Role of catalyst surface-active sites in the hydrogenation of α,β-unsaturated aldehyde
Received date: 28 Nov 2023
Accepted date: 24 Jan 2024
Copyright
As an important technology in fine chemical production, the selective hydrogenation of α,β-unsaturated aldehydes has attracted much attention in recent years. In the process of α,β-unsaturated aldehyde hydrogenation, a conjugated system is formed between >C=C< and >C=O, leading to hydrogenation at both ends of the conjugated system, which competes with each other and results in more complex products. Therefore, improving the reaction selectivity is also difficult in industrial fields. Recently, many researchers have reported that surface-active sites on catalysts play a crucial role in α,β-unsaturated aldehyde hydrogenation. This review attempts to summarize recent advances in understanding the effects of surface-active sites (SASs) over metal catalysts for enhancing the process of hydrogenation. The construction strategies and roles of SASs for hydrogenation catalysts are summarized. Particular attention has been given to the adsorption configuration and transformation mechanism of α,β-unsaturated aldehydes on catalysts, which contributes to understanding the relationship between SASs and hydrogenation activity. In addition, recent advances in metal-supported catalysts for the selective hydrogenation of α,β-unsaturated aldehydes to understand the role of SASs in hydrogenation are briefly reviewed. Finally, the opportunities and challenges will be highlighted for the future development of the precise construction of SASs.
Key words: α,β-unsaturated aldehydes; hydrogenation; active site; cinnamaldehyde
Haixiang Shi , Tongming Su , Zuzeng Qin , Hongbing Ji . Role of catalyst surface-active sites in the hydrogenation of α,β-unsaturated aldehyde[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(6) : 64 . DOI: 10.1007/s11705-024-2423-3
1 |
Mäki-Arvela P , Hájek J , Salmi T , Murzin D Y . Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts. Applied Catalysis A: General, 2005, 292: 1–49
|
2 |
Stolle A , Gallert T , Schmöger C , Ondruschka B . Hydrogenation of citral: a wide-spread model reaction for selective reduction of α,β-unsaturated aldehydes. RSC Advances, 2013, 3(7): 2112–2153
|
3 |
Gallezot P , Richard D . Selective hydrogenation of α,β-unsaturated aldehydes. Catalysis Reviews. Science and Engineering, 1998, 40(1–2): 81–126
|
4 |
Laref S , Delbecq F , Loffreda D . Theoretical elucidation of the selectivity changes for the hydrogenation of unsaturated aldehydes on Pt (111). Journal of Catalysis, 2009, 265(1): 35–42
|
5 |
Bailón-García E , Maldonado-Hódar F , Pérez-Cadenas A , Carrasco-Marín F . Catalysts supported on carbon materials for the selective hydrogenation of citral. Catalysts, 2013, 3(4): 853–877
|
6 |
Wang X , Liang X , Geng P , Li Q . Recent advances in selective hydrogenation of cinnamaldehyde over supported metal-based catalysts. ACS Catalysis, 2020, 10(4): 2395–2412
|
7 |
Luneau M , Lim J S , Patel D A , Sykes E C H , Friend C M , Sautet P . Guidelines to achieving high selectivity for the hydrogenation of α,β-unsaturated aldehydes with bimetallic and dilute alloy catalysts: a review. Chemical Reviews, 2020, 120(23): 12834–12872
|
8 |
Delbecq F . Influence of Sn additives on the selectivity of hydrogenation of α-β-unsaturated aldehydes with Pt catalysts: a density functional study of molecular adsorption. Journal of Catalysis, 2003, 220(1): 115–126
|
9 |
Li X , Zhang S , Zhu L , Liu J , Zhang H , Zhao N , Chen B H . Ptmx/SBA-15 (m = Co, Cu, Ni and Zn) bimetallic catalysts for crotonaldehyde selective hydrogenation. Materials Chemistry and Physics, 2023, 294: 127003
|
10 |
Mohire S S , Yadav G D . Selective synthesis of hydrocinnamaldehyde over bimetallic Ni–Cu nanocatalyst supported on graphene oxide. Industrial & Engineering Chemistry Research, 2018, 57(28): 9083–9093
|
11 |
Han S , Liu Y , Li J , Li R , Yuan F , Zhu Y . Improvement effect of Ni to Pd-Ni/SBA-15 catalyst for selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. Catalysts, 2018, 8(5): 200
|
12 |
Jia A , Yao X , Feng L , Ma Z , Li F , Wang Y . Synthesis of hierarchically porous amorphous alloy hollow sphere with high surface area as effective and selective catalysts for cinnamaldehyde hydrogenation. European Journal of Inorganic Chemistry, 2020, 2020(13): 1184–1191
|
13 |
Lv Y , Han M , Gong W , Wang D , Chen C , Wang G , Zhang H , Zhao H . Fe–Co alloyed nanoparticles catalyzing efficient hydrogenation of cinnamaldehyde to cinnamyl alcohol in water. Angewandte Chemie International Edition, 2020, 59(52): 23521–23526
|
14 |
RojasHDíazGMartínezJ JCastañedaCGómez-CortésAArenas-AlatorreJ. Hydrogenation of α,β-unsaturated carbonyl compounds over Au and Ir supported on SiO2. Journal of Molecular Catalysis A Chemical, 2012, 363–364: 122–128
|
15 |
Jiang F , Cai J , Liu B , Xu Y , Liu X . Particle size effects in the selective hydrogenation of cinnamaldehyde over supported palladium catalysts. RSC Advances, 2016, 6(79): 75541–75551
|
16 |
Alfilfil L , Ran J , Chen C , Dong X , Wang J , Han Y . Highly dispersed Pd nanoparticles confined in ZSM-5 zeolite crystals for selective hydrogenation of cinnamaldehyde. Microporous and Mesoporous Materials, 2022, 330: 111566
|
17 |
Das A , Mondal S , Hansda K M , Adak M K , Dhak D . A critical review on the role of carbon supports of metal catalysts for selective catalytic hydrogenation of chloronitrobenzenes. Applied Catalysis A: General, 2023, 649: 118955
|
18 |
Chen Z , Chen J , Li Y . Metal-organic-framework-based catalysts for hydrogenation reactions. Chinese Journal of Catalysis, 2017, 38(7): 1108–1126
|
19 |
Zahid M , Ismail A , Sohail M , Zhu Y . Improving selective hydrogenation of carbonyls bond in α,β-unsaturated aldehydes over Pt nanoparticles encaged within the amines-functionalized MIL-101-NH2. Journal of Colloid and Interface Science, 2022, 628: 141–152
|
20 |
Miao C , Zhang F , Cai L , Hui T , Feng J , Li D . Identification and insight into the role of ultrathin LDH-induced dual-interface sites for selective cinnamaldehyde hydrogenation. ChemCatChem, 2021, 13(23): 4937–4947
|
21 |
Zhang J , Gao M , Zhu P , Wang Y , Wang R , Zheng Z . Photocatalytic selective hydrogenation of α,β-unsaturated aldehydes over oxygen vacancies enriched layered double hydroxide supported Co3O4 nanoparticles photocatalyst. Fuel, 2022, 330: 125589
|
22 |
Zhang R , Wang L , Yang X , Tao Z , Ren X , Lv B . The role of surface N-H groups on the selective hydrogenation of cinnamaldehyde over Co/BN catalysts. Applied Surface Science, 2019, 492: 736–745
|
23 |
Cao Z , Bu J , Zhong Z , Sun C , Zhang Q , Wang J , Chen S , Xie X . Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over BN-supported Pt catalysts at room temperature. Applied Catalysis A: General, 2019, 578: 105–115
|
24 |
Zhang J , Gao Z , Wang S , Wang G , Gao X , Zhang B , Xing S , Zhao S , Qin Y . Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction. Nature Communications, 2019, 10(1): 4166
|
25 |
Ning L , Zhang M , Liao S , Zhang Y , Jia D , Yan Y , Gu W , Liu X . Differentiation of Pt–Fe and Pt–Ni3 surface catalytic mechanisms towards contrasting products in chemoselective hydrogenation of α,β-unsaturated aldehydes. ChemCatChem, 2021, 13(2): 704–711
|
26 |
Yang K , Li Y , Wang R , Li Q , Huang B , Guo X , Zhu Z , Su T , Lü H . Synthesis of dual-active-sites Ni–Ni2In catalysts for selective hydrogenation of furfural to furfuryl alcohol. Fuel, 2022, 325: 124898
|
27 |
Zhang S , Xia Z , Zhang M , Zou Y , Shen H , Li J , Chen X , Qu Y . Boosting selective hydrogenation through hydrogen spillover on supported-metal catalysts at room temperature. Applied Catalysis B: Environmental, 2021, 297: 120418
|
28 |
Wang K , He X , Wang J C , Liang X . Highly stable Pt-Co bimetallic catalysts prepared by atomic layer deposition for selective hydrogenation of cinnamaldehyde. Nanotechnology, 2022, 33(21): 215602
|
29 |
Kardos J , Harmat V , Palló A , Barabás O , Szilágyi K , Gráf L , Náray-Szabó G , Goto Y , Závodszky P , Gál P . Revisiting the mechanism of the autoactivation of the complement protease C1r in the C1 complex: structure of the active catalytic region of C1r. Molecular Immunology, 2008, 45(6): 1752–1760
|
30 |
Shi Y , Zhou Y , Lou Y , Chen Z , Xiong H , Zhu Y . Homogeneity of supported single-atom active sites boosting the selective catalytic transformations. Advanced Science, 2022, 9(24): 2201520
|
31 |
Xu E , Feng H , Wang L , Zhang Y , Liu K , Cui S , Meng H , Wang G , Yang Y . Pt single atoms and nanosized clusters as catalytic reaction platforms for selective hydrogenation applications. ACS Applied Nano Materials, 2023, 6(16): 14991–15001
|
32 |
Guo W , Wang Z , Wang X , Wu Y . General design concept for single-atom catalysts toward heterogeneous catalysis. Advanced Materials, 2021, 33(34): 2004287
|
33 |
Zhang L , Zhou M , Wang A , Zhang T . Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chemical Reviews, 2020, 120(2): 683–733
|
34 |
Lan X , Wang T . Highly selective catalysts for the hydrogenation of unsaturated aldehydes: a review. ACS Catalysis, 2020, 10(4): 2764–2790
|
35 |
Santana C G , Krische M J . From hydrogenation to transfer hydrogenation to hydrogen auto-transfer in enantioselective metal-catalyzed carbonyl reductive coupling: past, present, and future. ACS Catalysis, 2021, 11(9): 5572–5585
|
36 |
Xin H , Zhang W , Xiao X , Chen L , Wu P , Li X . Selective hydrogenation of cinnamaldehyde with NixFe1–xAl2O4+δ composite oxides supported Pt catalysts: C=O versus C=C selectivity switch by varying the Ni/Fe molar ratios. Journal of Catalysis, 2021, 393: 126–139
|
37 |
Wang F F , Guo R , Jian C P , Zhang W , Xue R F , Chen D L , Zhang F M , Zhu W D . Mechanism of catalytic transfer hydrogenation for furfural using single Ni atom catalysts anchored to nitrogen-doped graphene sheets. Inorganic Chemistry, 2022, 61(24): 9138–9146
|
38 |
Lan X , Xue K , Wang T . Combined synergetic and steric effects for highly selective hydrogenation of unsaturated aldehyde. Journal of Catalysis, 2019, 372: 49–60
|
39 |
Lin W , Cheng H , Li X , Zhang C , Zhao F , Arai M . Layered double hydroxide-like Mg3Al1–xFex materials as supports for ir catalysts: promotional effects of Fe doping in selective hydrogenation of cinnamaldehyde. Chinese Journal of Catalysis, 2018, 39(5): 988–996
|
40 |
Dai Y , Chu X , Gu J , Gao X , Xu M , Lu D , Wan X , Qi W , Zhang B , Yang Y . Water-enhanced selective hydrogenation of cinnamaldehyde to cinnamyl alcohol on RuSnB/CeO2 catalysts. Applied Catalysis A: General, 2019, 582: 117098
|
41 |
de la Peña O’Shea V A , Moreira I P R , Roldán A , Illas F . Electronic and magnetic structure of bulk cobalt: the α, β, and ε-phases from density functional theory calculations. Journal of Chemical Physics, 2010, 133(2): 024701
|
42 |
Hu H , Xi J . Single-atom catalysis for organic reactions. Chinese Chemical Letters, 2023, 34(6): 107959
|
43 |
Ren Y , Yang Y , Wei M . Recent advances on heterogeneous non-noble metal catalysts toward selective hydrogenation reactions. ACS Catalysis, 2023, 13(13): 8902–8924
|
44 |
Zhao X , Chang Y , Chen W , Wu Q , Pan X , Chen K , Weng B . Recent progress in Pd-based nanocatalysts for selective hydrogenation. ACS Omega, 2022, 7(1): 17–31
|
45 |
Gao R , Pan L , Wang H , Yao Y , Zhang X , Wang L , Zou J J . Breaking trade-off between selectivity and activity of nickel-based hydrogenation catalysts by tuning both steric effect and d-band center. Advanced Science, 2019, 6(10): 1900054
|
46 |
Song S , Liu X , Li J , Pan J , Wang F , Xing Y , Wang X , Liu X , Zhang H . Confining the nucleation of Pt to in situ form (Pt-enriched cage)@CeO2 core@shell nanostructure as excellent catalysts for hydrogenation reactions. Advanced Materials, 2017, 29(28): 1700495
|
47 |
Long Y , Song S , Li J , Wu L , Wang Q , Liu Y , Jin R , Zhang H . Pt/CeO2@MOF core@shell nanoreactor for selective hydrogenation of furfural via the channel screening effect. ACS Catalysis, 2018, 8(9): 8506–8512
|
48 |
Hu Q , Wang S , Gao Z , Li Y , Zhang Q , Xiang Q , Qin Y . The precise decoration of Pt nanoparticles with Fe oxide by atomic layer deposition for the selective hydrogenation of cinnamaldehyde. Applied Catalysis B: Environmental, 2017, 218: 591–599
|
49 |
Padmanaban S , Lee Y , Yoon S . Chemoselective hydrogenation of α,β-unsaturated carbonyl compounds using a recyclable Ru catalyst embedded on a bisphosphine based POP. Journal of Industrial and Engineering Chemistry, 2021, 94: 361–367
|
50 |
Liu C , Zhu P , Wang J , Liu H , Zhang X . Geometrically embedding dispersive Pt nanoparticles within silicalite-1 framework for highly selective ɑ,β-unsaturated aldehydes hydrogenation via oriented C=O adsorption configuration. Chemical Engineering Journal, 2022, 446: 137064
|
51 |
Chen B , Yang X , Xu Y , Hu S , Zeng X , Liu Y , Tan K B , Huang J , Zhan G . Semi-hydrogenation of α,β-unsaturated aldehydes over sandwich-structured nanocatalysts prepared by phase transformation of thin-film Al2O3 to Al-TCPP. Nanoscale, 2022, 14(42): 15749–15759
|
52 |
Prashar A K , Mayadevi S , Nandini Devi R . Effect of particle size on selective hydrogenation of cinnamaldehyde by Pt encapsulated in mesoporous silica. Catalysis Communications, 2012, 28: 42–46
|
53 |
Prakash M G , Mahalakshmy R , Krishnamurthy K R , Viswanathan B . Selective hydrogenation of cinnamaldehyde on nickel nanoparticles supported on titania: role of catalyst preparation methods. Catalysis Science & Technology, 2015, 5(6): 3313–3321
|
54 |
Zhu W , Chen C . Reaction: open up the era of atomically precise catalysis. Chem, 2019, 5(11): 2737–2739
|
55 |
Wang X , He Y , Liu Y , Park J , Liang X . Atomic layer deposited Pt–Co bimetallic catalysts for selective hydrogenation of α,β-unsaturated aldehydes to unsaturated alcohols. Journal of Catalysis, 2018, 366: 61–69
|
56 |
Weng Z , Zaera F . Atomic layer deposition (ALD) as a way to prepare new mixed-oxide catalyst supports: the case of alumina addition to silica-supported platinum for the selective hydrogenation of cinnamaldehyde. Topics in Catalysis, 2019, 62(12–16): 838–848
|
57 |
Li J , Guan Q , Wu H , Liu W , Lin Y , Sun Z , Ye X , Zheng X , Pan H , Zhu J .
|
58 |
Qiao B , Liu J , Wang Y , Lin Q , Liu X , Wang A , Li J , Zhang T , Liu J . Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catalysis, 2015, 5(11): 6249–6254
|
59 |
Wei H , Liu X , Wang A , Zhang L , Qiao B , Yang X , Huang Y , Miao S , Liu J , Zhang T . FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nature Communications, 2014, 5(1): 5634
|
60 |
Yang H , Shang L , Zhang Q , Shi R , Waterhouse G I N , Gu L , Zhang T . A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nature Communications, 2019, 10(1): 4585
|
61 |
Zhang Z , Feng C , Liu C , Zuo M , Qin L , Yan X , Xing Y , Li H , Si R , Zhou S .
|
62 |
Kusumawati E N , Sasaki T , Shirai M . Highly active Pt-Co bimetallic nanoparticles on ionic liquid-modified SBA-15 for solvent-free selective hydrogenation of cinnamaldehyde. ACS Applied Nano Materials, 2023, 6(19): 17913–17923
|
63 |
Su J , Shi W , Liu X , Zhang L , Cheng S , Zhang Y , Botton G A , Zhang B . Probing the performance of structurally controlled platinum-cobalt bimetallic catalysts for selective hydrogenation of cinnamaldehyde. Journal of Catalysis, 2020, 388: 164–170
|
64 |
Wang H , Bai S , Pi Y , Shao Q , Tan Y , Huang X . A strongly coupled ultrasmall Pt3Co nanoparticle-ultrathin Co(OH)2 nanosheet architecture enhances selective hydrogenation of α,β-unsaturated aldehydes. ACS Catalysis, 2019, 9(1): 154–159
|
65 |
Yuan E , Wang C , Wu C , Shi G , Jian P , Hou X . Constructing a Pd–Co interface to tailor a d-band center for highly efficient hydroconversion of furfural over cobalt oxide-supported Pd catalysts. ACS Applied Materials & Interfaces, 2023, 15(37): 43845–43858
|
66 |
Li H , Cui K , Lei Y , Chen J , Li Y , Liu D , Xiong W . Enhanced chemoselective hydrogenation of cinnamaldehyde via Pt–Fe/Fe-NTA nanocatalysts under low temperature. Catalysis Letters, 2023, 153(9): 2571–2580
|
67 |
Gao X , Tian S , Jin Y , Wan X , Zhou C , Chen R , Dai Y , Yang Y . Bimetallic PtFe-catalyzed selective hydrogenation of furfural to furfuryl alcohol: solvent effect of isopropanol and hydrogen activation. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12722–12730
|
68 |
Qu P F , Chen J G , Song Y H , Liu Z T , Liu Z W , Li Y , Lu J , Jiang J Q . Effect of Fe(III) on hydrogenation of citral over Pt supported multiwalled carbon nanotube. Catalysis Communications, 2015, 68: 105–109
|
69 |
Chen X , Cao H , Chen X , Du Y , Qi J , Luo J , Armbruster M , Liang C . Synthesis of intermetallic Pt-based catalysts by lithium naphthalenide-driven reduction for selective hydrogenation of cinnamaldehyde. ACS Applied Materials & Interfaces, 2020, 12(16): 18551–18561
|
70 |
Yang Y , Rao D , Chen Y , Dong S , Wang B , Zhang X , Wei M . Selective hydrogenation of cinnamaldehyde over Co-based intermetallic compounds derived from layered double hydroxides. ACS Catalysis, 2018, 8(12): 11749–11760
|
71 |
Chen M , Yan Y , Gebre M , Ordonez C , Liu F , Qi L , Lamkins A , Jing D , Dolge K , Zhang B .
|
72 |
Meng Y , Xia S , Zhou X , Pan G . Mechanism of selective hydrogenation of cinnamaldehyde on Ni–Pt (111) with different structures: a comparative study. Chemical Physics Letters, 2020, 740: 137049
|
73 |
Kumar P , Sharma P K , Nannaware A D , Chanotiya C S , Mohapatra P , Rout P K . Regulating the catalytic activities of Ni and Pd through doping on Fe2O3HT for selective hydrogenation of conjugated aldehyde (citral) in lemongrass essential oil to organoleptically superior monoterpene alcohols (geraniol/nerol). Applied Catalysis A: General, 2023, 661: 119236
|
74 |
Li C , Chen Y , Zhang S , Xu S , Zhou J , Wang F , Wei M , Evans D G , Duan X . Ni–In intermetallic nanocrystals as efficient catalysts toward unsaturated aldehydes hydrogenation. Chemistry of Materials, 2013, 25(19): 3888–3896
|
75 |
Rodiansono M D , Astuti D R , Mujiyanti U T , Santoso S . Novel preparation method of bimetallic Ni–In alloy catalysts supported on amorphous alumina for the highly selective hydrogenation of furfural. Molecular Catalysis, 2018, 445: 52–60
|
76 |
Stassi J P , Zgolicz P D , Rodríguez V I , De Miguel S R , Scelza O A . Ga and In promoters in bimetallic Pt based catalysts to improve the performance in the selective hydrogenation of citral. Applied Catalysis A: General, 2015, 497: 58–71
|
77 |
Cao Y , Chen B , Guerrero-Sánchez J , Lee I , Zhou X , Takeuchi N , Zaera F . Controlling selectivity in unsaturated aldehyde hydrogenation using single-site alloy catalysts. ACS Catalysis, 2019, 9(10): 9150–9157
|
78 |
Ciotonea C , Chirieac A , Dragoi B , Dhainaut J , Marinova M , Pronier S , Arii-Clacens S , Dacquin J P , Dumitriu E , Ungureanu A .
|
79 |
Islam M J , Granollers Mesa M , Osatiashtiani A , Taylor M J , Isaacs M A , Kyriakou G . The hydrogenation of crotonaldehyde on PdCu single atom alloy catalysts. Nanomaterials, 2023, 13(8): 1434
|
80 |
Wu B H , Huang H Q , Yang J , Zheng N F , Fu G . Selective hydrogenation of α,β‐unsaturated aldehydes catalyzed by amine-capped platinum-cobalt nanocrystals. Angewandte Chemie International Edition, 2012, 51(14): 3440–3443
|
81 |
Wu Q , Zhang C , Arai M , Zhang B , Shi R , Wu P , Wang Z , Liu Q , Liu K , Lin W .
|
82 |
Liang Y , Douthwaite M , Huang X , Zhao B , Tang Q , Liu L , Dong J . Zero-oxidation state precursor assisted fabrication of highly dispersed and stable Pt catalyst for chemoselective hydrogenation of α,β-unsaturated aldehydes. Nano Research, 2023, 16(5): 6085–6093
|
83 |
Liang Y , Tang Q , Liu L , Wang D , Dong J . Fabrication of highly oxidized Pt single-atom catalysts to suppress the deep hydrogenation of unsaturated aldehydes. Applied Catalysis B: Environmental, 2023, 333: 122783
|
84 |
Li L , Jiao Z F , Zhao J X , Yao D , Li X , Guo X Y . Boosting the selectivity of Pt catalysts for cinnamaldehyde hydrogenation to cinnamylalcohol by surface oxidation of SiC support. Journal of Catalysis, 2023, 425: 314–321
|
85 |
Shen H , Zhao H , Yang J , Zhao J , Yan L , Chou L , Song H . A facile strategy for incorporation of PtCo alloy into UiO-66-NH2 for cinnamaldehyde hydrogenation. Catalysis Communications, 2023, 181: 106714
|
86 |
Zahid M , Li J , Ismail A , Zaera F , Zhu Y . Platinum and cobalt intermetallic nanoparticles confined within MIL-101(Cr) for enhanced selective hydrogenation of the carbonyl bond in α,β-unsaturated aldehydes: synergistic effects of electronically modified Pt sites and lewis acid sites. Catalysis Science & Technology, 2021, 11(7): 2433–2445
|
87 |
Xin H , Xue Y , Zhang W , Wu P , Li X . CoxFe1–xAl2O4+δ composite oxides supported Pt nanoparticles as efficient and recyclable catalysts for the liquid-phase selective hydrogenation of cinnamaldehyde. Journal of Catalysis, 2019, 380: 254–266
|
88 |
Gu Z , Chen L , Li X , Chen L , Zhang Y , Duan C . NH2-MIL-125(Ti)-derived porous cages of titanium oxides to support Pt-Co alloys for chemoselective hydrogenation reactions. Chemical Science, 2019, 10(7): 2111–2117
|
89 |
Shen H , Zhao H , Yang J , Zhao J , Yan L , Chou L , Song H . The structure and electronic effects of ZIF-8 and ZIF-67 supported Pt catalysts for crotonaldehyde selective hydrogenation. New Journal of Chemistry, 2022, 46(7): 3095–3105
|
90 |
Lo W S , Chou L Y , Young A P , Ren C , Goh T W , Williams B P , Li Y , Chen S Y , Ismail M N , Huang W .
|
91 |
Ye H , Zhao H , Jiang Y , Liu H , Hou Z . Catalytic transfer hydrogenation of the C=O bond in unsaturated aldehydes over Pt nanoparticles embedded in porous UiO-66 nanoparticles. ACS Applied Nano Materials, 2020, 3(12): 12260–12268
|
92 |
Zhang T , Zhao H , Yang J , Zhao J , Yan L , Chou L , Song H . Dual interface synergistic catalysis: the selective hydrogenation of crotonaldehyde over Pt/Co3O4@PDA. Catalysis Letters, 2023, 153(4): 965–977
|
93 |
Hou F , Zhao H , Song H , Chou L , Zhao J , Yang J , Yan L . Effect of impregnation strategy on catalytic hydrogenation behavior of ptco catalysts supported on La2O2CO3 nanorods. Journal of Rare Earths, 2018, 36(9): 965–973
|
94 |
Bailón-García E , Carrasco-Marín F , Pérez-Cadenas A F , Maldonado-Hódar F J . Influence of the pretreatment conditions on the development and performance of active sites of Pt/TiO2 catalysts used for the selective citral hydrogenation. Journal of Catalysis, 2015, 327: 86–95
|
95 |
Zgolicz P D , Stassi J P , Yañez M J , Scelza O A , De Miguel S R . Influence of the support and the preparation methods on the performance in citral hydrogenation of Pt-based catalysts supported on carbon nanotubes. Journal of Catalysis, 2012, 290: 37–54
|
96 |
Ramos Montero G E , Stassi J P , De Miguel S R , Zgolicz P D . Hydrogenation of citral and carvone on Pt and PtSn supported metallic catalysts. A comparative study on the regioselectivity and chemoselectivity. Reaction Chemistry & Engineering, 2023, 8(12): 3133–3149
|
97 |
Barrales-Cortés C A , Pérez-Pastenes H , Piña-Victoria J C , Viveros-García T . Hydrogenation of citral on Pt/SiO2 catalysts: effect of Sn addition and type of solvent. Topics in Catalysis, 2020, 63(5–6): 468–480
|
98 |
Rautio A R , Mäki-Arvela P , Aho A , Eränen K , Kordas K . Chemoselective hydrogenation of citral by Pt and Pt-Sn catalysts supported on TiO2 nanoparticles and nanowires. Catalysis Today, 2015, 241: 170–178
|
99 |
Yan D , Li J , Zahid M , Li J , Zhu Y . Efficient catalytic selective hydrogenation of furfural to furfuryl alcohol over Pt-supported on surface amino functionalized hexagonal BN nanosheets. Applied Surface Science, 2023, 609: 155308
|
100 |
Tian X , Dong Y , Zahid M . Synergetic catalysis of Pt/WN-TiO2 nanocomposites for selective hydrogenation of furfural to valuable furfuryl alcohol. Molecular Catalysis, 2023, 545: 113188
|
101 |
Gao G , Remón J , Jiang Z , Yao L , Hu C . Selective hydrogenation of furfural to furfuryl alcohol in water under mild conditions over a hydrotalcite-derived Pt-based catalyst. Applied Catalysis B: Environmental, 2022, 309: 121260
|
102 |
Byun M Y , Lee M S . Pt supported on hierarchical porous carbon for furfural hydrogenation. Journal of Industrial and Engineering Chemistry, 2021, 104: 406–415
|
103 |
Yang Q , Gao D , Li C , Cao S , Li S , Zhao H , Li C , Zheng G , Chen G . Deposition of Pt clusters onto MOFs-derived CeO2 by ALD for selective hydrogenation of furfural. Fuel, 2022, 311: 122584
|
104 |
Liu L , Lou H , Chen M . Selective hydrogenation of furfural over Pt based and Pd based bimetallic catalysts supported on modified multiwalled carbon nanotubes (MWNT). Applied Catalysis A: General, 2018, 550: 1–10
|
105 |
Wang S , Wu C , Yu H , Chu Y , Wang S , Li T , Yin H . Tuning the catalytic performance of Pt/SiO2 catalysts by CoOx modification for selective hydrogenations of unsaturated carbonyl compounds. Applied Surface Science, 2022, 606: 154867
|
106 |
Wang C , Wang S , Wu Z , Lv Y , Chen G , Zhao H , Gao D . Ga2O3–Pt dual-site functionally separated catalyst for efficient hydrogenation of furfural under hydrogen spillover. Fuel, 2024, 357: 129711
|
107 |
Yang Q , Gao D , Li C , Wang S , Hu X , Zheng G , Chen G . Highly dispersed Pt on partial deligandation of Ce-MOFs for furfural selective hydrogenation. Applied Catalysis B: Environmental, 2023, 328: 122458
|
108 |
Yu H , Xu Y , Havener K , Zhang L , Wu W , Liao X , Huang K . Efficient catalysis using honeycomb-like N-doped porous carbon supported Pt nanoparticles for the hydrogenation of cinnamaldehyde in water. Molecular Catalysis, 2022, 525: 112343
|
109 |
Liang C , Li H , Peng M , Zhang X , Jiang Q , Cui J , Ding Y , Zhang Z C . Co decorated low Pt loading nanoparticles over TiO2 catalyst for selective hydrogenation of furfural. Applied Catalysis A: General, 2022, 643: 118766
|
110 |
SarıbıyıkO YResascoD E. Selective hydrogenation of croton aldehyde on Pt nanoparticles controlled by tailoring fraction of well-ordered facets under different pretreatment conditions. Catalysis Letters, 2023: 1–13
|
111 |
Bailón-García E , Carrasco-Marín F , Pérez-Cadenas A F , Maldonado-Hódar F J . Influence of the Pt-particle size on the performance of carbon supported catalysts used in the hydrogenation of citral. Catalysis Communications, 2016, 82: 36–40
|
112 |
Li L , Larsen A H , Romero N A , Morozov V A , Glinsvad C , Abild-Pedersen F , Greeley J , Jacobsen K W , Nørskov J K . Investigation of catalytic finite-size-effects of platinum metal clusters. Journal of Physical Chemistry Letters, 2013, 4(1): 222–226
|
113 |
Cao Y , Guerrero-Sańchez J , Lee I , Zhou X , Takeuchi N , Zaera F . Kinetic study of the hydrogenation of unsaturated aldehydes promoted by CuPtx/SBA-15 single-atom alloy (SAA) catalysts. ACS Catalysis, 2020, 10(5): 3431–3443
|
114 |
Wang H , Lan X , Wang S , Ali B , Wang T . Selective hydrogenation of 2-pentenal using highly dispersed Pt catalysts supported on znsnal mixed metal oxides derived from layered double hydroxides. Catalysis Science & Technology, 2020, 10(4): 1106–1116
|
115 |
Cheng S , Lu S , Liu X , Li G , Wang F . Enhanced activity of alkali-treated ZSM-5 zeolite-supported Pt–Co catalyst for selective hydrogenation of cinnamaldehyde. Molecules, 2023, 28(4): 1730
|
116 |
Goh T W , Tsung C K , Huang W . Spectroscopy identification of the bimetallic surface of metal-organic framework-confined Pt-Sn nanoclusters with enhanced chemoselectivity in furfural hydrogenation. ACS Applied Materials & Interfaces, 2019, 11(26): 23254–23260
|
117 |
Luo W , Fang L , Meng Y , Xue J , Chen T , Xia S , Ni Z . Theoretical study on adsorption of α,β-unsaturated aldehydes on Ni–Pt(111) surfacet. Chemical Journal of Chinese Universities, 2019, 40: 115–122
|
118 |
Kolodziej M , Lalik E , Colmenares J C , Lisowski P , Gurgul J , Duraczyńska D , Drelinkiewicz A . Physicochemical and catalytic properties of Pd/MoO3 prepared by the sonophotodeposition method. Materials Chemistry and Physics, 2018, 204: 361–372
|
119 |
Li Y , Cheng H , Lin W , Zhang C , Wu Q , Zhao F , Arai M . Solvent effects on heterogeneous catalysis in the selective hydrogenation of cinnamaldehyde over a conventional Pd/C catalyst. Catalysis Science & Technology, 2018, 8(14): 3580–3589
|
120 |
Abasabadi R K , Khodadadi A A , Mortazavi Y . Effects of nitrogen-containing functional groups of reduced graphene oxide as a support for Pd in selective hydrogenation of cinnamaldehyde. Research on Chemical Intermediates, 2021, 47(4): 1429–1446
|
121 |
Yuan H , Hong M , Dong F , Chen Y , Du X , Huang X , Gao J , Yang S . Dilute Pd3Co950 alloy encapsulated in defect- and N-rich carbon nanotubes for universal highly efficient aqueous-phase catalysis. Applied Catalysis B: Environmental, 2023, 334: 122864
|
122 |
Hu M , Jin L , Zhu Y , Zhang L , Lu X , Kerns P , Su X , Cao S , Gao P , Suib S L .
|
123 |
Xu T , Sun K , Gao D , Li C , Hu X , Chen G . Atomic-layer-deposition-formed sacrificial template for the construction of an MIL-53 shell to increase selectivity of hydrogenation reactions. Chemical Communications, 2019, 55(53): 7651–7654
|
124 |
Hu T , Zhang L , Wang Y , Yue Z , Li Y , Ma J , Xiao H , Chen W , Zhao M , Zheng Z .
|
125 |
Pinto J , Weilhard A , Norman L T , Lodge R W , Rogers D M , Gual A , Cano I , Khlobystov A N , Licence P , Alves Fernandes J . Unravelling synergistic effects in bi-metallic catalysts: deceleration of palladium-gold nanoparticle coarsening in the hydrogenation of cinnamaldehyde. Catalysis Science & Technology, 2023, 13(14): 4082–4091
|
126 |
Wei Z , Gong Y , Xiong T , Zhang P , Li H , Wang Y . Highly efficient and chemoselective hydrogenation of α,β-unsaturated carbonyls over Pd/N-doped hierarchically porous carbon. Catalysis Science & Technology, 2015, 5(1): 397–404
|
127 |
Patel A , Patel A . Selective C=C hydrogenation of unsaturated hydrocarbons in neat water over stabilized palladium nanoparticles via supported 12-tungstophosphoric acid. Catalysis Letters, 2019, 149(6): 1476–1485
|
128 |
Harraz F A , El-Hout S E , Killa H M , Ibrahim I A . Catalytic hydrogenation of crotonaldehyde and oxidation of benzene over active and recyclable palladium nanoparticles stabilized by polyethylene glycol. Journal of Molecular Catalysis A: Chemical, 2013, 370: 182–188
|
129 |
Zhu J , Li M , Lu M , Zhu J . Effect of structural properties on catalytic performance in citral selective hydrogenation over carbon-titania composite supported Pd catalyst. Catalysis Science & Technology, 2013, 3(3): 737–744
|
130 |
Liu C , Nan C , Fan G , Yang L , Li F . Facile synthesis and synergistically acting catalytic performance of supported bimetallic pdni nanoparticle catalysts for selective hydrogenation of citral. Molecular Catalysis, 2017, 436: 237–247
|
131 |
Wang Z , Wang X , Zhang C , Arai M , Zhou L , Zhao F . Selective hydrogenation of furfural to furfuryl alcohol over Pd/TiH2 catalyst. Molecular Catalysis, 2021, 508: 111599
|
132 |
Silva W R , Matsubara E Y , Rosolen J M , Donate P M , Gunnella R . Pd catalysts supported on different hydrophilic or hydrophobic carbonaceous substrate for furfural and 5-(hydroxymethyl)-furfural hydrogenation in water. Molecular Catalysis, 2021, 504: 111496
|
133 |
Gao B , Zhang J , Zhang M , Li H , Yang J H . Highly dispersed PdCu supported on MCM-41 for efficiently selective transfer hydrogenation of furfural into furfuryl alcohol. Applied Surface Science, 2023, 619: 156716
|
134 |
Ruan L , Zhang H , Zhou M , Zhu L , Pei A , Wang J , Yang K , Zhang C , Xiao S , Chen B H . A highly selective and efficient Pd/Ni/Ni(OH)2/C catalyst for furfural hydrogenation at low temperatures. Molecular Catalysis, 2020, 480: 110639
|
135 |
Zhao X , Wang Y , Zhai Z , Zhuang C , Tian D , Guo H , Zou X , Liu T X . Ultrafine Pd on a La metal-organic framework for selective hydrogenation of furfural via a metal-support electronic effect. ACS Applied Nano Materials, 2023, 6(10): 8315–8324
|
136 |
Yan H , Ren Y , Zhang R , Chang F , Wei Q , Xu J . A one-pot hydrothermal preparation of high loading Ni/La2O3 catalyst for efficient hydrogenation of cinnamaldehyde. Catalysts, 2023, 13(2): 298
|
137 |
Wei X , Rang X , Zhu W , Xiang M , Deng Y , Jiang F , Mao R , Zhang Z , Kong X , Wang F . Morphology effect of CeO2 on Ni/CeO2 catalysts for selective hydrogenation of cinnamaldehyde. Chemical Physics, 2021, 542: 111079
|
138 |
Ling Y , Ge H , Chen J , Zhang Y , Duan Y , Liang M , Guo Y , Wu T S , Soo Y L , Yin X .
|
139 |
Ning L , Liao S , Li H , Tong R , Dong C , Zhang M , Gu W , Liu X . Carbon-based materials with tunable morphology confined Ni (0) and Ni–Nx active sites: highly efficient selective hydrogenation catalysts. Carbon, 2019, 154: 48–57
|
140 |
Ren Y , Xu H , Han B , Xu J . Construction of N-doped carbon-modified Ni/SiO2 catalyst promoting cinnamaldehyde selective hydrogenation. Molecules, 2023, 28(10): 4136
|
141 |
Xin H , Li M , Chen L , Zhao C , Wu P , Li X . Lanthanide oxide supported Ni nanoparticles for the selective hydrogenation of cinnamaldehyde. Catalysis Science & Technology, 2023, 13(5): 1488–1500
|
142 |
Wang N , Liu J , Li X , Wang C , Ma L . One-pot synthesis of nickel encapsulated COF-derived catalyst for highly selective and efficient hydrogenation of cinnamaldehyde. Catalysis Communications, 2023, 177: 106658
|
143 |
Tian F , Zhang M , Zhang X , Chen X , Wang J , Zhang Y , Meng C , Liang C . Porous carbon-encapsulated Ni nanocatalysts for selective catalytic hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. Journal of Materials Science, 2022, 57(5): 3168–3182
|
144 |
Patil K N , Manikanta P M , Srinivasappa P , Jadhav A H , Nagaraja B M . Exploring the confined space and active sites of Ni@OCNTs catalyst for chemoselective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. Journal of Environmental Chemical Engineering, 2022, 10(5): 108208
|
145 |
Chen Y , Liu W , Yin P , Ju M , Wang J , Yang W , Yang Y , Shen C . Synergistic effect between Ni single atoms and acid-base sites: mechanism investigation into catalytic transfer hydrogenation reaction. Journal of Catalysis, 2021, 393: 1–10
|
146 |
Xu Y , Su T , Luo X , Qin Z , Ji H . Ni–Ti intercalated and supported bentonite for selective hydrogenation of cinnamaldehyde. ChemPhysChem, 2023, 24(10): e202200703
|
147 |
Yu J , Yang Y , Chen L , Li Z , Liu W , Xu E , Zhang Y , Hong S , Zhang X , Wei M . NiBi intermetallic compounds catalyst toward selective hydrogenation of unsaturated aldehydes. Applied Catalysis B: Environmental, 2020, 277: 119273
|
148 |
Zhao H , Song H , Chou L . Nickel nanoparticles supported on MOF-5: synthesis and catalytic hydrogenation properties. Inorganic Chemistry Communications, 2012, 15: 261–265
|
149 |
Mahata N , Cunha A F , Órfão J J M , Figueiredo J L . Highly selective hydrogenation of C=C double bond in unsaturated carbonyl compounds over NiC catalyst. Chemical Engineering Journal, 2012, 188: 155–159
|
150 |
Zhao H , Chou L , Song H . Exploration of Ni@Zn-MOCP via a wet impregnation strategy as a hydrogenation catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2011, 104(2): 451–465
|
151 |
Kumar P , Sharma P K , Chaturvedi S , Chanotiya C S , Rauta P R , Mohapatra P , Rout P K . Synthesis of Ni-doped hydrotalcite catalyst through hydrothermal process for the selective reduction of α,β-unsaturated aldehyde (citral) to enantiospecific (+)-citronellal. Catalysis Letters, 2023, 153(10): 3019–3030
|
152 |
Yang L , Jiang Z S , Fan G L , Li F . The promotional effect of ZnO addition to supported Ni nanocatalysts from layered double hydroxide precursors on selective hydrogenation of citral. Catalysis Science & Technology, 2014, 4(4): 1123–1131
|
153 |
Tang Y , Yang D , Qin F , Hu J , Wang C , Xu H . Decorating multi-walled carbon nanotubes with nickel nanoparticles for selective hydrogenation of citral. Journal of Solid State Chemistry, 2009, 182(8): 2279–2284
|
154 |
Wonglekha K , Tolek W , Mekasuwandumrong O , Chaitree W , Praserthdam P , Moon Lee K , Panpranot J . Effects of TiO2 support and cobalt addition of Ni/TiO2 catalyst in selective hydrogenation of furfural to furfuryl alcohol. Journal of Renewable Materials, 2022, 10(8): 2055–2072
|
155 |
Tang F , Wang L , Dessie Walle M , Mustapha A , Liu Y N . An alloy chemistry strategy to tailoring the d-band center of Ni by Cu for efficient and selective catalytic hydrogenation of furfural. Journal of Catalysis, 2020, 383: 172–180
|
156 |
Putro W S , Kojima T , Hara T , Ichikuni N , Shimazu S . Selective hydrogenation of unsaturated carbonyls by Ni-Fe-based alloy catalysts. Catalysis Science & Technology, 2017, 7(16): 3637–3646
|
157 |
Meng X , Yang Y , Chen L , Xu M , Zhang X , Wei M . A control over hydrogenation selectivity of furfural via tuning exposed facet of Ni catalysts. ACS Catalysis, 2019, 9(5): 4226–4235
|
158 |
Zhang J , Mao D , Wu D . Industrially applicable aqueous-phase selective hydrogenation of furfural on an efficient TiOx-modified Ni nanocatalyst. ACS Sustainable Chemistry & Engineering, 2021, 9(41): 13902–13914
|
159 |
Balla P , Seelam P K , Balaga R , Rajesh R , Perupogu V , Liang T X . Immobilized highly dispersed Ni nanoparticles over porous carbon as an efficient catalyst for selective hydrogenation of furfural and levulinic acid. Journal of Environmental Chemical Engineering, 2021, 9(6): 106530
|
160 |
Fan Y , Zhuang C , Li S , Wang Y , Zou X , Liu X , Huang W , Zhu G . Efficient single-atom Ni for catalytic transfer hydrogenation of furfural to furfuryl alcohol. Journal of Materials Chemistry A, 2021, 9(2): 1110–1118
|
161 |
Yi D , Min Y , Muzzi B , Marty A , Romana I , Fazzini P F , Blon T , Viau G , Serp P , Soulantica K . Epsilon cobalt nanoparticles as highly performant catalysts in cinnamaldehyde selective hydrogenation. ACS Applied Nano Materials, 2022, 5(4): 5498–5507
|
162 |
Zhang R , Wang L , Ren J , Hu C , Lv B . Effect of boron nitride overlayers on Co@BNNSs/BN-catalyzed aqueous phase selective hydrogenation of cinnamaldehyde. Journal of Colloid and Interface Science, 2023, 630: 549–558
|
163 |
Shen Y , Chen C , Zou Z , Hu Z , Fu Z , Li W , Pan S , Zhang Y , Zhang H , Yu Z .
|
164 |
Bustamante T M , Fraga M A , Fierro J L G , Campos C H , Pecchi G . Cobalt SiO2 core-shell catalysts for chemoselective hydrogenation of cinnamaldehyde. Catalysis Today, 2020, 356: 330–338
|
165 |
Cui H , Liu S , Lv Y , Wu S , Wang L , Hao F , Liu P , Xiong W , Luo H . Transfer hydrogenation of cinnamaldehyde to cinnamyl alcohol in hydrophobically modified core-shell MOFs nanoreactor: identification of the formed metal-N as the structure of an active site. Journal of Catalysis, 2020, 381: 468–481
|
166 |
Zhao J , Malgras V , Na J , Liang R , Cai Y , Kang Y , Alshehri A A , Alzahrani K A , Alghamdi Y G , Asahi T .
|
167 |
Li H , Liu J , Xie S , Qiao M , Dai W , Li H . Highly active Co-B amorphous alloy catalyst with uniform nanoparticles prepared in oil-in-water microemulsion. Journal of Catalysis, 2008, 259(1): 104–110
|
168 |
Mo M , Tang J , Zou L , Xun Y , Guan H . Improvement and regeneration of Co–B amorphous alloy nanowires for the selective hydrogenation of cinnamaldehyde. RSC Advances, 2022, 12(51): 33099–33107
|
169 |
Pei Y , Guo P , Qiao M , Li H , Wei S , He H , Fan K . The modification effect of Fe on amorphous CoB alloy catalyst for chemoselective hydrogenation of crotonaldehyde. Journal of Catalysis, 2007, 248(2): 303–310
|
170 |
Kurokawa H , Mori K , Yoshida K , Ohshima M A , Sugiyama K , Miura H . The promoting effect of halogen ions on selective hydrogenation of (E)-2-butenal to (E)-2-buten-1-ol over alumina-supported cobalt catalyst. Catalysis Communications, 2005, 6(12): 766–769
|
171 |
Kouachi K , Lafaye G , Especel C , Cherifi O , Marécot P . Preparation of silica-supported cobalt catalysts from water-in-oil microemulsion for selective hydrogenation of citral. Journal of Molecular Catalysis A: Chemical, 2009, 308(1–2): 142–149
|
172 |
Di X , Lafaye G , Especel C , Epron F , Qi J , Li C , Liang C . Supported Co–Re bimetallic catalysts with different structures as efficient catalysts for hydrogenation of citral. ChemSusChem, 2019, 12(4): 807–823
|
173 |
Zhou J , Yang Y , Li C , Zhang S , Chen Y , Shi S , Wei M . Synthesis of Co–Sn intermetallic nanocatalysts toward selective hydrogenation of citral. Journal of Materials Chemistry A, 2016, 4(33): 12825–12832
|
174 |
Liu Y J , Zhang D H , Li X C , Deng S J , Zhao D , Zhang N , Chen C . Construction of highly-dispersed and composition-adjustable CoxN in stable Co@CoxN@C nanocomposite catalysts via a dual-ligand-MOF strategy for the selective hydrogenation of citral. Applied Surface Science, 2020, 505: 144387
|
175 |
Tian Y , Feng Y , Li Z , Fan Y , Sperry J , Sun Y , Yang S , Tang X , Lin L , Zeng X . Green and efficient selective hydrogenation of furfural to furfuryl alcohol over hybrid CoOx/Nb2O5 nanocatalyst in water. Molecular Catalysis, 2023, 538: 112981
|
176 |
Liu W , Hua J , Su S , Yang X . A highly accessible and robust carbon-coated cobalt nanoparticle catalyst for furfural hydrogenative valorization at mild reaction. Molecular Catalysis, 2023, 551: 113647
|
177 |
Ishikawa H , Sheng M , Nakata A , Nakajima K , Yamazoe S , Yamasaki J , Yamaguchi S , Mizugaki T , Mitsudome T . Air-stable and reusable cobalt phosphide nanoalloy catalyst for selective hydrogenation of furfural derivatives. ACS Catalysis, 2021, 11(2): 750–757
|
178 |
Xu L , Nie R , Lyu X , Wang J , Lu X . Selective hydrogenation of furfural to furfuryl alcohol without external hydrogen over N-doped carbon confined Co catalysts. Fuel Processing Technology, 2020, 197: 106205
|
179 |
Jiang P , Li X , Gao W , Wang X , Tang Y , Lan K , Wang B , Li R . Highly selective hydrogenation of α,β-unsaturated carbonyl compounds over supported Co nanoparticles. Catalysis Communications, 2018, 111: 6–9
|
180 |
Gong W , Chen C , Zhang H , Wang G , Zhao H . Highly dispersed Co and Ni nanoparticles encapsulated in N-doped carbon nanotubes as efficient catalysts for the reduction of unsaturated oxygen compounds in aqueous phase. Catalysis Science & Technology, 2018, 8(21): 5506–5514
|
181 |
Li S , Fan Y , Wu C , Zhuang C , Wang Y , Li X , Zhao J , Zheng Z . Selective hydrogenation of furfural over the Co-based catalyst: a subtle synergy with Ni and Zn dopants. ACS Applied Materials & Interfaces, 2021, 13(7): 8507–8517
|
182 |
Gong W B , Han M M , Chen C , Lin Y , Wang G H , Zhang H M , Zhao H J . CoO@Co nanoparticle-based catalyst for efficient selective transfer hydrogenation of α,β-unsaturated aldehydes. ChemCatChem, 2020, 12(4): 1019–1024
|
183 |
Tian Y , Chen B , Yu Z , Huang R , Yan G , Li Z , Sun Y , Yang S , Tang X , Lin L .
|
/
〈 | 〉 |