Defect engineering on constructing surface active sites in catalysts for environment and energy applications
Yawen Cai, Baowei Hu, Xiangke Wang
Defect engineering on constructing surface active sites in catalysts for environment and energy applications
The precise engineering of surface active sites is deemed as an efficient protocol for regulating surfaces and catalytic properties of catalysts. Defect engineering is the most feasible option to modulate the surface active sites of catalysts. Creating specific active sites on the catalyst allows precise modulation of its electronic structure and physicochemical characteristics. Here, we outlined the engineering of several types of defects, including vacancy defects, void defects, dopant-related defects, and defect-based single atomic sites. An overview of progress in fabricating structural defects on catalysts via de novo synthesis or post-synthetic modification was provided. Then, the applications of the well-designed defective catalysts in energy conversion and environmental remediation were carefully elucidated. Finally, current challenges in the precise construction of active defect sites on the catalyst and future perspectives for the development directions of precisely controlled synthesis of defective catalysts were also proposed.
defect engineering / vacancy / void defects / doping / single atomic sites
[1] |
Beller M , Centi G . Catalysis and sustainable development: the marriage for innovation. ChemSusChem, 2009, 2(6): 459–460
CrossRef
Google scholar
|
[2] |
Linares N , Silvestre-Albero A M , Serrano E , Silvestre-Albero J , García-Martínez J . Mesoporous materials for clean energy technologies. Chemical Society Reviews, 2014, 43(22): 7681–7717
CrossRef
Google scholar
|
[3] |
Roduner E . Understanding catalysis. Chemical Society Reviews, 2014, 43(24): 8226–8239
CrossRef
Google scholar
|
[4] |
Vogt C , Weckhuysen B M . The concept of active site in heterogeneous catalysis. Nature Reviews Chemistry, 2022, 6(2): 89–111
CrossRef
Google scholar
|
[5] |
Wang Y , Chen L , Cao H , Chi Z , Chen C , Duan X , Xie Y , Qi F , Song W , Liu J .
CrossRef
Google scholar
|
[6] |
Hattori H . Solid base catalysts: generation of basic sites and application to organic synthesis. Applied Catalysis A, General, 2001, 222(1-2): 247–259
CrossRef
Google scholar
|
[7] |
Wachs I E , Roberts C A . Monitoring surface metal oxide catalytic active sites with Raman spectroscopy. Chemical Society Reviews, 2010, 39(12): 5002–5017
CrossRef
Google scholar
|
[8] |
Du Y , Sheng H , Astruc D , Zhu M . Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chemical Reviews, 2020, 120(2): 526–622
CrossRef
Google scholar
|
[9] |
Kröger F . Defect chemistry in crystalline solids. Annual Review of Materials Science, 1977, 7(1): 449–475
CrossRef
Google scholar
|
[10] |
Tang T , Wang Z , Guan J . A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction. Chinese Journal of Catalysis, 2022, 43(3): 636–678
CrossRef
Google scholar
|
[11] |
Thomas J M , Raja R , Lewis D W . Single-site heterogeneous catalysts. Angewandte Chemie International Edition, 2005, 44(40): 6456–6482
CrossRef
Google scholar
|
[12] |
Liu L , Corma A . Structural transformations of solid electrocatalysts and photocatalysts. Nature Reviews Chemistry, 2021, 5(4): 256–276
CrossRef
Google scholar
|
[13] |
Zambelli T , Wintterlin J , Trost J , Ertl G . Identification of the “active sites” of a surface-catalyzed reaction. Science, 1996, 273(5282): 1688–1690
CrossRef
Google scholar
|
[14] |
Sun Y , Gao S , Lei F , Xie Y . Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chemical Society Reviews, 2015, 44(3): 623–636
CrossRef
Google scholar
|
[15] |
Yan D , Li Y , Huo J , Chen R , Dai L , Wang S . Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Advanced Materials, 2017, 29(48): 1606459
CrossRef
Google scholar
|
[16] |
Xie C , Yan D , Li H , Du S , Chen W , Wang Y , Zou Y , Chen R , Wang S . Defect chemistry in heterogeneous catalysis: recognition, understanding, and utilization. ACS Catalysis, 2020, 10(19): 11082–11098
CrossRef
Google scholar
|
[17] |
Lannoo M , Bourgoin J . Atomic configuration of point defects. In: Point Defects in Semiconductors I. Springer Series in Solid-State Sciences. Berlin, Heidelberg: Springer-Verlag, 1981, 22: 1–35
|
[18] |
Leonardi A , Scardi P . Dislocation effects on the diffraction line profiles from nanocrystalline domains. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 2016, 47(12): 5722–5732
CrossRef
Google scholar
|
[19] |
Hemesath E R , Schreiber D K , Gulsoy E B , Kisielowski C F , Petford-Long A K , Voorhees P W , Lauhon L J . Catalyst incorporation at defects during nanowire growth. Nano Letters, 2012, 12(1): 167–171
CrossRef
Google scholar
|
[20] |
Rudolph P . Fundamentals and engineering of defects. Progress in Crystal Growth and Characterization of Materials, 2016, 62(2): 89–110
CrossRef
Google scholar
|
[21] |
Murakami Y . Material defects as the basis of fatigue design. International Journal of Fatigue, 2012, 41: 2–10
CrossRef
Google scholar
|
[22] |
Schlögl R . Heterogeneous catalysis. Angewandte Chemie International Edition, 2015, 54(11): 3465–3520
CrossRef
Google scholar
|
[23] |
Zhang Y , Gao F , You H , Li Z , Zou B , Du Y . Recent advances in one-dimensional noble-metal-based catalysts with multiple structures for efficient fuel-cell electrocatalysis. Coordination Chemistry Reviews, 2022, 450: 214244
CrossRef
Google scholar
|
[24] |
Wang B , Liu J , Yao S , Liu F , Li Y , He J , Lin Z , Huang F , Liu C , Wang M . Vacancy engineering in nanostructured semiconductors for enhancing photocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(32): 17143–17172
CrossRef
Google scholar
|
[25] |
Sun Y , Wang H , Xing Q , Cui W , Li J , Wu S , Sun L . The pivotal effects of oxygen vacancy on Bi2MoO6: promoted visible light photocatalytic activity and reaction mechanism. Chinese Journal of Catalysis, 2019, 40(5): 647–655
CrossRef
Google scholar
|
[26] |
Guan S , Wang L , Xu S , Yang D , Waterhouse G I N , Qu X , Zhou S . Vacancy-enhanced generation of singlet oxygen for photodynamic therapy. Chemical Science, 2019, 10(8): 2336–2341
CrossRef
Google scholar
|
[27] |
Zheng X , Li Y , Zhang L , Shen L , Xiao Y , Zhang Y , Au C , Jiang L . Insight into the effect of morphology on catalytic performance of porous CeO2 nanocrystals for H2S selective oxidation. Applied Catalysis B: Environmental, 2019, 252: 98–110
CrossRef
Google scholar
|
[28] |
Zhou S , Jin W , Ding Y , Shao B , Wang B , Hu X , Kong Y . In-situ intercalation of Au nanoparticles and magnetic γ-Fe2O3 in the walls of MCM-41 with abundant void defects for highly efficient reduction of 4-nitrophenol and organic dyes. Dalton Transactions, 2018, 47(47): 16862–16875
CrossRef
Google scholar
|
[29] |
Tang Q , Ma Y , Wang J . The active sites engineering of catalysts for CO2 activation and conversion. Solar RRL, 2021, 5(2): 2000443
CrossRef
Google scholar
|
[30] |
Connell G , Dumesic J A . The generation of Brønsted and Lewis acid sites on the surface of silica by addition of dopant cations. Journal of Catalysis, 1987, 105(2): 285–298
CrossRef
Google scholar
|
[31] |
Lee J , Kumar A , Kim M G , Yang T , Shao X , Liu X , Liu Y , Hong Y , Jadhav A R , Liang M .
CrossRef
Google scholar
|
[32] |
Zhang Y , Guo L , Tao L , Lu Y , Wang S . Defect-based single-atom electrocatalysts. Small Methods, 2019, 3(9): 1800406
CrossRef
Google scholar
|
[33] |
Xue Q , Xie Y , Wu S , Wu T , Soo Y , Day S , Tang C C , Man H W , Yuen S T , Wong K .
CrossRef
Google scholar
|
[34] |
Xi J , Jung H S , Xu Y , Xiao F , Bae J W , Wang S . Synthesis strategies, catalytic applications, and performance regulation of single-atom catalysts. Advanced Functional Materials, 2021, 31(12): 2008318
CrossRef
Google scholar
|
[35] |
Liu D , He Q , Ding S , Song L . Structural regulation and support coupling effect of single-atom catalysts for heterogeneous catalysis. Advanced Energy Materials, 2020, 10(32): 2001482
CrossRef
Google scholar
|
[36] |
Lang R , Du X , Huang Y , Jiang X , Zhang Q , Guo Y , Liu K , Qiao B , Wang A , Zhang T . Single-atom catalysts based on the metal-oxide interaction. Chemical Reviews, 2020, 120(21): 11986–12043
CrossRef
Google scholar
|
[37] |
Bai S , Zhang N , Gao C , Xiong Y . Defect engineering in photocatalytic materials. Nano Energy, 2018, 53: 296–336
CrossRef
Google scholar
|
[38] |
Zhuang G , Yan J , Wen Y , Zhuang Z , Yu Y . Two-dimensional transition metal oxides and chalcogenides for advanced photocatalysis: progress, challenges, and opportunities. Solar RRL, 2021, 5(6): 2000403
CrossRef
Google scholar
|
[39] |
Zhou Y , Wang F , Zhou J , Dong B , Dong Y , Liu X , Liu B , Yu J , Chai Y . Triple captured iron by defect abundant NiO for efficient water oxidation. Inorganic Chemistry Frontiers, 2022, 9(6): 1281–1292
CrossRef
Google scholar
|
[40] |
Gao W , Chi J , Wang Z , Lin J , Liu D , Zeng J , Yu J , Wang L , Chai Y , Dong B . Optimized bimetallic nickel-iron phosphides with rich defects as enhanced electrocatalysts for oxygen evolution reaction. Journal of Colloid and Interface Science, 2019, 537: 11–19
CrossRef
Google scholar
|
[41] |
Ye G , Wan L , Zhang Q , Liu H , Zhou J , Wu L , Zeng X , Wang H , Chen X , Wang J . Boosting catalytic performance of MOF-808(Zr) by direct generation of rich defective Zr nodes via a solvent-free approach. Inorganic Chemistry, 2023, 62(10): 4248–4259
CrossRef
Google scholar
|
[42] |
Fang Z , Bueken B , De Vos D E , Fischer R A . Defect-engineered metal-organic frameworks. Angewandte Chemie International Edition, 2015, 54(25): 7234–7254
CrossRef
Google scholar
|
[43] |
ShollD SLivelyR P. Defects in metal-organic frameworks: challenge or opportunity? Journal of Physical Chemistry Letters, 2015, 6(17): 3437–3444
|
[44] |
Gao P , Chen Z , Gong Y , Zhang R , Liu H , Tang P , Chen X , Passerini S , Liu J . The role of cation vacancies in electrode materials for enhanced electrochemical energy storage: synthesis, advanced characterization, and fundamentals. Advanced Energy Materials, 2020, 10(14): 1903780
CrossRef
Google scholar
|
[45] |
Pang Q , Yang L , Li Q . Vacancies in metal-organic frameworks: formation, arrangement, and functions. Small Structures, 2022, 3(5): 2100203
CrossRef
Google scholar
|
[46] |
Wu Y , Li Y , Gao J , Zhang Q . Recent advances in vacancy engineering of metal-organic frameworks and their derivatives for electrocatalysis. SusMat, 2021, 1(1): 66–87
CrossRef
Google scholar
|
[47] |
Ren J , Ledwaba M , Musyoka N M , Langmi H W , Mathe M , Liao S , Pang W . Structural defects in metal-organic frameworks (MOFs): formation, detection and control towards practices of interests. Coordination Chemistry Reviews, 2017, 349: 169–197
CrossRef
Google scholar
|
[48] |
Cirujano F G , Martin N , Wee L H . Design of hierarchical architectures in metal-oganic frameworks for catalysis and adsorption. Chemistry of Materials, 2020, 32(24): 10268–10295
CrossRef
Google scholar
|
[49] |
Lázaro I A , Szalad H , Valiente P , Albero J , García H , Martí-Gastaldo C . Tuning the photocatalytic activity of Ti-based metal-organic frameworks through modulator defect-engineered functionalization. ACS Applied Materials & Interfaces, 2022, 14(18): 21007–21017
CrossRef
Google scholar
|
[50] |
Wei R , Gaggioli C A , Li G , Islamoglu T , Zhang Z , Yu P , Farha O K , Cramer C J , Gagliardi L , Yang D .
CrossRef
Google scholar
|
[51] |
Barin G , Krungleviciute V , Gutov O , Hupp J T , Yildirim T , Farha O K . Defect creation by linker fragmentation in metal-organic frameworks and its effects on gas uptake properties. Inorganic Chemistry, 2014, 53(13): 6914–6919
CrossRef
Google scholar
|
[52] |
El-Gamel N E . Generation of defect-modulated metal-organic frameworks by fragmented-linker co-assembly of CPO-27(M) frameworks. European Journal of Inorganic Chemistry, 2015, 2015(8): 1351–1358
CrossRef
Google scholar
|
[53] |
Fan Z , Wang J , Wang W , Burger S , Wang Z , Wang Y , Wöll C , Cokoja M , Fischer R A . Defect engineering of copper paddlewheel-based metal-organic frameworks of type NOTT-100: implementing truncated linkers and its effect on catalytic properties. ACS Applied Materials & Interfaces, 2020, 12(34): 37993–38002
CrossRef
Google scholar
|
[54] |
Lei L , Huang D , Cheng M , Deng R , Chen S , Chen Y , Wang W . Defects engineering of bimetallic Ni-based catalysts for electrochemical energy conversion. Coordination Chemistry Reviews, 2020, 418: 213372
CrossRef
Google scholar
|
[55] |
Zhang X , Zhang Z , Huang H , Wang Y , Tong N , Lin J , Liu D , Wang X . Oxygen vacancy modulation of two-dimensional γ-Ga2O3 nanosheets as efficient catalysts for photocatalytic hydrogen evolution. Nanoscale, 2018, 10(45): 21509–21517
CrossRef
Google scholar
|
[56] |
Chen S , Huang H , Zhao D , Zhou J , Yu J , Qu B , Liu Q , Sun H , Zhao J . Direct growth of polycrystalline GaN porous layer with rich nitrogen vacancies: application to catalyst-free electrochemical detection. ACS Applied Materials & Interfaces, 2020, 12(48): 53807–53815
CrossRef
Google scholar
|
[57] |
Wang J , Lin S , Tian N , Ma T , Zhang Y , Huang H . Nanostructured metal sulfides: classification, modification strategy, and solar-driven CO2 reduction application. Advanced Functional Materials, 2021, 31(9): 2008008
CrossRef
Google scholar
|
[58] |
Jing X , Lu N , Huang J , Zhang P , Zhang Z . One-step hydrothermal synthesis of S-defect-controlled ZnIn2S4 microflowers with improved kinetics process of charge-carriers for photocatalytic H2 evolution. Journal of Energy Chemistry, 2021, 58: 397–407
CrossRef
Google scholar
|
[59] |
Li K , Yang J , Gu J . Hierarchically porous MOFs synthesized by soft-template strategies. Accounts of Chemical Research, 2022, 55(16): 2235–2247
CrossRef
Google scholar
|
[60] |
Cai G , Jiang H L . A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability. Angewandte Chemie International Edition, 2017, 56(2): 563–567
CrossRef
Google scholar
|
[61] |
Yuan D , Zhao D , Sun D , Zhou H . An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angewandte Chemie, 2010, 122(31): 5485–5489
CrossRef
Google scholar
|
[62] |
Zhao D , Yuan D , Sun D , Zhou H . Stabilization of metal-organic frameworks with high surface areas by the incorporation of mesocavities with microwindows. Journal of the American Chemical Society, 2009, 131(26): 9186–9188
CrossRef
Google scholar
|
[63] |
Farha O K , Yazaydın A Ö , Eryazici I , Malliakas C D , Hauser B G , Kanatzidis M G , Nguyen S T , Snurr R Q , Hupp J T . De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chemistry, 2010, 2(11): 944–948
CrossRef
Google scholar
|
[64] |
Furukawa H , Ko N , Go Y B , Aratani N , Choi S B , Choi E , Yazaydin A Ö , Snurr R Q , O’Keeffe M , Kim J .
CrossRef
Google scholar
|
[65] |
Li M , Liu Y , Li F , Shen C , Kaneti Y V , Yamauchi Y , Yuliarto B , Chen B , Wang C . Defect-rich hierarchical porous UiO-66(Zr) for tunable phosphate removal. Environmental Science & Technology, 2021, 55(19): 13209–13218
CrossRef
Google scholar
|
[66] |
Tang C , Wang H , Chen X , Li B , Hou T , Zhang B , Zhang Q , Titirici M , Wei F . Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Advanced Materials, 2016, 28(32): 6845–6851
CrossRef
Google scholar
|
[67] |
Zoller F , Häringer S , Böhm D , Luxa J , Sofer Z , Fattakhova-Rohlfing D . Carbonaceous oxygen evolution reaction catalysts: from defect and doping-induced activity over hybrid compounds to ordered framework structures. Small, 2021, 17(48): 2007484
CrossRef
Google scholar
|
[68] |
Zhang A , Liang Y , Zhang H , Geng Z , Zeng J . Doping regulation in transition metal compounds for electrocatalysis. Chemical Society Reviews, 2021, 50(17): 9817–9844
CrossRef
Google scholar
|
[69] |
Karakitsou K E , Verykios X E . Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage. Journal of Physical Chemistry, 1993, 97(6): 1184–1189
CrossRef
Google scholar
|
[70] |
Shen Z , Jin X , Tian J , Li M , Yuan Y , Zhang S , Fang S , Fan X , Xu W , Lu H .
CrossRef
Google scholar
|
[71] |
Xie J , Lü Q , Qiao W , Bu C , Zhang Y , Zhai X , Lü R , Chai Y , Dong B . Enhancing cobalt-oxygen bond to stabilize defective Co2MnO4 in acidic oxygen evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021
|
[72] |
Sun Y , Xu K , Wei Z , Li H , Zhang T , Li X , Cai W , Ma J , Fan H J , Li Y . Strong electronic interaction in dual-cation-incorporated NiSe2 nanosheets with lattice distortion for highly efficient overall water splitting. Advanced Materials, 2018, 30(35): 1802121
CrossRef
Google scholar
|
[73] |
Patnaik S , Sahoo D P , Parida K . Recent advances in anion doped g-C3N4 photocatalysts: a review. Carbon, 2021, 172: 682–711
CrossRef
Google scholar
|
[74] |
Jiang L , Yuan X , Pan Y , Liang J , Zeng G , Wu Z , Wang H . Doping of graphitic carbon nitride for photocatalysis: a reveiw. Applied Catalysis B: Environmental, 2017, 217: 388–406
CrossRef
Google scholar
|
[75] |
Lu C , Zhang P , Jiang S , Wu X , Song S , Zhu M , Lou Z , Li Z , Liu F , Liu Y .
CrossRef
Google scholar
|
[76] |
Xu H , Zhang T , Wang D , Cai D , Chen S , Wang H , Shu S , Zhu Y . Degradation of tetracycline using persulfate activated by a honeycomb structured S-doped g-C3N4/biochar under visible light. Separation and Purification Technology, 2022, 300: 121833
CrossRef
Google scholar
|
[77] |
Hasija V , Singh P , Thakur S , Stando K , Nguyen V , Van Le Q , Alshehri S M , Ahamad T , Wu K C , Raizada P . Oxygen doping facilitated N-vacancies in g-C3N4 regulates electronic band gap structure for trimethoprim and Cr(VI) mitigation: simulation studies and photocatalytic degradation pathways. Applied Materials Today, 2022, 29: 101676
CrossRef
Google scholar
|
[78] |
Zhang X , Li F , Fan R , Zhao J , Dong B , Wang F , Liu H , Yu J , Liu C , Chai Y F . P double-doped Fe3O4 with abundant defect sites for efficient hydrogen evolution at high current density. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(28): 15836–15845
CrossRef
Google scholar
|
[79] |
Rong H , Zhan T , Sun Y , Wen Y , Liu X , Teng H . ZIF-8 derived nitrogen, phosphorus and sulfur tri-doped mesoporous carbon for boosting electrocatalysis to oxygen reduction in universal pH range. Electrochimica Acta, 2019, 318: 783–793
CrossRef
Google scholar
|
[80] |
Tian L , Pang X , Xu H , Liu D , Lu X , Li J , Wang J , Li Z . Cation-anion dual doping modifying electronic structure of hollow CoP nanoboxes for enhanced water oxidation electrocatalysis. Inorganic Chemistry, 2022, 61(42): 16944–16951
CrossRef
Google scholar
|
[81] |
Yuan C , Xu T , Guo M , Zhang T , Yu X . Cation/anion-doping induced electronic structure regulation strategy to boost the catalytic hydrogen evolution from ammonia borane hydrolysis. Applied Catalysis B: Environmental, 2023, 321: 122044
CrossRef
Google scholar
|
[82] |
Wang P , Ma X , Hao X , Tang B , Abudula A , Guan G . Oxygen vacancy defect engineering to promote catalytic activity toward the oxidation of VOCs: a critical review. Catalysis Reviews, 2022, 66(2): 586–639
CrossRef
Google scholar
|
[83] |
Huang Y , Yu Y , Yu Y , Zhang B . Oxygen vacancy engineering in photocatalysis. Solar RRL, 2020, 4(8): 2000037
CrossRef
Google scholar
|
[84] |
Fu L , Chen H , Wang K , Wang X . Oxygen-vacancy generation in MgFe2O4 by high temperature calcination and its improved photocatalytic activity for CO2 reduction. Journal of Alloys and Compounds, 2022, 891: 161925
CrossRef
Google scholar
|
[85] |
Su L , Zhang Y , Zhan X , Zhang L , Zhao Y , Zhu X , Wu H , Chen H , Shen C , Wang L . Pr6O11: temperature-dependent oxygen vacancy regulation and catalytic performance for lithium-oxygen batteries. ACS Applied Materials & Interfaces, 2022, 14(36): 40975–40984
CrossRef
Google scholar
|
[86] |
Li Z , Yan Q , Jiang Q , Gao Y , Xue T , Li R , Liu Y , Wang Q . Oxygen vacancy mediated CuyCo3–yFe1Ox mixed oxide as highly active and stable toluene oxidation catalyst by multiple phase interfaces formation and metal doping effect. Applied Catalysis B: Environmental, 2020, 269: 118827
CrossRef
Google scholar
|
[87] |
Xie Q , Wang M , Xu Y , Li X , Zhou X , Hong L , Jiang L , Lin W . S vacancy modulated ZnxCd1–xS/CoP quantum dots for efficient H2 evolution from water splitting under visible light. Journal of Energy Chemistry, 2021, 61: 210–218
CrossRef
Google scholar
|
[88] |
Zhang R , Ning X , Wang Z , Zhao H , He Y , Han Z , Du P , Lu X . Significantly promoting the photogenerated charge separation by introducing an oxygen vacancy regulation strategy on the FeNiOOH co-catalyst. Small, 2022, 18(20): 2107938
CrossRef
Google scholar
|
[89] |
Chang Y , Huang H , Yang T , Wang L , Zhu H , Zhong C . Simultaneous introduction of oxygen vacancies and hierarchical pores into titanium-based metal-organic framework for enhanced photocatalytic performance. Journal of Colloid and Interface Science, 2021, 599: 785–794
CrossRef
Google scholar
|
[90] |
Gao W , Li S , He H , Li X , Cheng Z , Yang Y , Wang J , Shen Q , Wang X , Xiong Y .
CrossRef
Google scholar
|
[91] |
Yi L , Chen L , Lu C , Ni Y , Xu Z . Effects of oxygen defects on structure and properties of Sm0.5Sr0.5CoO3–δ annealed in different atmospheres. Journal of Rare Earths, 2013, 31(12): 1183–1190
CrossRef
Google scholar
|
[92] |
Wang K , Chang Y , Lv L , Long Y . Effect of annealing temperature on oxygen vacancy concentrations of nanocrystalline CeO2 film. Applied Surface Science, 2015, 351: 164–168
CrossRef
Google scholar
|
[93] |
Li Q , Zhu X , Yang J , Yu Q , Zhu X , Chu J , Du Y , Wang C , Hua Y , Li H .
CrossRef
Google scholar
|
[94] |
Li X , Zhang J , Zhou F , Zhang H , Bai J , Wang Y , Wang H . Preparation of N-vacancy-doped g-C3N4 with outstanding photocatalytic H2O2 production ability by dielectric barrier discharge plasma treatment. Chinese Journal of Catalysis, 2018, 39(6): 1090–1098
CrossRef
Google scholar
|
[95] |
Wu L , Li Y , Fu Z , Su B . Hierarchically structured porous materials: synthesis strategies and applications in energy storage. National Science Review, 2020, 7(11): 1667–1701
CrossRef
Google scholar
|
[96] |
Huang H , Li J , Wang K , Han T , Tong M , Li L , Xie Y , Yang Q , Liu D , Zhong C . An in situ self-assembly template strategy for the preparation of hierarchical-pore metal-organic frameworks. Nature Communications, 2015, 6(1): 8847
CrossRef
Google scholar
|
[97] |
Kirchon A , Li J , Xia F , Day G S , Becker B , Chen W , Sue H , Fang Y , Zhou H . Modulation versus templating: fine-tuning of hierarchally porous PCN-250 using fatty acids to engineer guest adsorption. Angewandte Chemie International Edition, 2019, 58(36): 12425–12430
CrossRef
Google scholar
|
[98] |
Hu M , Ju Y , Liang K , Suma T , Cui J , Caruso F . Void engineering in metal-organic frameworks via synergistic etching and surface functionalization. Advanced Functional Materials, 2016, 26(32): 5827–5834
CrossRef
Google scholar
|
[99] |
Liang X , Fu N , Yao S , Li Z , Li Y . The progress and outlook of metal single-atom-site catalysis. Journal of the American Chemical Society, 2022, 144(40): 18155–18174
CrossRef
Google scholar
|
[100] |
Pan Y , Zhang C , Liu Z , Chen C , Li Y . Structural regulation with atomic-level precision: from single-atomic site to diatomic and atomic interface catalysis. Matter, 2020, 2(1): 78–110
CrossRef
Google scholar
|
[101] |
Rong X , Wang H , Lu X , Si R , Lu T . Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angewandte Chemie, 2020, 132(5): 1977–1981
CrossRef
Google scholar
|
[102] |
Ji S , Chen Y , Wang X , Zhang Z , Wang D , Li Y . Chemical synthesis of single atomic site catalysts. Chemical Reviews, 2020, 120(21): 11900–11955
CrossRef
Google scholar
|
[103] |
Yuan L , Tang T , Hu J , Wan L . Confinement strategies for precise synthesis of efficient electrocatalysts from the macroscopic to the atomic level. Accounts of Materials Research, 2021, 2(10): 907–919
CrossRef
Google scholar
|
[104] |
Chen Y , Ji S , Chen C , Peng Q , Wang D , Li Y . Single-atom catalysts: synthetic strategies and electrochemical applications. Joule, 2018, 2(7): 1242–1264
CrossRef
Google scholar
|
[105] |
Liang S , Zou L , Zheng L , Li L , Wang X , Song L , Xu J . Highly stable Co single atom confined in hierarchical carbon molecular sieve as efficient electrocatalysts in metal-air batteries. Advanced Energy Materials, 2022, 12(11): 2103097
CrossRef
Google scholar
|
[106] |
Cheng X , Wang J , Zhao K , Bi Y . Spatially confined iron single-atom and potassium ion in carbon nitride toward efficient CO2 reduction. Applied Catalysis B: Environmental, 2022, 316: 121643
CrossRef
Google scholar
|
[107] |
Mo Q , Zhang L , Li S , Song H , Fan Y , Su C . Engineering single-atom sites into pore-confined nanospaces of porphyrinic metal-organic frameworks for the highly efficient photocatalytic hydrogen evolution reaction. Journal of the American Chemical Society, 2022, 144(49): 22747–22758
CrossRef
Google scholar
|
[108] |
Wang Y , Wang D , Li Y . Rational design of single-atom site electrocatalysts: from theoretical understandings to practical applications. Advanced Materials, 2021, 33(34): 2008151
CrossRef
Google scholar
|
[109] |
Wan J , Chen W , Jia C , Zheng L , Dong J , Zheng X , Wang Y , Yan W , Chen C , Peng Q .
CrossRef
Google scholar
|
[110] |
Jin J , Han X , Fang Y , Zhang Z , Li Y , Zhang T , Han A , Liu J . Microenvironment engineering of Ru single-atom catalysts by regulating the cation vacancies in NiFe-layered double hydroxides. Advanced Functional Materials, 2022, 32(8): 2109218
CrossRef
Google scholar
|
[111] |
Chen Z , Li X , Zhao J , Zhang S , Wang J , Zhang H , Zhang J , Dong Q , Zhang W , Hu W .
CrossRef
Google scholar
|
[112] |
Hejazi S , Mehdi-pour H , Otieno C O , Müller J , Pour-Ali S , Shahsanaei M , Tafreshi S S , Butz B , Killian M S , Mohajernia S . Room-temperature defect-engineered titania: an efficient platform for Pt single atom decoration for photocatalytic H2 evolution. International Journal of Hydrogen Energy, 2024, 51: 222–233
CrossRef
Google scholar
|
[113] |
Geng L , Zhang Q , Wang X , Han H , Zhang Y , Li C , Li Z , Zhang D , Zhang X , Abdukayum A .
CrossRef
Google scholar
|
[114] |
Huang H , Cho A , Kim S , Jun H , Lee A , Han J W , Lee J . Structural design of amorphous CoMoPx with abundant active sites and synergistic catalysis effect for effective water splitting. Advanced Functional Materials, 2020, 30(43): 2003889
CrossRef
Google scholar
|
[115] |
Liu W , Luo C , Zhang S , Zhang B , Ma J , Wang X , Liu W , Li Z , Yang Q , Lv W . Cobalt-doping of molybdenum disulfide for enhanced catalytic polysulfide conversion in lithium-sulfur batteries. ACS Nano, 2021, 15(4): 7491–7499
CrossRef
Google scholar
|
[116] |
Zhong X , Yi W , Qu Y , Zhang L , Bai H , Zhu Y , Wan J , Chen S , Yang M , Huang L .
CrossRef
Google scholar
|
[117] |
Yang H , Liu X , Hao M , Xie Y , Wang X , Tian H , Waterhouse G I N , Kruger P E , Telfer S G , Ma S . Functionalized iron-nitrogen-carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater. Advanced Materials, 2021, 33(51): 2106621
CrossRef
Google scholar
|
[118] |
Yang H , Liu Y , Liu X , Wang X , Tian H , Waterhouse G I N , Kruger P E , Telfer S G , Ma S . Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis. eScience, 2022, 2(2): 227–234
|
[119] |
Liu X , Xie Y , Hao M , Chen Z , Yang H , Waterhouse G I N , Ma S , Wang X . Highly efficient electrocatalytic uranium extraction from seawater over an amidoxime-functionalized In-N-C catalyst. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2022, 9(23): 2201735
CrossRef
Google scholar
|
[120] |
Liu X , Xie Y , Li Y , Hao M , Chen Z , Yang H , Waterhouse G I N , Ma S , Wang X . Functional carbon capsules supporting ruthenium nanoclusters for efficient electrocatalytic 99TcO4-/ReO4- removal from acidic and alkaline nuclear wastes. Advanced Science, 2023, 10(30): 2303536
CrossRef
Google scholar
|
[121] |
Gao W , Yang M , Chi J , Zhang X , Xie J , Guo B , Wang L , Chai Y , Dong B . In situ construction of surface defects of carbon-doped ternary cobalt-nickel-iron phosphide nanocubes for efficient overall water splitting. Science China Materials, 2019, 62: 1285–1296
CrossRef
Google scholar
|
[122] |
Zhao G , Busser G M , Froese C , Hu B , Bonke S A , Schnegg A , Ai Y , Wei D , Wang X , Peng B .
CrossRef
Google scholar
|
[123] |
Hu Y , Zhao G , Pan Q , Wang H , Shen Z , Peng B , Busser G W , Wang X , Muhler M . Highly selective anaerobic oxidation of alcohols over Fe‐doped SrTiO3 under visible light. ChemCatChem, 2019, 11(20): 5139–5144
CrossRef
Google scholar
|
[124] |
Li B , Hong J , Ai Y , Hu Y , Shen Z , Li S , Zou Y , Zhang S , Wang X , Zhao G .
CrossRef
Google scholar
|
[125] |
Shen Z , Hu Y , Pan Q , Huang C , Zhu B , Xia W , Wang H , Yue J , Muhler M , Zhao G .
CrossRef
Google scholar
|
[126] |
Zou Y , Hu Y , Uhrich A , Shen Z , Peng B , Ji Z , Muhler M , Zhao G , Wang X , Xu X . Steering accessible oxygen vacancies for alcohol oxidation over defective Nb2O5 under visible light illumination. Applied Catalysis B: Environmental, 2021, 298: 120584
CrossRef
Google scholar
|
[127] |
Zhang S , Liu Y , Gu P , Ma R , Wen T , Zhao G , Li L , Ai Y , Hu C , Wang X . Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C3N4: mechanism exploration from both experimental and DFT studies. Applied Catalysis B: Environmental, 2019, 248: 1–10
CrossRef
Google scholar
|
[128] |
Zhang S , Liu Y , Ma R , Jia D , Wen T , Ai Y , Zhao G , Fang F , Hu B , Wang X . Molybdenum(VI)-oxo clusters incorporation activates g-C3N4 with simultaneously regulating charge transfer and reaction centers for boosting photocatalytic performance. Advanced Functional Materials, 2022, 32(38): 2204175
CrossRef
Google scholar
|
[129] |
Li C , Guo Y , Tang D , Guo Y , Wang G , Jiang H , Li J . Optimizing electron structure of Zn-doped AgFeO2 with abundant oxygen vacancies to boost photocatalytic activity for Cr(VI) reduction and organic pollutants decomposition: DFT insights and experimental. Chemical Engineering Journal, 2021, 411: 128515
CrossRef
Google scholar
|
/
〈 | 〉 |