Construction of robust and durable Cu2Se–V2O5 nanosheet electrocatalyst for alkaline oxygen evolution reaction

  • Tauseef Munawar 1 ,
  • Ambreen Bashir 1 ,
  • Khalid Mujasam Batoo 2 ,
  • Saman Fatima 1 ,
  • Faisal Mukhtar 1 ,
  • Sajjad Hussain 3,4 ,
  • Sumaira Manzoor 5 ,
  • Muhammad Naeem Ashiq 5 ,
  • Shoukat Alim Khan 6 ,
  • Muammer Koc 6 ,
  • Faisal Iqbal , 1
Expand
  • 1. Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
  • 2. King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
  • 3. Hybrid Materials Center (HMC), Sejong University, Seoul 05006, Republic of Korea
  • 4. Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
  • 5. Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
  • 6. Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
faisal.iqbal@iub.edu.pk

Received date: 30 Dec 2023

Accepted date: 23 Jan 2024

Copyright

2024 Higher Education Press

Abstract

Reducing the production costs of clean energy carriers such as hydrogen through scalable water electrolysis is a potential solution for advancing the hydrogen economy. Among the various material candidates, our group demonstrated transition-metal-based materials with tunable electronic characteristics, various phases, and earth-abundance. Herein, electrochemical water oxidation using Cu2Se–V2O5 as a non-precious metallic electrocatalyst via a hydrothermal approach is reported. The water-splitting performance of all the fabricated electrocatalysts was evaluated after direct growth on a stainless-steel substrate. The electrochemically tuned Cu2Se–V2O5 catalyst exhibited a reduced overpotential of 128 mV and provided a reduced Tafel slope of 57 mV·dec–1 to meet the maximum current density of 250 mA·cm–2. The optimized strategy for interfacial coupling of the fabricated Cu2Se–V2O5 catalyst resulted in a porous structure with accessible active sites, which enabled adsorption of the intermediates and afforded an effective charge transfer rate for promoting the oxygen evolution reaction. Furthermore, the combined effect of the catalyst components provided long-term stability for over 110 h in an alkaline solution, which makes the catalyst promising for large-scale practical applications. The aforementioned advantages of the composite catalyst overcome the limitations of low conductivity, agglomeration, and poor stability of the pure catalysts (Cu2Se and V2O5).

Cite this article

Tauseef Munawar , Ambreen Bashir , Khalid Mujasam Batoo , Saman Fatima , Faisal Mukhtar , Sajjad Hussain , Sumaira Manzoor , Muhammad Naeem Ashiq , Shoukat Alim Khan , Muammer Koc , Faisal Iqbal . Construction of robust and durable Cu2Se–V2O5 nanosheet electrocatalyst for alkaline oxygen evolution reaction[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(6) : 65 . DOI: 10.1007/s11705-024-2420-6

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

K M Batoo expresses thanks to the Researchers Supporting Project (Grant No. RSP2024R148) and King Saud University (Riyadh, Saudi Arabia) for their financial support. The authors also acknowledge assistance from Yahya Zakaria at the Core Laboratories at the Qatar Environment and Janarthanan Ponraj at the Energy Research Institute (QEERI), Hamad Bin Khalifa University, with XPS and TEM characterization.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://dx.doi.org/10.1007/s11705-024-2420-6 and is accessible for authorized users.
1
McHugh P J , Stergiou A D , Symes M D . Decoupled electrochemical water splitting: from fundamentals to applications. Advanced Energy Materials, 2020, 10(44): 2002453

2
Lee J E , Jeon K J , Show P L , Lee I H , Jung S C , Choi Y J , Rhee G H , Lin K A , Park Y K . Mini review on H2 production from electrochemical water splitting according to special nanostructured morphology of electrocatalysts. Fuel, 2022, 308: 122048

3
Li M , Feng L . NiSe2-CoSe2 with a hybrid nanorods and nanoparticles structure for efficient oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2022, 41(1): 2201019–2201024

4
Chen X , Qiu Z , Xing H , Fei S , Li J , Ma L , Li Y , Liu D . Sulfur-doping/leaching induced structural transformation toward boosting electrocatalytic water splitting. Applied Catalysis B: Environmental, 2022, 305: 121030

5
Wang J , Yue X , Yang Y , Sirisomboonchai S , Wang P , Ma X , Abudula A , Guan G . Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: a review. Journal of Alloys and Compounds, 2020, 819: 153346

6
Sabir A S , Pervaiz E , Khosa R , Sohail U . An inclusive review and perspective on Cu-based materials for electrochemical water splitting. RSC Advances, 2023, 13(8): 4963–4993

7
Peng X , Jin X , Gao B , Liu Z , Chu P K . Strategies to improve cobalt-based electrocatalysts for electrochemical water splitting. Journal of Catalysis, 2021, 398: 54–66

8
Xu Y , Hao X , Zhang X , Wang T , Hu Z , Chen Y , Feng X , Liu W , Hao F , Kong X , He C , Ma S , Xu B . Increasing oxygen vacancies in CeO2 nanocrystals by Ni doping and reduced graphene oxide decoration towards electrocatalytic hydrogen evolution. CrystEngComm, 2022, 24(18): 3369–3379

9
Skoda D , Kazda T , Hanulikova B , Cech O , Vykoukal V , Michalicka J , Cudek P , Kuritka I . Vanadium metal-organic frameworks derived VOx/carbon nano-sheets and paperclip-like VOx/nitrogen-doped carbon nanocomposites for sodium-ion battery electrodes. Materials Chemistry and Physics, 2022, 278: 125584

10
Yang J , Xuan H , Yang J , Liang X , Li Y , Yang J , Han P . Bimetallic NiMo oxides coupled with 3D CuxO nanorods for efficient overall water splitting. Journal of Alloys and Compounds, 2023, 934: 167908

11
Reddy I N , Sreedhar A , Reddy C V , Cho M , Kim D , Shim J . Facile synthesis and characterization of V2O5 nanobelt bundles containing plasmonic Ag for photoelectrochemical water splitting under visible light irradiation. Ceramics International, 2019, 45(17): 23333–23340

12
Dong R , Song Y , Yang D , Shi H Y , Qin Z , Zhang M , Guo D , Sun X , Liu X X . Electrochemical: in situ construction of vanadium oxide heterostructures with boosted pseudocapacitive charge storage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(3): 1176–1183

13
Yu J , Guo Y , Miao S , Ni M , Zhou W , Shao Z . Spherical ruthenium disulfide-sulfur-doped graphene composite as an efficient hydrogen evolution electrocatalyst. ACS Applied Materials & Interfaces, 2018, 10(40): 34098–34107

14
Niu Y , Li W , Wu X , Feng B , Yu Y , Hu W , Li C M . Amorphous nickel sulfide nanosheets with embedded vanadium oxide nanocrystals on nickel foam for efficient electrochemical water oxidation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(17): 10534–10542

15
Zhang J , Zhang H , Liu M , Xu Q , Jiang H , Li C . Cobalt-stabilized oxygen vacancy of V2O5 nanosheet arrays with delocalized valence electron for alkaline water splitting. Chemical Engineering Science, 2020, 227: 115915

16
Jansi R B , Ravi G , Yuvakkumar R . Solvothermal optimization of V2O5 nanostructures for electrochemical energy production. AIP Conference Proceedings, 2020, 2265: 2–6

17
Yang H , Zhou Z , Yu H , Wen H , Yang R , Peng S , Sun M , Yu L . Alkali treatment of layered double hydroxide nanosheets as highly efficient bifunctional electrocatalysts for overall water splitting. Journal of Colloid and Interface Science, 2023, 636(100): 11–20

18
Zhao Y , Wei S , Pan K , Dong Z , Zhang B , Wu H H , Zhang Q , Lin J , Pang H . Self-supporting transition metal chalcogenides on metal substrates for catalytic water splitting. Chemical Engineering Journal, 2021, 421(P1): 129645

19
Liu B , Ning L , Zhao H , Zhang C , Yang H , Liu S . Visible-light photocatalysis in Cu2Se nanowires with exposed {111} facets and charge separation between (111) and (111) polar surfaces. Physical Chemistry Chemical Physics, 2015, 17(20): 13280–13289

20
Liu C S , Xue S L . Efficient photo-assisted Fenton-like reaction of yolk-shell CuSe(Cu2Se)/g-C3N4 heterojunctions for methylene blue degradation. RSC Advances, 2023, 13(13): 8464–8475

21
Xu P , Wang G , Miao C , Cheng K , Ye K , Zhu K , Yan J , Cao D , Zhang X . Controllable one-pot synthesis of emerging β-Cu2Se nanowire freely standing on nickel foam for high electrochemical energy storage performance. Applied Surface Science, 2019, 463: 82–90

22
Munawar T , Bashir A , Nadeem M S , Mukhtar F , Manzoor S , Ashiq M N , Khan S A , Koc M , Iqbal F . Scalable synthesis of MOF-derived Nd2O3@C and V2O5@C nanohybrid: efficient electrocatalyst for OER in alkaline medium. Fuel, 2024, 355: 129485

23
Munawar T , Bashir A , Sardar S , Nadeem M S , Mukhtar F , Manzoor S , Ashiq M N , Khan S A , Koc M , Iqbal F . Electrochemical behavior of V/Ce co-doped carbon shell-coated NiO nanocomposite for alkaline OER and supercapacitor applications. Journal of Energy Storage, 2024, 76: 109556

24
Munawar T , Sardar S , Mukhtar F , Nadeem M S , Manzoor S , Ashiq M N , Khan S A , Koc M , Iqbal F . Fabrication of fullerene-supported La2O3-C60 nanocomposites: dual-functional materials for photocatalysis and supercapacitor electrodes. Physical Chemistry Chemical Physics, 2023, 25(9): 7010–7027

25
Munawar T , Iqbal F , Yasmeen S , Mahmood K , Hussain A . Multi metal oxide NiO-CdO-ZnO nanocomposite—synthesis, structural, optical, electrical properties and enhanced sunlight driven photocatalytic activity. Ceramics International, 2020, 46(2): 2421–2437

26
Muthukannan A , Sivakumar G , Mohanraj K . Influence of equimolar concentration on structural and optical properties of binary selenides nanoparticles. Particulate Science and Technology, 2014, 32(4): 392–398

27
Shukla P , Shukla J K . Facile sol-gel synthesis and enhanced photocatalytic activity of the V2O5-ZnO nanoflakes. Journal of Science. Advanced Materials and Devices, 2018, 3(4): 452–455

28
Sajid M M , Shad N A , Javed Y , Khan S B , Zhang Z , Amin N , Zhai H . Preparation and characterization of vanadium pentoxide (V2O5) for photocatalytic degradation of monoazo and diazo dyes. Surfaces and Interfaces, 2020, 19: 100502

DOI

29
Sabbaghi A A , Dastangoo H , Asadpour-Zeynali K . A deep eutectic solvent-assisted electrochemical synthesis of TGA capped CdSe@Cu2Se core-shell quantum dots on the graphene-modified electrode as a catalytic platform for the determination of pyrazinamide. Talanta, 2023, 253: 123928

30
Munawar T , Bashir A , Nadeem M S , Mukhtar F , Manzoor S , Ashiq M N , Khan S A , Koc M , Iqbal F . Electrochemical performance evaluation of bimetallic sulfide nanocomposite with fullerene (CeNdS/C60) for efficient oxygen evolution reaction (OER). Energy & Fuels, 2023, 37(2): 1370–1386

31
Malavekar D B , Kale S B , Shelke H D , Pathan H M , Lokhande C D . Efficient electrochemical water splitting through self-supported copper selenide nanosheets on Cu foil: effect of immersion time. Energy Technology, 2023, 11(6): 2201300

32
Wang X , Zhou Y , Tuo Y , Lin Y , Yan Y , Chen C , Li Y , Zhang J . Synthesis and identifying the active site of Cu2Se@CoSe nano-composite for enhanced electrocatalytic oxygen evolution. Electrochimica Acta, 2019, 320: 134589

33
Wang C , Jiu H , Zhang L , Song W , Zhang Y , Wei H , Xu Q , Che S , Guo Z , Qin Y . Bifunctional CuCo2O4/CoOOH as a synergistic catalyst supported on nickel foam for alkaline overall water splitting. Journal of Alloys and Compounds, 2022, 929: 167367

34
Yang L , Lu D , Zhu L , Xia D . Construction of Mo doped CoMoCH-Cu2SeS/NF composite electrocatalyst with high catalytic activity and corrosion resistance in seawater electrolysis: a case study on cleaner energy. Journal of Cleaner Production, 2023, 413: 137462

35
An C , Wang Y , Huang R , Li Y , Wang C , Wu S , Gao L , Zhu C , Deng Q , Hu N . Lattice-matched Cu3P/Cu2Se heterojunction catalysts for efficient hydrogen evolution reactions. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2023, 667: 131360

36
Qi H , Zhang P , Wang H , Cui Y , Liu X , She X , Wen Y , Zhan T . Cu2Se nanowires shelled with NiFe layered double hydroxide nanosheets for overall water-splitting. Journal of Colloid and Interface Science, 2021, 599: 370–380

37
Yang L , Zhao Y , Zhu L , Xia D . Rational construction of grille structured P-CoZnO-Cu2SeS/NF composite electrocatalyst for boosting seawater electrolysis and corrosion resistance. Applied Surface Science, 2023, 631: 157541

38
Zhou Y , Chen Y , Wei M , Fan H , Liu X , Liu Q , Liu Y , Cao J , Yang L . 2D MOF-derived porous NiCoSe nanosheet arrays on Ni foam for overall water splitting. CrystEngComm, 2021, 23(1): 69–81

39
Ray C , Lee S C , Jin B , Chung K Y , Guo S , Zhang S , Zhang K , Park J H , Jun S C . Cu2O-Cu2Se mixed-phase nanoflake arrays: pH-universal hydrogen evolution reactions with ultralow overpotential. ChemElectroChem, 2019, 6(19): 5014–5021

40
Yang B , Yang J , Huang Z , Qin L , Lin H , Li Q . Green fabrication of large-size Cu2Se hexagonal sheets with visible light photocatalytic activity. Applied Surface Science, 2021, 535: 147712

41
Shinde S K , Ghodake G S , Dubal D P , Patel R V , Saratale R G , Kim D Y , Maile N C , Koli R R , Dhaygude H D , Fulari V J . Electrochemical synthesis: monoclinic Cu2Se nano-dendrites with high performance for supercapacitors. Journal of the Taiwan Institute of Chemical Engineers, 2017, 75: 271–279

42
Ali A , Cung T N D , Cho K Y , Oh W C . A simple ultrasonic-synthetic route of Cu2Se-graphene-TiO2 ternary composites for carbon dioxide conversion processes. Fullerenes, Nanotubes, and Carbon Nanostructures, 2018, 26(12): 827–836

43
Hou T F , Johar M A , Boppella R , Hassan M A , Patil S J , Ryu S W , Lee D W . Vertically aligned one-dimensional ZnO/V2O5 core-shell hetero-nanostructure for photoelectrochemical water splitting. Journal of Energy Chemistry, 2020, 49: 262–274

44
Yang Z , Xie X , Zhang Z , Yang J , Yu C , Dong S , Xiang M , Qin H . NiS2@V2O5/VS2 ternary heterojunction for a high-performance electrocatalyst in overall water splitting. International Journal of Hydrogen Energy, 2022, 47(64): 27338–27346

45
Wang J , Tran D T , Chang K , Prabhakaran S , Kim D H , Kim N H , Lee J H . Bifunctional catalyst derived from sulfur-doped VMoOx nanolayer shelled Co nanosheets for efficient water splitting. ACS Applied Materials & Interfaces, 2021, 13(36): 42944–42956

46
Ji S M , Muthurasu A , Chhetri K , Yong K H . Metal-organic framework assisted vanadium oxide nanorods as efficient electrode materials for water oxidation. Journal of Colloid and Interface Science, 2022, 618: 475–482

47
Shi W , Lian J . Facile synthesis of copper selenide with fluffy intersected-nanosheets decorating nanotubes structure for efficient oxygen evolution reaction. International Journal of Hydrogen Energy, 2019, 44(41): 22983–22990

48
Nisar L , Sadaqat M , Hassan A , Babar N U A , Shah A , Najam-Ul-Haq M , Ashiq M N , Ehsan M F , Joya K S . Ultrathin CoTe nanoflakes electrode demonstrating low overpotential for overall water splitting. Fuel, 2020, 280: 118666

49
Arsalan M , Babar N U A , Sadiqa A , Mansha S , Baig N , Nisar L , Ashiq M N , Saleh T A , Joya K S . Surface-assembled Fe-oxide colloidal nanoparticles for high performance electrocatalytic water oxidation. International Journal of Hydrogen Energy, 2021, 46(7): 5207–5222

Outlines

/