643

DOI

107
Mo Q , Zhang L , Li S , Song H , Fan Y , Su C . Engineering single-atom sites into pore-confined nanospaces of porphyrinic metal-organic frameworks for the highly efficient photocatalytic hydrogen evolution reaction. Journal of the American Chemical Society, 2022, 144(49): 22747–22758

DOI

108
Wang Y , Wang D , Li Y . Rational design of single-atom site electrocatalysts: from theoretical understandings to practical applications. Advanced Materials, 2021, 33(34): 2008151

DOI

109
Wan J , Chen W , Jia C , Zheng L , Dong J , Zheng X , Wang Y , Yan W , Chen C , Peng Q . . Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Advanced Materials, 2018, 30(11): 1705369

DOI

110
Jin J , Han X , Fang Y , Zhang Z , Li Y , Zhang T , Han A , Liu J . Microenvironment engineering of Ru single-atom catalysts by regulating the cation vacancies in NiFe-layered double hydroxides. Advanced Functional Materials, 2022, 32(8): 2109218

DOI

111
Chen Z , Li X , Zhao J , Zhang S , Wang J , Zhang H , Zhang J , Dong Q , Zhang W , Hu W . . Stabilizing Pt single atoms through Pt-Se electron bridges on vacancy-enriched nickel selenide for efficient electrocatalytic hydrogen evolution. Angewandte Chemie International Edition, 2023, 62(39): e202308686

DOI

112
Hejazi S , Mehdi-pour H , Otieno C O , Müller J , Pour-Ali S , Shahsanaei M , Tafreshi S S , Butz B , Killian M S , Mohajernia S . Room-temperature defect-engineered titania: an efficient platform for Pt single atom decoration for photocatalytic H2 evolution. International Journal of Hydrogen Energy, 2024, 51: 222–233

DOI

113
Geng L , Zhang Q , Wang X , Han H , Zhang Y , Li C , Li Z , Zhang D , Zhang X , Abdukayum A . . Electronic modulation induced by oxygen vacancy creating in copper oxides toward accelerated hydrogenation kinetics of nitroaromatics. Applied Catalysis B: Environmental, 2024, 343: 123575

DOI

114
Huang H , Cho A , Kim S , Jun H , Lee A , Han J W , Lee J . Structural design of amorphous CoMoPx with abundant active sites and synergistic catalysis effect for effective water splitting. Advanced Functional Materials, 2020, 30(43): 2003889

DOI

115
Liu W , Luo C , Zhang S , Zhang B , Ma J , Wang X , Liu W , Li Z , Yang Q , Lv W . Cobalt-doping of molybdenum disulfide for enhanced catalytic polysulfide conversion in lithium-sulfur batteries. ACS Nano, 2021, 15(4): 7491–7499

DOI

116
Zhong X , Yi W , Qu Y , Zhang L , Bai H , Zhu Y , Wan J , Chen S , Yang M , Huang L . . Co single-atom anchored on Co3O4 and nitrogen-doped active carbon toward bifunctional catalyst for zinc-air batteries. Applied Catalysis B: Environmental, 2020, 260: 118188

DOI

117
Yang H , Liu X , Hao M , Xie Y , Wang X , Tian H , Waterhouse G I N , Kruger P E , Telfer S G , Ma S . Functionalized iron-nitrogen-carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater. Advanced Materials, 2021, 33(51): 2106621

DOI

118
Yang H , Liu Y , Liu X , Wang X , Tian H , Waterhouse G I N , Kruger P E , Telfer S G , Ma S . Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis. eScience, 2022, 2(2): 227–234

119
Liu X , Xie Y , Hao M , Chen Z , Yang H , Waterhouse G I N , Ma S , Wang X . Highly efficient electrocatalytic uranium extraction from seawater over an amidoxime-functionalized In-N-C catalyst. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2022, 9(23): 2201735

DOI

120
Liu X , Xie Y , Li Y , Hao M , Chen Z , Yang H , Waterhouse G I N , Ma S , Wang X . Functional carbon capsules supporting ruthenium nanoclusters for efficient electrocatalytic 99TcO4-/ReO4- removal from acidic and alkaline nuclear wastes. Advanced Science, 2023, 10(30): 2303536

DOI

121
Gao W , Yang M , Chi J , Zhang X , Xie J , Guo B , Wang L , Chai Y , Dong B . In situ construction of surface defects of carbon-doped ternary cobalt-nickel-iron phosphide nanocubes for efficient overall water splitting. Science China Materials, 2019, 62: 1285–1296

DOI

122
Zhao G , Busser G M , Froese C , Hu B , Bonke S A , Schnegg A , Ai Y , Wei D , Wang X , Peng B . . Anaerobic alcohol conversion to carbonyl compounds over nanoscaled Rh-doped SrTiO3 under visible light. Journal of Physical Chemistry Letters, 2019, 10(9): 2075–2080

DOI

123
Hu Y , Zhao G , Pan Q , Wang H , Shen Z , Peng B , Busser G W , Wang X , Muhler M . Highly selective anaerobic oxidation of alcohols over Fe‐doped SrTiO3 under visible light. ChemCatChem, 2019, 11(20): 5139–5144

DOI

124
Li B , Hong J , Ai Y , Hu Y , Shen Z , Li S , Zou Y , Zhang S , Wang X , Zhao G . . Visible-near-infrared-light-driven selective oxidation of alcohols over nanostructured Cu doped SrTiO3 in water under mild condition. Journal of Catalysis, 2021, 399: 142–149

DOI

125
Shen Z , Hu Y , Pan Q , Huang C , Zhu B , Xia W , Wang H , Yue J , Muhler M , Zhao G . . Oxygen vacancies-enriched Ta-doped Bi2WO6 with Pt as cocatalyst for boosting the dehydrogenation of benzyl alcohol in water. Applied Surface Science, 2022, 571: 151370

DOI

126
Zou Y , Hu Y , Uhrich A , Shen Z , Peng B , Ji Z , Muhler M , Zhao G , Wang X , Xu X . Steering accessible oxygen vacancies for alcohol oxidation over defective Nb2O5 under visible light illumination. Applied Catalysis B: Environmental, 2021, 298: 120584

DOI

127
Zhang S , Liu Y , Gu P , Ma R , Wen T , Zhao G , Li L , Ai Y , Hu C , Wang X . Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C3N4: mechanism exploration from both experimental and DFT studies. Applied Catalysis B: Environmental, 2019, 248: 1–10

DOI

128
Zhang S , Liu Y , Ma R , Jia D , Wen T , Ai Y , Zhao G , Fang F , Hu B , Wang X . Molybdenum(VI)-oxo clusters incorporation activates g-C3N4 with simultaneously regulating charge transfer and reaction centers for boosting photocatalytic performance. Advanced Functional Materials, 2022, 32(38): 2204175

DOI

129
Li C , Guo Y , Tang D , Guo Y , Wang G , Jiang H , Li J . Optimizing electron structure of Zn-doped AgFeO2 with abundant oxygen vacancies to boost photocatalytic activity for Cr(VI) reduction and organic pollutants decomposition: DFT insights and experimental. Chemical Engineering Journal, 2021, 411: 128515

DOI

Outlines

/