Role of catalyst surface-active sites in the hydrogenation of α,β-unsaturated aldehyde

  • Haixiang Shi 1 ,
  • Tongming Su 1 ,
  • Zuzeng Qin , 1 ,
  • Hongbing Ji , 1,2
Expand
  • 1. School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China
  • 2. Zhejiang Green Petrochemical and Light Hydrocarbon Transformation Research Institute, Zhejiang University of Technology, Hangzhou 310014, China
qinzuzeng@gxu.edu.cn
jihb@zjut.edu.cn

Received date: 28 Nov 2023

Accepted date: 24 Jan 2024

Copyright

2024 Higher Education Press

Abstract

As an important technology in fine chemical production, the selective hydrogenation of α,β-unsaturated aldehydes has attracted much attention in recent years. In the process of α,β-unsaturated aldehyde hydrogenation, a conjugated system is formed between >C=C< and >C=O, leading to hydrogenation at both ends of the conjugated system, which competes with each other and results in more complex products. Therefore, improving the reaction selectivity is also difficult in industrial fields. Recently, many researchers have reported that surface-active sites on catalysts play a crucial role in α,β-unsaturated aldehyde hydrogenation. This review attempts to summarize recent advances in understanding the effects of surface-active sites (SASs) over metal catalysts for enhancing the process of hydrogenation. The construction strategies and roles of SASs for hydrogenation catalysts are summarized. Particular attention has been given to the adsorption configuration and transformation mechanism of α,β-unsaturated aldehydes on catalysts, which contributes to understanding the relationship between SASs and hydrogenation activity. In addition, recent advances in metal-supported catalysts for the selective hydrogenation of α,β-unsaturated aldehydes to understand the role of SASs in hydrogenation are briefly reviewed. Finally, the opportunities and challenges will be highlighted for the future development of the precise construction of SASs.

Cite this article

Haixiang Shi , Tongming Su , Zuzeng Qin , Hongbing Ji . Role of catalyst surface-active sites in the hydrogenation of α,β-unsaturated aldehyde[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(6) : 64 . DOI: 10.1007/s11705-024-2423-3

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21968007), the Guangxi Natural Science Foundation (Grant No. 2020GXNSFDA297007), the Opening Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (Grant No. 2023K002), and Special funding for ‘Guangxi Bagui Scholars’.
1
Mäki-Arvela P , Hájek J , Salmi T , Murzin D Y . Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts. Applied Catalysis A: General, 2005, 292: 1–49

DOI

2
Stolle A , Gallert T , Schmöger C , Ondruschka B . Hydrogenation of citral: a wide-spread model reaction for selective reduction of α,β-unsaturated aldehydes. RSC Advances, 2013, 3(7): 2112–2153

DOI

3
Gallezot P , Richard D . Selective hydrogenation of α,β-unsaturated aldehydes. Catalysis Reviews. Science and Engineering, 1998, 40(1–2): 81–126

DOI

4
Laref S , Delbecq F , Loffreda D . Theoretical elucidation of the selectivity changes for the hydrogenation of unsaturated aldehydes on Pt (111). Journal of Catalysis, 2009, 265(1): 35–42

DOI

5
Bailón-García E , Maldonado-Hódar F , Pérez-Cadenas A , Carrasco-Marín F . Catalysts supported on carbon materials for the selective hydrogenation of citral. Catalysts, 2013, 3(4): 853–877

DOI

6
Wang X , Liang X , Geng P , Li Q . Recent advances in selective hydrogenation of cinnamaldehyde over supported metal-based catalysts. ACS Catalysis, 2020, 10(4): 2395–2412

DOI

7
Luneau M , Lim J S , Patel D A , Sykes E C H , Friend C M , Sautet P . Guidelines to achieving high selectivity for the hydrogenation of α,β-unsaturated aldehydes with bimetallic and dilute alloy catalysts: a review. Chemical Reviews, 2020, 120(23): 12834–12872

DOI

8
Delbecq F . Influence of Sn additives on the selectivity of hydrogenation of α-β-unsaturated aldehydes with Pt catalysts: a density functional study of molecular adsorption. Journal of Catalysis, 2003, 220(1): 115–126

DOI

9
Li X , Zhang S , Zhu L , Liu J , Zhang H , Zhao N , Chen B H . Ptmx/SBA-15 (m = Co, Cu, Ni and Zn) bimetallic catalysts for crotonaldehyde selective hydrogenation. Materials Chemistry and Physics, 2023, 294: 127003

DOI

10
Mohire S S , Yadav G D . Selective synthesis of hydrocinnamaldehyde over bimetallic Ni–Cu nanocatalyst supported on graphene oxide. Industrial & Engineering Chemistry Research, 2018, 57(28): 9083–9093

DOI

11
Han S , Liu Y , Li J , Li R , Yuan F , Zhu Y . Improvement effect of Ni to Pd-Ni/SBA-15 catalyst for selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. Catalysts, 2018, 8(5): 200

DOI

12
Jia A , Yao X , Feng L , Ma Z , Li F , Wang Y . Synthesis of hierarchically porous amorphous alloy hollow sphere with high surface area as effective and selective catalysts for cinnamaldehyde hydrogenation. European Journal of Inorganic Chemistry, 2020, 2020(13): 1184–1191

DOI

13
Lv Y , Han M , Gong W , Wang D , Chen C , Wang G , Zhang H , Zhao H . Fe–Co alloyed nanoparticles catalyzing efficient hydrogenation of cinnamaldehyde to cinnamyl alcohol in water. Angewandte Chemie International Edition, 2020, 59(52): 23521–23526

DOI

14
RojasHDíazGMartínezJ JCastañedaCGómez-CortésAArenas-AlatorreJ. Hydrogenation of α,β-unsaturated carbonyl compounds over Au and Ir supported on SiO2. Journal of Molecular Catalysis A Chemical, 2012, 363–364: 122–128

15
Jiang F , Cai J , Liu B , Xu Y , Liu X . Particle size effects in the selective hydrogenation of cinnamaldehyde over supported palladium catalysts. RSC Advances, 2016, 6(79): 75541–75551

DOI

16
Alfilfil L , Ran J , Chen C , Dong X , Wang J , Han Y . Highly dispersed Pd nanoparticles confined in ZSM-5 zeolite crystals for selective hydrogenation of cinnamaldehyde. Microporous and Mesoporous Materials, 2022, 330: 111566

DOI

17
Das A , Mondal S , Hansda K M , Adak M K , Dhak D . A critical review on the role of carbon supports of metal catalysts for selective catalytic hydrogenation of chloronitrobenzenes. Applied Catalysis A: General, 2023, 649: 118955

DOI

18
Chen Z , Chen J , Li Y . Metal-organic-framework-based catalysts for hydrogenation reactions. Chinese Journal of Catalysis, 2017, 38(7): 1108–1126

DOI

19
Zahid M , Ismail A , Sohail M , Zhu Y . Improving selective hydrogenation of carbonyls bond in α,β-unsaturated aldehydes over Pt nanoparticles encaged within the amines-functionalized MIL-101-NH2. Journal of Colloid and Interface Science, 2022, 628: 141–152

DOI

20
Miao C , Zhang F , Cai L , Hui T , Feng J , Li D . Identification and insight into the role of ultrathin LDH-induced dual-interface sites for selective cinnamaldehyde hydrogenation. ChemCatChem, 2021, 13(23): 4937–4947

DOI

21
Zhang J , Gao M , Zhu P , Wang Y , Wang R , Zheng Z . Photocatalytic selective hydrogenation of α,β-unsaturated aldehydes over oxygen vacancies enriched layered double hydroxide supported Co3O4 nanoparticles photocatalyst. Fuel, 2022, 330: 125589

DOI

22
Zhang R , Wang L , Yang X , Tao Z , Ren X , Lv B . The role of surface N-H groups on the selective hydrogenation of cinnamaldehyde over Co/BN catalysts. Applied Surface Science, 2019, 492: 736–745

DOI

23
Cao Z , Bu J , Zhong Z , Sun C , Zhang Q , Wang J , Chen S , Xie X . Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over BN-supported Pt catalysts at room temperature. Applied Catalysis A: General, 2019, 578: 105–115

DOI

24
Zhang J , Gao Z , Wang S , Wang G , Gao X , Zhang B , Xing S , Zhao S , Qin Y . Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction. Nature Communications, 2019, 10(1): 4166

DOI

25
Ning L , Zhang M , Liao S , Zhang Y , Jia D , Yan Y , Gu W , Liu X . Differentiation of Pt–Fe and Pt–Ni3 surface catalytic mechanisms towards contrasting products in chemoselective hydrogenation of α,β-unsaturated aldehydes. ChemCatChem, 2021, 13(2): 704–711

DOI

26
Yang K , Li Y , Wang R , Li Q , Huang B , Guo X , Zhu Z , Su T , Lü H . Synthesis of dual-active-sites Ni–Ni2In catalysts for selective hydrogenation of furfural to furfuryl alcohol. Fuel, 2022, 325: 124898

DOI

27
Zhang S , Xia Z , Zhang M , Zou Y , Shen H , Li J , Chen X , Qu Y . Boosting selective hydrogenation through hydrogen spillover on supported-metal catalysts at room temperature. Applied Catalysis B: Environmental, 2021, 297: 120418

DOI

28
Wang K , He X , Wang J C , Liang X . Highly stable Pt-Co bimetallic catalysts prepared by atomic layer deposition for selective hydrogenation of cinnamaldehyde. Nanotechnology, 2022, 33(21): 215602

DOI

29
Kardos J , Harmat V , Palló A , Barabás O , Szilágyi K , Gráf L , Náray-Szabó G , Goto Y , Závodszky P , Gál P . Revisiting the mechanism of the autoactivation of the complement protease C1r in the C1 complex: structure of the active catalytic region of C1r. Molecular Immunology, 2008, 45(6): 1752–1760

DOI

30
Shi Y , Zhou Y , Lou Y , Chen Z , Xiong H , Zhu Y . Homogeneity of supported single-atom active sites boosting the selective catalytic transformations. Advanced Science, 2022, 9(24): 2201520

DOI

31
Xu E , Feng H , Wang L , Zhang Y , Liu K , Cui S , Meng H , Wang G , Yang Y . Pt single atoms and nanosized clusters as catalytic reaction platforms for selective hydrogenation applications. ACS Applied Nano Materials, 2023, 6(16): 14991–15001

DOI

32
Guo W , Wang Z , Wang X , Wu Y . General design concept for single-atom catalysts toward heterogeneous catalysis. Advanced Materials, 2021, 33(34): 2004287

DOI

33
Zhang L , Zhou M , Wang A , Zhang T . Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chemical Reviews, 2020, 120(2): 683–733

DOI

34
Lan X , Wang T . Highly selective catalysts for the hydrogenation of unsaturated aldehydes: a review. ACS Catalysis, 2020, 10(4): 2764–2790

DOI

35
Santana C G , Krische M J . From hydrogenation to transfer hydrogenation to hydrogen auto-transfer in enantioselective metal-catalyzed carbonyl reductive coupling: past, present, and future. ACS Catalysis, 2021, 11(9): 5572–5585

DOI

36
Xin H , Zhang W , Xiao X , Chen L , Wu P , Li X . Selective hydrogenation of cinnamaldehyde with NixFe1–xAl2O4+δ composite oxides supported Pt catalysts: C=O versus C=C selectivity switch by varying the Ni/Fe molar ratios. Journal of Catalysis, 2021, 393: 126–139

DOI

37
Wang F F , Guo R , Jian C P , Zhang W , Xue R F , Chen D L , Zhang F M , Zhu W D . Mechanism of catalytic transfer hydrogenation for furfural using single Ni atom catalysts anchored to nitrogen-doped graphene sheets. Inorganic Chemistry, 2022, 61(24): 9138–9146

DOI

38
Lan X , Xue K , Wang T . Combined synergetic and steric effects for highly selective hydrogenation of unsaturated aldehyde. Journal of Catalysis, 2019, 372: 49–60

DOI

39
Lin W , Cheng H , Li X , Zhang C , Zhao F , Arai M . Layered double hydroxide-like Mg3Al1–xFex materials as supports for ir catalysts: promotional effects of Fe doping in selective hydrogenation of cinnamaldehyde. Chinese Journal of Catalysis, 2018, 39(5): 988–996

DOI

40
Dai Y , Chu X , Gu J , Gao X , Xu M , Lu D , Wan X , Qi W , Zhang B , Yang Y . Water-enhanced selective hydrogenation of cinnamaldehyde to cinnamyl alcohol on RuSnB/CeO2 catalysts. Applied Catalysis A: General, 2019, 582: 117098

DOI

41
de la Peña O’Shea V A , Moreira I P R , Roldán A , Illas F . Electronic and magnetic structure of bulk cobalt: the α, β, and ε-phases from density functional theory calculations. Journal of Chemical Physics, 2010, 133(2): 024701

DOI

42
Hu H , Xi J . Single-atom catalysis for organic reactions. Chinese Chemical Letters, 2023, 34(6): 107959

DOI

43
Ren Y , Yang Y , Wei M . Recent advances on heterogeneous non-noble metal catalysts toward selective hydrogenation reactions. ACS Catalysis, 2023, 13(13): 8902–8924

DOI

44
Zhao X , Chang Y , Chen W , Wu Q , Pan X , Chen K , Weng B . Recent progress in Pd-based nanocatalysts for selective hydrogenation. ACS Omega, 2022, 7(1): 17–31

DOI

45
Gao R , Pan L , Wang H , Yao Y , Zhang X , Wang L , Zou J J . Breaking trade-off between selectivity and activity of nickel-based hydrogenation catalysts by tuning both steric effect and d-band center. Advanced Science, 2019, 6(10): 1900054

DOI

46
Song S , Liu X , Li J , Pan J , Wang F , Xing Y , Wang X , Liu X , Zhang H . Confining the nucleation of Pt to in situ form (Pt-enriched cage)@CeO2 core@shell nanostructure as excellent catalysts for hydrogenation reactions. Advanced Materials, 2017, 29(28): 1700495

DOI

47
Long Y , Song S , Li J , Wu L , Wang Q , Liu Y , Jin R , Zhang H . Pt/CeO2@MOF core@shell nanoreactor for selective hydrogenation of furfural via the channel screening effect. ACS Catalysis, 2018, 8(9): 8506–8512

DOI

48
Hu Q , Wang S , Gao Z , Li Y , Zhang Q , Xiang Q , Qin Y . The precise decoration of Pt nanoparticles with Fe oxide by atomic layer deposition for the selective hydrogenation of cinnamaldehyde. Applied Catalysis B: Environmental, 2017, 218: 591–599

DOI

49
Padmanaban S , Lee Y , Yoon S . Chemoselective hydrogenation of α,β-unsaturated carbonyl compounds using a recyclable Ru catalyst embedded on a bisphosphine based POP. Journal of Industrial and Engineering Chemistry, 2021, 94: 361–367

DOI

50
Liu C , Zhu P , Wang J , Liu H , Zhang X . Geometrically embedding dispersive Pt nanoparticles within silicalite-1 framework for highly selective ɑ,β-unsaturated aldehydes hydrogenation via oriented C=O adsorption configuration. Chemical Engineering Journal, 2022, 446: 137064

DOI

51
Chen B , Yang X , Xu Y , Hu S , Zeng X , Liu Y , Tan K B , Huang J , Zhan G . Semi-hydrogenation of α,β-unsaturated aldehydes over sandwich-structured nanocatalysts prepared by phase transformation of thin-film Al2O3 to Al-TCPP. Nanoscale, 2022, 14(42): 15749–15759

DOI

52
Prashar A K , Mayadevi S , Nandini Devi R . Effect of particle size on selective hydrogenation of cinnamaldehyde by Pt encapsulated in mesoporous silica. Catalysis Communications, 2012, 28: 42–46

DOI

53
Prakash M G , Mahalakshmy R , Krishnamurthy K R , Viswanathan B . Selective hydrogenation of cinnamaldehyde on nickel nanoparticles supported on titania: role of catalyst preparation methods. Catalysis Science & Technology, 2015, 5(6): 3313–3321

DOI

54
Zhu W , Chen C . Reaction: open up the era of atomically precise catalysis. Chem, 2019, 5(11): 2737–2739

DOI

55
Wang X , He Y , Liu Y , Park J , Liang X . Atomic layer deposited Pt–Co bimetallic catalysts for selective hydrogenation of α,β-unsaturated aldehydes to unsaturated alcohols. Journal of Catalysis, 2018, 366: 61–69

DOI

56
Weng Z , Zaera F . Atomic layer deposition (ALD) as a way to prepare new mixed-oxide catalyst supports: the case of alumina addition to silica-supported platinum for the selective hydrogenation of cinnamaldehyde. Topics in Catalysis, 2019, 62(12–16): 838–848

DOI

57
Li J , Guan Q , Wu H , Liu W , Lin Y , Sun Z , Ye X , Zheng X , Pan H , Zhu J . . Highly active and stable metal single-atom catalysts achieved by strong electronic metal-support interactions. Journal of the American Chemical Society, 2019, 141(37): 14515–14519

DOI

58
Qiao B , Liu J , Wang Y , Lin Q , Liu X , Wang A , Li J , Zhang T , Liu J . Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catalysis, 2015, 5(11): 6249–6254

DOI

59
Wei H , Liu X , Wang A , Zhang L , Qiao B , Yang X , Huang Y , Miao S , Liu J , Zhang T . FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nature Communications, 2014, 5(1): 5634

DOI

60
Yang H , Shang L , Zhang Q , Shi R , Waterhouse G I N , Gu L , Zhang T . A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nature Communications, 2019, 10(1): 4585

DOI

61
Zhang Z , Feng C , Liu C , Zuo M , Qin L , Yan X , Xing Y , Li H , Si R , Zhou S . . Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nature Communications, 2020, 11(1): 1215

DOI

62
Kusumawati E N , Sasaki T , Shirai M . Highly active Pt-Co bimetallic nanoparticles on ionic liquid-modified SBA-15 for solvent-free selective hydrogenation of cinnamaldehyde. ACS Applied Nano Materials, 2023, 6(19): 17913–17923

DOI

63
Su J , Shi W , Liu X , Zhang L , Cheng S , Zhang Y , Botton G A , Zhang B . Probing the performance of structurally controlled platinum-cobalt bimetallic catalysts for selective hydrogenation of cinnamaldehyde. Journal of Catalysis, 2020, 388: 164–170

DOI

64
Wang H , Bai S , Pi Y , Shao Q , Tan Y , Huang X . A strongly coupled ultrasmall Pt3Co nanoparticle-ultrathin Co(OH)2 nanosheet architecture enhances selective hydrogenation of α,β-unsaturated aldehydes. ACS Catalysis, 2019, 9(1): 154–159

DOI

65
Yuan E , Wang C , Wu C , Shi G , Jian P , Hou X . Constructing a Pd–Co interface to tailor a d-band center for highly efficient hydroconversion of furfural over cobalt oxide-supported Pd catalysts. ACS Applied Materials & Interfaces, 2023, 15(37): 43845–43858

DOI

66
Li H , Cui K , Lei Y , Chen J , Li Y , Liu D , Xiong W . Enhanced chemoselective hydrogenation of cinnamaldehyde via Pt–Fe/Fe-NTA nanocatalysts under low temperature. Catalysis Letters, 2023, 153(9): 2571–2580

DOI

67
Gao X , Tian S , Jin Y , Wan X , Zhou C , Chen R , Dai Y , Yang Y . Bimetallic PtFe-catalyzed selective hydrogenation of furfural to furfuryl alcohol: solvent effect of isopropanol and hydrogen activation. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12722–12730

DOI

68
Qu P F , Chen J G , Song Y H , Liu Z T , Liu Z W , Li Y , Lu J , Jiang J Q . Effect of Fe(III) on hydrogenation of citral over Pt supported multiwalled carbon nanotube. Catalysis Communications, 2015, 68: 105–109

DOI

69
Chen X , Cao H , Chen X , Du Y , Qi J , Luo J , Armbruster M , Liang C . Synthesis of intermetallic Pt-based catalysts by lithium naphthalenide-driven reduction for selective hydrogenation of cinnamaldehyde. ACS Applied Materials & Interfaces, 2020, 12(16): 18551–18561

DOI

70
Yang Y , Rao D , Chen Y , Dong S , Wang B , Zhang X , Wei M . Selective hydrogenation of cinnamaldehyde over Co-based intermetallic compounds derived from layered double hydroxides. ACS Catalysis, 2018, 8(12): 11749–11760

DOI

71
Chen M , Yan Y , Gebre M , Ordonez C , Liu F , Qi L , Lamkins A , Jing D , Dolge K , Zhang B . . Thermal unequilibrium of PdSn intermetallic nanocatalysts: from in situ tailored synthesis to unexpected hydrogenation selectivity. Angewandte Chemie International Edition, 2021, 60(33): 18309–18317

DOI

72
Meng Y , Xia S , Zhou X , Pan G . Mechanism of selective hydrogenation of cinnamaldehyde on Ni–Pt (111) with different structures: a comparative study. Chemical Physics Letters, 2020, 740: 137049

DOI

73
Kumar P , Sharma P K , Nannaware A D , Chanotiya C S , Mohapatra P , Rout P K . Regulating the catalytic activities of Ni and Pd through doping on Fe2O3HT for selective hydrogenation of conjugated aldehyde (citral) in lemongrass essential oil to organoleptically superior monoterpene alcohols (geraniol/nerol). Applied Catalysis A: General, 2023, 661: 119236

DOI

74
Li C , Chen Y , Zhang S , Xu S , Zhou J , Wang F , Wei M , Evans D G , Duan X . Ni–In intermetallic nanocrystals as efficient catalysts toward unsaturated aldehydes hydrogenation. Chemistry of Materials, 2013, 25(19): 3888–3896

DOI

75
Rodiansono M D , Astuti D R , Mujiyanti U T , Santoso S . Novel preparation method of bimetallic Ni–In alloy catalysts supported on amorphous alumina for the highly selective hydrogenation of furfural. Molecular Catalysis, 2018, 445: 52–60

DOI

76
Stassi J P , Zgolicz P D , Rodríguez V I , De Miguel S R , Scelza O A . Ga and In promoters in bimetallic Pt based catalysts to improve the performance in the selective hydrogenation of citral. Applied Catalysis A: General, 2015, 497: 58–71

DOI

77
Cao Y , Chen B , Guerrero-Sánchez J , Lee I , Zhou X , Takeuchi N , Zaera F . Controlling selectivity in unsaturated aldehyde hydrogenation using single-site alloy catalysts. ACS Catalysis, 2019, 9(10): 9150–9157

DOI

78
Ciotonea C , Chirieac A , Dragoi B , Dhainaut J , Marinova M , Pronier S , Arii-Clacens S , Dacquin J P , Dumitriu E , Ungureanu A . . Playing on 3d spatial distribution of Cu–Co (oxide) nanoparticles in inorganic mesoporous sieves: impact on catalytic performance toward the cinnamaldehyde hydrogenation. Applied Catalysis A: General, 2021, 623: 118303

DOI

79
Islam M J , Granollers Mesa M , Osatiashtiani A , Taylor M J , Isaacs M A , Kyriakou G . The hydrogenation of crotonaldehyde on PdCu single atom alloy catalysts. Nanomaterials, 2023, 13(8): 1434

DOI

80
Wu B H , Huang H Q , Yang J , Zheng N F , Fu G . Selective hydrogenation of α,β‐unsaturated aldehydes catalyzed by amine-capped platinum-cobalt nanocrystals. Angewandte Chemie International Edition, 2012, 51(14): 3440–3443

DOI

81
Wu Q , Zhang C , Arai M , Zhang B , Shi R , Wu P , Wang Z , Liu Q , Liu K , Lin W . . Pt/TiH2 catalyst for ionic hydrogenation via stored hydrides in the presence of gaseous H2. ACS Catalysis, 2019, 9(7): 6425–6434

DOI

82
Liang Y , Douthwaite M , Huang X , Zhao B , Tang Q , Liu L , Dong J . Zero-oxidation state precursor assisted fabrication of highly dispersed and stable Pt catalyst for chemoselective hydrogenation of α,β-unsaturated aldehydes. Nano Research, 2023, 16(5): 6085–6093

DOI

83
Liang Y , Tang Q , Liu L , Wang D , Dong J . Fabrication of highly oxidized Pt single-atom catalysts to suppress the deep hydrogenation of unsaturated aldehydes. Applied Catalysis B: Environmental, 2023, 333: 122783

DOI

84
Li L , Jiao Z F , Zhao J X , Yao D , Li X , Guo X Y . Boosting the selectivity of Pt catalysts for cinnamaldehyde hydrogenation to cinnamylalcohol by surface oxidation of SiC support. Journal of Catalysis, 2023, 425: 314–321

DOI

85
Shen H , Zhao H , Yang J , Zhao J , Yan L , Chou L , Song H . A facile strategy for incorporation of PtCo alloy into UiO-66-NH2 for cinnamaldehyde hydrogenation. Catalysis Communications, 2023, 181: 106714

DOI

86
Zahid M , Li J , Ismail A , Zaera F , Zhu Y . Platinum and cobalt intermetallic nanoparticles confined within MIL-101(Cr) for enhanced selective hydrogenation of the carbonyl bond in α,β-unsaturated aldehydes: synergistic effects of electronically modified Pt sites and lewis acid sites. Catalysis Science & Technology, 2021, 11(7): 2433–2445

DOI

87
Xin H , Xue Y , Zhang W , Wu P , Li X . CoxFe1–xAl2O4+δ composite oxides supported Pt nanoparticles as efficient and recyclable catalysts for the liquid-phase selective hydrogenation of cinnamaldehyde. Journal of Catalysis, 2019, 380: 254–266

DOI

88
Gu Z , Chen L , Li X , Chen L , Zhang Y , Duan C . NH2-MIL-125(Ti)-derived porous cages of titanium oxides to support Pt-Co alloys for chemoselective hydrogenation reactions. Chemical Science, 2019, 10(7): 2111–2117

DOI

89
Shen H , Zhao H , Yang J , Zhao J , Yan L , Chou L , Song H . The structure and electronic effects of ZIF-8 and ZIF-67 supported Pt catalysts for crotonaldehyde selective hydrogenation. New Journal of Chemistry, 2022, 46(7): 3095–3105

DOI

90
Lo W S , Chou L Y , Young A P , Ren C , Goh T W , Williams B P , Li Y , Chen S Y , Ismail M N , Huang W . . Probing the interface between encapsulated nanoparticles and metal-organic frameworks for catalytic selectivity control. Chemistry of Materials, 2021, 33(6): 1946–1953

DOI

91
Ye H , Zhao H , Jiang Y , Liu H , Hou Z . Catalytic transfer hydrogenation of the C=O bond in unsaturated aldehydes over Pt nanoparticles embedded in porous UiO-66 nanoparticles. ACS Applied Nano Materials, 2020, 3(12): 12260–12268

DOI

92
Zhang T , Zhao H , Yang J , Zhao J , Yan L , Chou L , Song H . Dual interface synergistic catalysis: the selective hydrogenation of crotonaldehyde over Pt/Co3O4@PDA. Catalysis Letters, 2023, 153(4): 965–977

DOI

93
Hou F , Zhao H , Song H , Chou L , Zhao J , Yang J , Yan L . Effect of impregnation strategy on catalytic hydrogenation behavior of ptco catalysts supported on La2O2CO3 nanorods. Journal of Rare Earths, 2018, 36(9): 965–973

DOI

94
Bailón-García E , Carrasco-Marín F , Pérez-Cadenas A F , Maldonado-Hódar F J . Influence of the pretreatment conditions on the development and performance of active sites of Pt/TiO2 catalysts used for the selective citral hydrogenation. Journal of Catalysis, 2015, 327: 86–95

DOI

95
Zgolicz P D , Stassi J P , Yañez M J , Scelza O A , De Miguel S R . Influence of the support and the preparation methods on the performance in citral hydrogenation of Pt-based catalysts supported on carbon nanotubes. Journal of Catalysis, 2012, 290: 37–54

DOI

96
Ramos Montero G E , Stassi J P , De Miguel S R , Zgolicz P D . Hydrogenation of citral and carvone on Pt and PtSn supported metallic catalysts. A comparative study on the regioselectivity and chemoselectivity. Reaction Chemistry & Engineering, 2023, 8(12): 3133–3149

DOI

97
Barrales-Cortés C A , Pérez-Pastenes H , Piña-Victoria J C , Viveros-García T . Hydrogenation of citral on Pt/SiO2 catalysts: effect of Sn addition and type of solvent. Topics in Catalysis, 2020, 63(5–6): 468–480

DOI

98
Rautio A R , Mäki-Arvela P , Aho A , Eränen K , Kordas K . Chemoselective hydrogenation of citral by Pt and Pt-Sn catalysts supported on TiO2 nanoparticles and nanowires. Catalysis Today, 2015, 241: 170–178

DOI

99
Yan D , Li J , Zahid M , Li J , Zhu Y . Efficient catalytic selective hydrogenation of furfural to furfuryl alcohol over Pt-supported on surface amino functionalized hexagonal BN nanosheets. Applied Surface Science, 2023, 609: 155308

DOI

100
Tian X , Dong Y , Zahid M . Synergetic catalysis of Pt/WN-TiO2 nanocomposites for selective hydrogenation of furfural to valuable furfuryl alcohol. Molecular Catalysis, 2023, 545: 113188

DOI

101
Gao G , Remón J , Jiang Z , Yao L , Hu C . Selective hydrogenation of furfural to furfuryl alcohol in water under mild conditions over a hydrotalcite-derived Pt-based catalyst. Applied Catalysis B: Environmental, 2022, 309: 121260

DOI

102
Byun M Y , Lee M S . Pt supported on hierarchical porous carbon for furfural hydrogenation. Journal of Industrial and Engineering Chemistry, 2021, 104: 406–415

DOI

103
Yang Q , Gao D , Li C , Cao S , Li S , Zhao H , Li C , Zheng G , Chen G . Deposition of Pt clusters onto MOFs-derived CeO2 by ALD for selective hydrogenation of furfural. Fuel, 2022, 311: 122584

DOI

104
Liu L , Lou H , Chen M . Selective hydrogenation of furfural over Pt based and Pd based bimetallic catalysts supported on modified multiwalled carbon nanotubes (MWNT). Applied Catalysis A: General, 2018, 550: 1–10

DOI

105
Wang S , Wu C , Yu H , Chu Y , Wang S , Li T , Yin H . Tuning the catalytic performance of Pt/SiO2 catalysts by CoOx modification for selective hydrogenations of unsaturated carbonyl compounds. Applied Surface Science, 2022, 606: 154867

DOI

106
Wang C , Wang S , Wu Z , Lv Y , Chen G , Zhao H , Gao D . Ga2O3–Pt dual-site functionally separated catalyst for efficient hydrogenation of furfural under hydrogen spillover. Fuel, 2024, 357: 129711

DOI

107
Yang Q , Gao D , Li C , Wang S , Hu X , Zheng G , Chen G . Highly dispersed Pt on partial deligandation of Ce-MOFs for furfural selective hydrogenation. Applied Catalysis B: Environmental, 2023, 328: 122458

DOI

108
Yu H , Xu Y , Havener K , Zhang L , Wu W , Liao X , Huang K . Efficient catalysis using honeycomb-like N-doped porous carbon supported Pt nanoparticles for the hydrogenation of cinnamaldehyde in water. Molecular Catalysis, 2022, 525: 112343

DOI

109
Liang C , Li H , Peng M , Zhang X , Jiang Q , Cui J , Ding Y , Zhang Z C . Co decorated low Pt loading nanoparticles over TiO2 catalyst for selective hydrogenation of furfural. Applied Catalysis A: General, 2022, 643: 118766

DOI

110
SarıbıyıkO YResascoD E. Selective hydrogenation of croton aldehyde on Pt nanoparticles controlled by tailoring fraction of well-ordered facets under different pretreatment conditions. Catalysis Letters, 2023: 1–13

111
Bailón-García E , Carrasco-Marín F , Pérez-Cadenas A F , Maldonado-Hódar F J . Influence of the Pt-particle size on the performance of carbon supported catalysts used in the hydrogenation of citral. Catalysis Communications, 2016, 82: 36–40

DOI

112
Li L , Larsen A H , Romero N A , Morozov V A , Glinsvad C , Abild-Pedersen F , Greeley J , Jacobsen K W , Nørskov J K . Investigation of catalytic finite-size-effects of platinum metal clusters. Journal of Physical Chemistry Letters, 2013, 4(1): 222–226

DOI

113
Cao Y , Guerrero-Sańchez J , Lee I , Zhou X , Takeuchi N , Zaera F . Kinetic study of the hydrogenation of unsaturated aldehydes promoted by CuPtx/SBA-15 single-atom alloy (SAA) catalysts. ACS Catalysis, 2020, 10(5): 3431–3443

DOI

114
Wang H , Lan X , Wang S , Ali B , Wang T . Selective hydrogenation of 2-pentenal using highly dispersed Pt catalysts supported on znsnal mixed metal oxides derived from layered double hydroxides. Catalysis Science & Technology, 2020, 10(4): 1106–1116

DOI

115
Cheng S , Lu S , Liu X , Li G , Wang F . Enhanced activity of alkali-treated ZSM-5 zeolite-supported Pt–Co catalyst for selective hydrogenation of cinnamaldehyde. Molecules, 2023, 28(4): 1730

DOI

116
Goh T W , Tsung C K , Huang W . Spectroscopy identification of the bimetallic surface of metal-organic framework-confined Pt-Sn nanoclusters with enhanced chemoselectivity in furfural hydrogenation. ACS Applied Materials & Interfaces, 2019, 11(26): 23254–23260

DOI

117
Luo W , Fang L , Meng Y , Xue J , Chen T , Xia S , Ni Z . Theoretical study on adsorption of α,β-unsaturated aldehydes on Ni–Pt(111) surfacet. Chemical Journal of Chinese Universities, 2019, 40: 115–122

118
Kolodziej M , Lalik E , Colmenares J C , Lisowski P , Gurgul J , Duraczyńska D , Drelinkiewicz A . Physicochemical and catalytic properties of Pd/MoO3 prepared by the sonophotodeposition method. Materials Chemistry and Physics, 2018, 204: 361–372

DOI

119
Li Y , Cheng H , Lin W , Zhang C , Wu Q , Zhao F , Arai M . Solvent effects on heterogeneous catalysis in the selective hydrogenation of cinnamaldehyde over a conventional Pd/C catalyst. Catalysis Science & Technology, 2018, 8(14): 3580–3589

DOI

120
Abasabadi R K , Khodadadi A A , Mortazavi Y . Effects of nitrogen-containing functional groups of reduced graphene oxide as a support for Pd in selective hydrogenation of cinnamaldehyde. Research on Chemical Intermediates, 2021, 47(4): 1429–1446

DOI

121
Yuan H , Hong M , Dong F , Chen Y , Du X , Huang X , Gao J , Yang S . Dilute Pd3Co950 alloy encapsulated in defect- and N-rich carbon nanotubes for universal highly efficient aqueous-phase catalysis. Applied Catalysis B: Environmental, 2023, 334: 122864

DOI

122
Hu M , Jin L , Zhu Y , Zhang L , Lu X , Kerns P , Su X , Cao S , Gao P , Suib S L . . Self-limiting growth of ligand-free ultrasmall bimetallic nanoparticles on carbon through under temperature reduction for highly efficient methanol electrooxidation and selective hydrogenation. Applied Catalysis B: Environmental, 2020, 264: 118553

DOI

123
Xu T , Sun K , Gao D , Li C , Hu X , Chen G . Atomic-layer-deposition-formed sacrificial template for the construction of an MIL-53 shell to increase selectivity of hydrogenation reactions. Chemical Communications, 2019, 55(53): 7651–7654

DOI

124
Hu T , Zhang L , Wang Y , Yue Z , Li Y , Ma J , Xiao H , Chen W , Zhao M , Zheng Z . . Defect engineering in Pd/NiCo2O4–x for selective hydrogenation of α,β-unsaturated carbonyl compounds under ambient conditions. ACS Sustainable Chemistry & Engineering, 2020, 8(21): 7851–7859

DOI

125
Pinto J , Weilhard A , Norman L T , Lodge R W , Rogers D M , Gual A , Cano I , Khlobystov A N , Licence P , Alves Fernandes J . Unravelling synergistic effects in bi-metallic catalysts: deceleration of palladium-gold nanoparticle coarsening in the hydrogenation of cinnamaldehyde. Catalysis Science & Technology, 2023, 13(14): 4082–4091

DOI

126
Wei Z , Gong Y , Xiong T , Zhang P , Li H , Wang Y . Highly efficient and chemoselective hydrogenation of α,β-unsaturated carbonyls over Pd/N-doped hierarchically porous carbon. Catalysis Science & Technology, 2015, 5(1): 397–404

DOI

127
Patel A , Patel A . Selective C=C hydrogenation of unsaturated hydrocarbons in neat water over stabilized palladium nanoparticles via supported 12-tungstophosphoric acid. Catalysis Letters, 2019, 149(6): 1476–1485

DOI

128
Harraz F A , El-Hout S E , Killa H M , Ibrahim I A . Catalytic hydrogenation of crotonaldehyde and oxidation of benzene over active and recyclable palladium nanoparticles stabilized by polyethylene glycol. Journal of Molecular Catalysis A: Chemical, 2013, 370: 182–188

DOI

129
Zhu J , Li M , Lu M , Zhu J . Effect of structural properties on catalytic performance in citral selective hydrogenation over carbon-titania composite supported Pd catalyst. Catalysis Science & Technology, 2013, 3(3): 737–744

DOI

130
Liu C , Nan C , Fan G , Yang L , Li F . Facile synthesis and synergistically acting catalytic performance of supported bimetallic pdni nanoparticle catalysts for selective hydrogenation of citral. Molecular Catalysis, 2017, 436: 237–247

DOI

131
Wang Z , Wang X , Zhang C , Arai M , Zhou L , Zhao F . Selective hydrogenation of furfural to furfuryl alcohol over Pd/TiH2 catalyst. Molecular Catalysis, 2021, 508: 111599

DOI

132
Silva W R , Matsubara E Y , Rosolen J M , Donate P M , Gunnella R . Pd catalysts supported on different hydrophilic or hydrophobic carbonaceous substrate for furfural and 5-(hydroxymethyl)-furfural hydrogenation in water. Molecular Catalysis, 2021, 504: 111496

DOI

133
Gao B , Zhang J , Zhang M , Li H , Yang J H . Highly dispersed PdCu supported on MCM-41 for efficiently selective transfer hydrogenation of furfural into furfuryl alcohol. Applied Surface Science, 2023, 619: 156716

DOI

134
Ruan L , Zhang H , Zhou M , Zhu L , Pei A , Wang J , Yang K , Zhang C , Xiao S , Chen B H . A highly selective and efficient Pd/Ni/Ni(OH)2/C catalyst for furfural hydrogenation at low temperatures. Molecular Catalysis, 2020, 480: 110639

DOI

135
Zhao X , Wang Y , Zhai Z , Zhuang C , Tian D , Guo H , Zou X , Liu T X . Ultrafine Pd on a La metal-organic framework for selective hydrogenation of furfural via a metal-support electronic effect. ACS Applied Nano Materials, 2023, 6(10): 8315–8324

DOI

136
Yan H , Ren Y , Zhang R , Chang F , Wei Q , Xu J . A one-pot hydrothermal preparation of high loading Ni/La2O3 catalyst for efficient hydrogenation of cinnamaldehyde. Catalysts, 2023, 13(2): 298

DOI

137
Wei X , Rang X , Zhu W , Xiang M , Deng Y , Jiang F , Mao R , Zhang Z , Kong X , Wang F . Morphology effect of CeO2 on Ni/CeO2 catalysts for selective hydrogenation of cinnamaldehyde. Chemical Physics, 2021, 542: 111079

DOI

138
Ling Y , Ge H , Chen J , Zhang Y , Duan Y , Liang M , Guo Y , Wu T S , Soo Y L , Yin X . . General strategy toward hydrophilic single atom catalysts for efficient selective hydrogenation. Advanced Science, 2022, 9(25): 2202144

DOI

139
Ning L , Liao S , Li H , Tong R , Dong C , Zhang M , Gu W , Liu X . Carbon-based materials with tunable morphology confined Ni (0) and Ni–Nx active sites: highly efficient selective hydrogenation catalysts. Carbon, 2019, 154: 48–57

DOI

140
Ren Y , Xu H , Han B , Xu J . Construction of N-doped carbon-modified Ni/SiO2 catalyst promoting cinnamaldehyde selective hydrogenation. Molecules, 2023, 28(10): 4136

DOI

141
Xin H , Li M , Chen L , Zhao C , Wu P , Li X . Lanthanide oxide supported Ni nanoparticles for the selective hydrogenation of cinnamaldehyde. Catalysis Science & Technology, 2023, 13(5): 1488–1500

DOI

142
Wang N , Liu J , Li X , Wang C , Ma L . One-pot synthesis of nickel encapsulated COF-derived catalyst for highly selective and efficient hydrogenation of cinnamaldehyde. Catalysis Communications, 2023, 177: 106658

DOI

143
Tian F , Zhang M , Zhang X , Chen X , Wang J , Zhang Y , Meng C , Liang C . Porous carbon-encapsulated Ni nanocatalysts for selective catalytic hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. Journal of Materials Science, 2022, 57(5): 3168–3182

DOI

144
Patil K N , Manikanta P M , Srinivasappa P , Jadhav A H , Nagaraja B M . Exploring the confined space and active sites of Ni@OCNTs catalyst for chemoselective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. Journal of Environmental Chemical Engineering, 2022, 10(5): 108208

DOI

145
Chen Y , Liu W , Yin P , Ju M , Wang J , Yang W , Yang Y , Shen C . Synergistic effect between Ni single atoms and acid-base sites: mechanism investigation into catalytic transfer hydrogenation reaction. Journal of Catalysis, 2021, 393: 1–10

DOI

146
Xu Y , Su T , Luo X , Qin Z , Ji H . Ni–Ti intercalated and supported bentonite for selective hydrogenation of cinnamaldehyde. ChemPhysChem, 2023, 24(10): e202200703

DOI

147
Yu J , Yang Y , Chen L , Li Z , Liu W , Xu E , Zhang Y , Hong S , Zhang X , Wei M . NiBi intermetallic compounds catalyst toward selective hydrogenation of unsaturated aldehydes. Applied Catalysis B: Environmental, 2020, 277: 119273

DOI

148
Zhao H , Song H , Chou L . Nickel nanoparticles supported on MOF-5: synthesis and catalytic hydrogenation properties. Inorganic Chemistry Communications, 2012, 15: 261–265

DOI

149
Mahata N , Cunha A F , Órfão J J M , Figueiredo J L . Highly selective hydrogenation of C=C double bond in unsaturated carbonyl compounds over NiC catalyst. Chemical Engineering Journal, 2012, 188: 155–159

DOI

150
Zhao H , Chou L , Song H . Exploration of Ni@Zn-MOCP via a wet impregnation strategy as a hydrogenation catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2011, 104(2): 451–465

DOI

151
Kumar P , Sharma P K , Chaturvedi S , Chanotiya C S , Rauta P R , Mohapatra P , Rout P K . Synthesis of Ni-doped hydrotalcite catalyst through hydrothermal process for the selective reduction of α,β-unsaturated aldehyde (citral) to enantiospecific (+)-citronellal. Catalysis Letters, 2023, 153(10): 3019–3030

DOI

152
Yang L , Jiang Z S , Fan G L , Li F . The promotional effect of ZnO addition to supported Ni nanocatalysts from layered double hydroxide precursors on selective hydrogenation of citral. Catalysis Science & Technology, 2014, 4(4): 1123–1131

DOI

153
Tang Y , Yang D , Qin F , Hu J , Wang C , Xu H . Decorating multi-walled carbon nanotubes with nickel nanoparticles for selective hydrogenation of citral. Journal of Solid State Chemistry, 2009, 182(8): 2279–2284

DOI

154
Wonglekha K , Tolek W , Mekasuwandumrong O , Chaitree W , Praserthdam P , Moon Lee K , Panpranot J . Effects of TiO2 support and cobalt addition of Ni/TiO2 catalyst in selective hydrogenation of furfural to furfuryl alcohol. Journal of Renewable Materials, 2022, 10(8): 2055–2072

DOI

155
Tang F , Wang L , Dessie Walle M , Mustapha A , Liu Y N . An alloy chemistry strategy to tailoring the d-band center of Ni by Cu for efficient and selective catalytic hydrogenation of furfural. Journal of Catalysis, 2020, 383: 172–180

DOI

156
Putro W S , Kojima T , Hara T , Ichikuni N , Shimazu S . Selective hydrogenation of unsaturated carbonyls by Ni-Fe-based alloy catalysts. Catalysis Science & Technology, 2017, 7(16): 3637–3646

DOI

157
Meng X , Yang Y , Chen L , Xu M , Zhang X , Wei M . A control over hydrogenation selectivity of furfural via tuning exposed facet of Ni catalysts. ACS Catalysis, 2019, 9(5): 4226–4235

DOI

158
Zhang J , Mao D , Wu D . Industrially applicable aqueous-phase selective hydrogenation of furfural on an efficient TiOx-modified Ni nanocatalyst. ACS Sustainable Chemistry & Engineering, 2021, 9(41): 13902–13914

DOI

159
Balla P , Seelam P K , Balaga R , Rajesh R , Perupogu V , Liang T X . Immobilized highly dispersed Ni nanoparticles over porous carbon as an efficient catalyst for selective hydrogenation of furfural and levulinic acid. Journal of Environmental Chemical Engineering, 2021, 9(6): 106530

DOI

160
Fan Y , Zhuang C , Li S , Wang Y , Zou X , Liu X , Huang W , Zhu G . Efficient single-atom Ni for catalytic transfer hydrogenation of furfural to furfuryl alcohol. Journal of Materials Chemistry A, 2021, 9(2): 1110–1118

DOI

161
Yi D , Min Y , Muzzi B , Marty A , Romana I , Fazzini P F , Blon T , Viau G , Serp P , Soulantica K . Epsilon cobalt nanoparticles as highly performant catalysts in cinnamaldehyde selective hydrogenation. ACS Applied Nano Materials, 2022, 5(4): 5498–5507

DOI

162
Zhang R , Wang L , Ren J , Hu C , Lv B . Effect of boron nitride overlayers on Co@BNNSs/BN-catalyzed aqueous phase selective hydrogenation of cinnamaldehyde. Journal of Colloid and Interface Science, 2023, 630: 549–558

DOI

163
Shen Y , Chen C , Zou Z , Hu Z , Fu Z , Li W , Pan S , Zhang Y , Zhang H , Yu Z . . Geometric and electronic effects of Co@NPC catalyst in chemoselective hydrogenation: tunable activity and selectivity via N,P co-doping. Journal of Catalysis, 2023, 421: 65–76

DOI

164
Bustamante T M , Fraga M A , Fierro J L G , Campos C H , Pecchi G . Cobalt SiO2 core-shell catalysts for chemoselective hydrogenation of cinnamaldehyde. Catalysis Today, 2020, 356: 330–338

DOI

165
Cui H , Liu S , Lv Y , Wu S , Wang L , Hao F , Liu P , Xiong W , Luo H . Transfer hydrogenation of cinnamaldehyde to cinnamyl alcohol in hydrophobically modified core-shell MOFs nanoreactor: identification of the formed metal-N as the structure of an active site. Journal of Catalysis, 2020, 381: 468–481

DOI

166
Zhao J , Malgras V , Na J , Liang R , Cai Y , Kang Y , Alshehri A A , Alzahrani K A , Alghamdi Y G , Asahi T . . Magnetically induced synthesis of mesoporous amorphous CoB nanochains for efficient selective hydrogenation of cinnamaldehyde to cinnamyl alcohol. Chemical Engineering Journal, 2020, 398: 125564

DOI

167
Li H , Liu J , Xie S , Qiao M , Dai W , Li H . Highly active Co-B amorphous alloy catalyst with uniform nanoparticles prepared in oil-in-water microemulsion. Journal of Catalysis, 2008, 259(1): 104–110

DOI

168
Mo M , Tang J , Zou L , Xun Y , Guan H . Improvement and regeneration of Co–B amorphous alloy nanowires for the selective hydrogenation of cinnamaldehyde. RSC Advances, 2022, 12(51): 33099–33107

DOI

169
Pei Y , Guo P , Qiao M , Li H , Wei S , He H , Fan K . The modification effect of Fe on amorphous CoB alloy catalyst for chemoselective hydrogenation of crotonaldehyde. Journal of Catalysis, 2007, 248(2): 303–310

DOI

170
Kurokawa H , Mori K , Yoshida K , Ohshima M A , Sugiyama K , Miura H . The promoting effect of halogen ions on selective hydrogenation of (E)-2-butenal to (E)-2-buten-1-ol over alumina-supported cobalt catalyst. Catalysis Communications, 2005, 6(12): 766–769

DOI

171
Kouachi K , Lafaye G , Especel C , Cherifi O , Marécot P . Preparation of silica-supported cobalt catalysts from water-in-oil microemulsion for selective hydrogenation of citral. Journal of Molecular Catalysis A: Chemical, 2009, 308(1–2): 142–149

DOI

172
Di X , Lafaye G , Especel C , Epron F , Qi J , Li C , Liang C . Supported Co–Re bimetallic catalysts with different structures as efficient catalysts for hydrogenation of citral. ChemSusChem, 2019, 12(4): 807–823

DOI

173
Zhou J , Yang Y , Li C , Zhang S , Chen Y , Shi S , Wei M . Synthesis of Co–Sn intermetallic nanocatalysts toward selective hydrogenation of citral. Journal of Materials Chemistry A, 2016, 4(33): 12825–12832

DOI

174
Liu Y J , Zhang D H , Li X C , Deng S J , Zhao D , Zhang N , Chen C . Construction of highly-dispersed and composition-adjustable CoxN in stable Co@CoxN@C nanocomposite catalysts via a dual-ligand-MOF strategy for the selective hydrogenation of citral. Applied Surface Science, 2020, 505: 144387

DOI

175
Tian Y , Feng Y , Li Z , Fan Y , Sperry J , Sun Y , Yang S , Tang X , Lin L , Zeng X . Green and efficient selective hydrogenation of furfural to furfuryl alcohol over hybrid CoOx/Nb2O5 nanocatalyst in water. Molecular Catalysis, 2023, 538: 112981

DOI

176
Liu W , Hua J , Su S , Yang X . A highly accessible and robust carbon-coated cobalt nanoparticle catalyst for furfural hydrogenative valorization at mild reaction. Molecular Catalysis, 2023, 551: 113647

DOI

177
Ishikawa H , Sheng M , Nakata A , Nakajima K , Yamazoe S , Yamasaki J , Yamaguchi S , Mizugaki T , Mitsudome T . Air-stable and reusable cobalt phosphide nanoalloy catalyst for selective hydrogenation of furfural derivatives. ACS Catalysis, 2021, 11(2): 750–757

DOI

178
Xu L , Nie R , Lyu X , Wang J , Lu X . Selective hydrogenation of furfural to furfuryl alcohol without external hydrogen over N-doped carbon confined Co catalysts. Fuel Processing Technology, 2020, 197: 106205

DOI

179
Jiang P , Li X , Gao W , Wang X , Tang Y , Lan K , Wang B , Li R . Highly selective hydrogenation of α,β-unsaturated carbonyl compounds over supported Co nanoparticles. Catalysis Communications, 2018, 111: 6–9

DOI

180
Gong W , Chen C , Zhang H , Wang G , Zhao H . Highly dispersed Co and Ni nanoparticles encapsulated in N-doped carbon nanotubes as efficient catalysts for the reduction of unsaturated oxygen compounds in aqueous phase. Catalysis Science & Technology, 2018, 8(21): 5506–5514

DOI

181
Li S , Fan Y , Wu C , Zhuang C , Wang Y , Li X , Zhao J , Zheng Z . Selective hydrogenation of furfural over the Co-based catalyst: a subtle synergy with Ni and Zn dopants. ACS Applied Materials & Interfaces, 2021, 13(7): 8507–8517

DOI

182
Gong W B , Han M M , Chen C , Lin Y , Wang G H , Zhang H M , Zhao H J . CoO@Co nanoparticle-based catalyst for efficient selective transfer hydrogenation of α,β-unsaturated aldehydes. ChemCatChem, 2020, 12(4): 1019–1024

DOI

183
Tian Y , Chen B , Yu Z , Huang R , Yan G , Li Z , Sun Y , Yang S , Tang X , Lin L . . Efficient catalytic hydrogenation of furfural over cobalt-based catalysts with adjustable acidity. Chemical Engineering Science, 2023, 270: 118527

DOI

Outlines

/