Advancing oxygen separation: insights from experimental and computational analysis of La0.7Ca0.3Co0.3Fe0.6M0.1O3–δ (M = Cu, Zn) oxygen transport membranes

  • Guoxing Chen , 1 ,
  • Wenmei Liu 2 ,
  • Marc Widenmeyer 3 ,
  • Xiao Yu 1 ,
  • Zhijun Zhao 4 ,
  • Songhak Yoon 1 ,
  • Ruijuan Yan 3 ,
  • Wenjie Xie 1,3 ,
  • Armin Feldhoff 4 ,
  • Gert Homm 1 ,
  • Emanuel Ionescu 1,3 ,
  • Maria Fyta , 5,6 ,
  • Anke Weidenkaff 1,3
Expand
  • 1. Fraunhofer Research Institution for Materials Recycling and Resource Strategies IWKS, Alzenau 63755, Germany
  • 2. Electrochemistry Laboratory, Paul Scherrer Institute, Villigen PSI 5232, Switzerland
  • 3. Department of Materials and Earth Sciences, Materials and Resources, Technical University of Darmstadt, Darmstadt 64287, Germany
  • 4. Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Hannover 30167, Germany
  • 5. Institute for Computational Physics, University of Stuttgart, Stuttgart 70569, Germany
  • 6. Computational Biotechnology, RWTH Aachen, Aachen 52074, Germany
guoxing.chen@iwks.fraunhofer.de
maria.fyta@rwth-aachen.de

Received date: 08 Dec 2023

Accepted date: 23 Jan 2024

Copyright

2024 Higher Education Press

Abstract

In this study, perovskite-type La0.7Ca0.3Co0.3Fe0.6M0.1O3–δ (M = Cu, Zn) powders were synthesized using a scalable reverse co-precipitation method, presenting them as novel materials for oxygen transport membranes. The comprehensive study covered various aspects including oxygen permeability, crystal structure, conductivity, morphology, CO2 tolerance, and long-term regenerative durability with a focus on phase structure and composition. The membrane La0.7Ca0.3Co0.3Fe0.6Zn0.1O3–δ exhibited high oxygen permeation fluxes, reaching up to 0.88 and 0.64 mL·min−1·cm−2 under air/He and air/CO2 gradients at 1173 K, respectively. After 1600 h of CO2 exposure, the perovskite structure remained intact, showcasing superior CO2 resistance. A combination of first principles simulations and experimental measurements was employed to deepen the understanding of Cu/Zn substitution effects on the structure, oxygen vacancy formation, and transport behavior of the membranes. These findings underscore the potential of this highly CO2-tolerant membrane for applications in high-temperature oxygen separation. The enhanced insights into the oxygen transport mechanism contribute to the advancement of next-generation membrane materials.

Cite this article

Guoxing Chen , Wenmei Liu , Marc Widenmeyer , Xiao Yu , Zhijun Zhao , Songhak Yoon , Ruijuan Yan , Wenjie Xie , Armin Feldhoff , Gert Homm , Emanuel Ionescu , Maria Fyta , Anke Weidenkaff . Advancing oxygen separation: insights from experimental and computational analysis of La0.7Ca0.3Co0.3Fe0.6M0.1O3–δ (M = Cu, Zn) oxygen transport membranes[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(6) : 62 . DOI: 10.1007/s11705-024-2421-5

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

G.C., M.W., and A.W. kindly thank the Federal Ministry of Education and Research for financial support during PiCK project (Grant No. 03SFK2S3B). G.C., G.H., and A.W. kindly thank the Hydrogen performance center in Hesse for financial support during the Green materials for Green H2 project. M.W. and A.W. kindly thank the Federal Ministry of Education and Research for financial support during the NexPlas project (Grant No. 03SF0618B). The simulations presented in this work were performed on the computational resource For HLR II funded by the Ministry of Science, Research and the Arts Baden-Württemberg and the Deutsche Forschungsgemeinschaft. W.L. and M.F. are thankful for being granted access to these facilities.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2421-5 and is accessible for authorized users.
1
Chen G , Feldhoff A , Weidenkaff A , Li C , Liu S , Zhu X , Sunarso J , Huang K , Wu X , Ghoniem A F . . Roadmap for sustainable mixed ionic-electronic conducting membranes. Advanced Functional Materials, 2022, 32(6): 2105702

DOI

2
Zou X , Lu Q , Zhong Y , Liao K , Zhou W , Shao Z . Flexible, flame-resistant, and dendrite-impermeable gel-polymer electrolyte for Li–O2/air batteries workable under hurdle conditions. Small, 2018, 14(34): e1801798

DOI

3
Du M , Liao K , Lu Q , Shao Z . Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization. Energy & Environmental Science, 2019, 12(6): 1780–1804

DOI

4
Guo J , Tang W , Xiong X , Liu H , Wang T , Wu Y , Cheng X . Localized high-concentration electrolytes for lithium metal batteries: progress and prospect. Frontiers of Chemical Science and Engineering, 2023, 17(10): 1354–1371

DOI

5
Ren J , He Y , Sun H , Zhang R , Li J , Ma W , Liu Z , Li J , Du X , Hao X . Construction of nitrogen-doped carbon cladding LiMn2O4 film electrode with enhanced stability for electrochemically selective extraction of lithium ions. Frontiers of Chemical Science and Engineering, 2023, 17(12): 2050–2060

DOI

6
Yu X , Chen G , Widenmeyer M , Kinski I , Liu X , Kunz U , Schüpfer D , Molina-Luna L , Tu X , Homm G . . Catalytic recycling of medical plastic wastes over La0.6Ca0.4Co1–xFexO3−δ pre-catalysts for co-production of H2 and high-value added carbon nanomaterials. Applied Catalysis B: Environmental, 2023, 334: 122838

DOI

7
Amaya-Dueñas D M , Chen G , Weidenkaff A , Sata N , Han F , Biswas I , Costa R , Friedrich K A . A-site deficient chromite with in situ Ni exsolution as a fuel electrode for solid oxide cells (SOCs). Journal of Materials Chemistry A, 2021, 9(9): 5685–5701

DOI

8
Wang S , Xiao P , Yang J , Carabineiro S A C , Wiśniewski M , Zhu J , Liu X . Catalytic combustion of volatile organic compounds using perovskite oxides catalysts—a review. Frontiers of Chemical Science and Engineering, 2023, 17(11): 1649–1676

DOI

9
Zhu X , Yang W . Microstructural and interfacial designs of oxygen-permeable membranes for oxygen separation and reaction-separation coupling. Advanced Materials, 2019, 31(50): e1902547

DOI

10
Chen G , Widenmeyer M , Yu X , Han N , Tan X , Homm G , Liu S , Weidenkaff A . Perspectives on achievements and challenges of oxygen transport dual-functional membrane reactors. Journal of the American Ceramic Society, 2024, 107(3): 1490–1504

DOI

11
Zhang C , Sunarso J , Liu S . Designing CO2-resistant oxygen-selective mixed ionic-electronic conducting membranes: guidelines, recent advances, and forward directions. Chemical Society Reviews, 2017, 46(10): 2941–3005

DOI

12
Geffroy P M , Blond E , Richet N , Chartier T . Understanding and identifying the oxygen transport mechanisms through a mixed-conductor membrane. Chemical Engineering Science, 2017, 162: 245–261

DOI

13
Chen G , Widenmeyer M , Tang B , Kaeswurm L , Wang L , Feldhoff A , Weidenkaff A . A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δ Ruddlesden-Popper membrane for oxygen separation. Frontiers of Chemical Science and Engineering, 2020, 14(3): 405–414

DOI

14
Bai W , Feng J , Luo C , Zhang P , Wang H , Yang Y , Zhao Y , Fan H A . A comprehensive review on oxygen transport membranes: development history, current status, and future directions. International Journal of Hydrogen Energy, 2021, 46(73): 36257–36290

DOI

15
Tan X , Alsaiari M , Shen Z , Asif S , Harraz F A , Šljukić B , Santos D M F , Zhang W , Bokhari A , Han N . Rational design of mixed ionic-electronic conducting membranes for oxygen transport. Chemosphere, 2022, 305: 135483

DOI

16
Alam M S , Kagomiya I , Kakimoto K . Tailoring the oxygen permeability of BaCo0.4Fe0.4Y0.2–xAxO3–δ (x = 0, 0.1; A: Zr, Mg, Zn) cubic perovskite. Ceramics International, 2023, 49(7): 11368–11377

DOI

17
Zhao Z , Chen G , Escobar Cano G , Kißling P A , Stölting O , Breidenstein B , Polarz S , Bigall N C , Weidenkaff A , Feldhoff A . Multiplying oxygen permeability of a ruddlesden-popper oxide by orientation control via magnets. Angewandte Chemie International Edition, 2024, 63(8): e202312473

DOI

18
Johanning M , Widenmeyer M , Escobar Cano G , Zeller V , Klemenz S , Chen G , Feldhoff A , Weidenkaff A . Recycling process development with integrated life cycle assessment—a case study on oxygen transport membrane material. Green Chemistry, 2023, 25(12): 4735–4749

DOI

19
Chen G , Buck F , Kistner I , Widenmeyer M , Schiestel T , Schulz A , Walker M , Weidenkaff A . A novel plasma-assisted hollow fiber membrane concept for efficiently separating oxygen from CO in a CO2 plasma. Chemical Engineering Journal, 2020, 392: 123699

DOI

20
Chen G , Snyders R , Britun N . CO2 conversion using catalyst-free and catalyst-assisted plasma-processes: recent progress and understanding. Journal of CO2 Utilization, 2021, 49: 101557

21
Widenmeyer M , Wiegers K S , Chen G , Yoon S , Feldhoff A , Weidenkaff A . Engineering of oxygen pathways for better oxygen permeability in Cr-substituted Ba2In2O5 membranes. Journal of Membrane Science, 2020, 595: 117558

DOI

22
Arratibel Plazaola A , Cruellas Labella A , Liu Y , Badiola Porras N , Pacheco Tanaka D A , Sint Annaland M V , Gallucci F . Mixed ionic-electronic conducting membranes (MIEC) for their application in membrane reactors: a review. Processes, 2019, 7(3): 128

DOI

23
Wang H , Tablet C , Feldhoff A , Caro J . Investigation of phase structure, sintering, and permeability of perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. Journal of Membrane Science, 2005, 262(1–2): 20–26

DOI

24
Chen G , Tang B , Widenmeyer M , Wang L , Feldhoff A , Weidenkaff A . Novel CO2-tolerant dual-phase Ce0.9Pr0.1O2–δ-La0.5Sr0.5Fe0.9Cu0.1O3–δ membranes with high oxygen permeability. Journal of Membrane Science, 2020, 595: 117530

DOI

25
Chen G , Zhao Z , Widenmeyer M , Frömling T , Hellmann T , Yan R , Qu F , Homm G , Hofmann J P , Feldhoff A . . A comprehensive comparative study of CO2-resistance and oxygen permeability of 60 wt % Ce0.8M0.2O2–δ (M = La, Pr, Nd, Sm, Gd)-40 wt % La0.5Sr0.5Fe0.8Cu0.2O3–δ dual-phase membranes. Journal of Membrane Science, 2021, 639: 119783

DOI

26
Kiebach R , Pirou S , Martinez Aguilera L , Haugen A B , Kaiser A , Hendriksen P V , Balaguer M , García-Fayos J , Serra J M , Schulze-Küppers F . . A review on dual-phase oxygen transport membranes: from fundamentals to commercial deployment. Journal of Materials Chemistry A, 2022, 10(5): 2152–2195

DOI

27
Luo H , Efimov K , Jiang H , Feldhoff A , Wang H , Caro J . CO2-stable and cobalt-free dual-phase membrane for oxygen separation. Angewandte Chemie International Edition, 2011, 50(3): 759–763

DOI

28
Li C , Song J , Zhang S , Tan X , Meng X , Sunarso J , Liu S . SDC-SCFZ dual-phase ceramics: structure, electrical conductivity, thermal expansion, and O2 permeability. Journal of the American Ceramic Society, 2021, 104(5): 2268–2284

DOI

29
Wang S , Shi L , Xie Z , He Y , Yan D , Li M R , Caro J , Luo H . High-flux dual-phase percolation membrane for oxygen separation. Journal of the European Ceramic Society, 2019, 39(15): 4882–4890

DOI

30
Huang Y , Zhang C , Wang X , Li D , Zeng L , He Y , Yu P , Luo H . High CO2 resistance of indium-doped cobalt-free 60wt% Ce0.9Pr0.1O2–δ-40wt%Pr0.6Sr0.4Fe1–xInxO3–δ oxygen transport membranes. Ceramics International, 2022, 48(1): 415–426

DOI

31
Wang X , Huang Y , Li D , Zeng L , He Y , Boubeche M , Luo H . High oxygen permeation flux of cobalt-free Cu-based ceramic dual-phase membranes. Journal of Membrane Science, 2021, 633: 119403

DOI

32
Zhu X , Liu H , Cong Y , Yang W . Novel dual-phase membranes for CO2 capture via an oxyfuel route. Chemical Communications, 2012, 48(2): 251–253

DOI

33
Zhang S , Yeo J Y J , Li C , Meng X , Yang N , Sunarso J , Liu S . Oxygen permeation simulation of La0.8Ca0.2Fe0.95O3–δ-Ag hollow fiber membrane at different modes and flow configurations. AIChE Journal, 2022, 68(2): e17508

DOI

34
Chen G , Liu W , Widenmeyer M , Ying P , Dou M , Xie W , Bubeck C , Wang L , Fyta M , Feldhoff A . . High flux and CO2-resistance of La0.6Ca0.4Co1–xFexO3–δ oxygen-transporting membranes. Journal of Membrane Science, 2019, 590: 117082

DOI

35
Efimov K , Klande T , Juditzki N , Feldhoff A . Ca-containing CO2-tolerant perovskite materials for oxygen separation. Journal of Membrane Science, 2012, 389: 205–215

DOI

36
Shannon R D . Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 1976, 32(5): 751–767

DOI

37
Kresse G , Furthmüller J . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1): 15–50

DOI

38
Blöchl P E . Projector augmented-wave method. Physical Review B: Condensed Matter, 1994, 50(24): 17953–17979

DOI

39
Perdew J P , Burke K , Ernzerhof M . Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868

DOI

40
Troullier N , Martins J L . Efficient pseudopotentials for plane-wave calculations. Physical Review B: Condensed Matter, 1991, 43(3): 1993–2006

DOI

41
Yang W H , Smolen V F , Peppas N A . Oxygen permeability coefficients of polymers for hard and soft contact lens applications. Journal of Membrane Science, 1981, 9(1–2): 53–67

DOI

42
Wang Z , Peng R , Zhang W , Wu X , Xia C , Lu Y . Oxygen reduction and transport on the La1–xSrxCo1–yFeyO3–δ cathode in solid oxide fuel cells: a first-principles study. Journal of Materials Chemistry A, 2013, 1(41): 12932–12940

DOI

43
Freysoldt C , Grabowski B , Hickel T , Neugebauer J , Kresse G , Janotti A , Van de Walle C G . First-principles calculations for point defects in solids. Reviews of Modern Physics, 2014, 86(1): 253–305

DOI

44
Henkelman G , Uberuaga B P , Jónsson H . A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics, 2000, 113(22): 9901–9904

DOI

45
JonssonHMillsGJacobsenK W. Chapter 16. Nudged elastic band method for finding minimum energy paths of transitions. In: Berne B, Ciccotti G, Coker D, eds. Classical and Quantum Dynamics in Condensed Phase Simulations. New Jersey: World Scientific, 1998, 385–404

46
Klein A , Albe K , Bein N , Clemens O , Creutz K A , Erhart P , Frericks M , Ghorbani E , Hofmann J P , Huang B . . The Fermi energy as common parameter to describe charge compensation mechanisms: a path to Fermi level engineering of oxide electroceramics. Journal of Electroceramics, 2023, 1: 1–31

47
KhromushinI VAksenovaT IZhotabaevZ R. Mechanism of gas-solid exchange processes for some perovskites. Solid State Ionics, 2003, 162–163: 37–40

48
Sunarso J , Baumann S , Serra J M , Meulenberg W A , Liu S , Lin Y S , Diniz da Costa J C . Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. Journal of Membrane Science, 2008, 320(1–2): 13–41

DOI

49
Ten Elshof J E , Bouwmeester H J M , Verweij H . Oxygen transport through La1–xSrxFeO3–δ membranes II. Permeation in air/CO, CO2 gradients. Solid State Ionics, 1996, 89(1–2): 81–92

DOI

50
Fang W , Steinbach F , Chen C , Feldhoff A . An approach to enhance the CO2 tolerance of fluorite-perovskite dual-phase oxygen-transporting membrane. Chemistry of Materials, 2015, 27(22): 7820–7826

DOI

51
Liang F , Luo H , Partovi K , Ravkina O , Cao Z , Liu Y , Caro J . A novel CO2-stable dual phase membrane with high oxygen permeability. Chemical Communications, 2014, 50(19): 2451–2454

DOI

52
Luo H , Klande T , Cao Z , Liang F , Wang H , Caro J . A CO2-stable reduction-tolerant Nd-containing dual phase membrane for oxyfuel CO2 capture. Journal of Materials Chemistry A, 2014, 2(21): 7780–7787

DOI

53
Xue J , Liao Q , Wei Y , Li Z , Wang H . A CO2-tolerance oxygen permeable 60Ce0.9Gd0.1O2–δ–40Ba0.5Sr0.5Co0.8Fe0.2O3–δ dual phase membrane. Journal of Membrane Science, 2013, 443: 124–130

DOI

Outlines

/