Advancing oxygen separation: insights from experimental and computational analysis of La0.7Ca0.3Co0.3Fe0.6M0.1O3–δ (M = Cu, Zn) oxygen transport membranes
Received date: 08 Dec 2023
Accepted date: 23 Jan 2024
Copyright
In this study, perovskite-type La0.7Ca0.3Co0.3Fe0.6M0.1O3–δ (M = Cu, Zn) powders were synthesized using a scalable reverse co-precipitation method, presenting them as novel materials for oxygen transport membranes. The comprehensive study covered various aspects including oxygen permeability, crystal structure, conductivity, morphology, CO2 tolerance, and long-term regenerative durability with a focus on phase structure and composition. The membrane La0.7Ca0.3Co0.3Fe0.6Zn0.1O3–δ exhibited high oxygen permeation fluxes, reaching up to 0.88 and 0.64 mL·min−1·cm−2 under air/He and air/CO2 gradients at 1173 K, respectively. After 1600 h of CO2 exposure, the perovskite structure remained intact, showcasing superior CO2 resistance. A combination of first principles simulations and experimental measurements was employed to deepen the understanding of Cu/Zn substitution effects on the structure, oxygen vacancy formation, and transport behavior of the membranes. These findings underscore the potential of this highly CO2-tolerant membrane for applications in high-temperature oxygen separation. The enhanced insights into the oxygen transport mechanism contribute to the advancement of next-generation membrane materials.
Guoxing Chen , Wenmei Liu , Marc Widenmeyer , Xiao Yu , Zhijun Zhao , Songhak Yoon , Ruijuan Yan , Wenjie Xie , Armin Feldhoff , Gert Homm , Emanuel Ionescu , Maria Fyta , Anke Weidenkaff . Advancing oxygen separation: insights from experimental and computational analysis of La0.7Ca0.3Co0.3Fe0.6M0.1O3–δ (M = Cu, Zn) oxygen transport membranes[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(6) : 62 . DOI: 10.1007/s11705-024-2421-5
1 |
Chen G , Feldhoff A , Weidenkaff A , Li C , Liu S , Zhu X , Sunarso J , Huang K , Wu X , Ghoniem A F .
|
2 |
Zou X , Lu Q , Zhong Y , Liao K , Zhou W , Shao Z . Flexible, flame-resistant, and dendrite-impermeable gel-polymer electrolyte for Li–O2/air batteries workable under hurdle conditions. Small, 2018, 14(34): e1801798
|
3 |
Du M , Liao K , Lu Q , Shao Z . Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization. Energy & Environmental Science, 2019, 12(6): 1780–1804
|
4 |
Guo J , Tang W , Xiong X , Liu H , Wang T , Wu Y , Cheng X . Localized high-concentration electrolytes for lithium metal batteries: progress and prospect. Frontiers of Chemical Science and Engineering, 2023, 17(10): 1354–1371
|
5 |
Ren J , He Y , Sun H , Zhang R , Li J , Ma W , Liu Z , Li J , Du X , Hao X . Construction of nitrogen-doped carbon cladding LiMn2O4 film electrode with enhanced stability for electrochemically selective extraction of lithium ions. Frontiers of Chemical Science and Engineering, 2023, 17(12): 2050–2060
|
6 |
Yu X , Chen G , Widenmeyer M , Kinski I , Liu X , Kunz U , Schüpfer D , Molina-Luna L , Tu X , Homm G .
|
7 |
Amaya-Dueñas D M , Chen G , Weidenkaff A , Sata N , Han F , Biswas I , Costa R , Friedrich K A . A-site deficient chromite with in situ Ni exsolution as a fuel electrode for solid oxide cells (SOCs). Journal of Materials Chemistry A, 2021, 9(9): 5685–5701
|
8 |
Wang S , Xiao P , Yang J , Carabineiro S A C , Wiśniewski M , Zhu J , Liu X . Catalytic combustion of volatile organic compounds using perovskite oxides catalysts—a review. Frontiers of Chemical Science and Engineering, 2023, 17(11): 1649–1676
|
9 |
Zhu X , Yang W . Microstructural and interfacial designs of oxygen-permeable membranes for oxygen separation and reaction-separation coupling. Advanced Materials, 2019, 31(50): e1902547
|
10 |
Chen G , Widenmeyer M , Yu X , Han N , Tan X , Homm G , Liu S , Weidenkaff A . Perspectives on achievements and challenges of oxygen transport dual-functional membrane reactors. Journal of the American Ceramic Society, 2024, 107(3): 1490–1504
|
11 |
Zhang C , Sunarso J , Liu S . Designing CO2-resistant oxygen-selective mixed ionic-electronic conducting membranes: guidelines, recent advances, and forward directions. Chemical Society Reviews, 2017, 46(10): 2941–3005
|
12 |
Geffroy P M , Blond E , Richet N , Chartier T . Understanding and identifying the oxygen transport mechanisms through a mixed-conductor membrane. Chemical Engineering Science, 2017, 162: 245–261
|
13 |
Chen G , Widenmeyer M , Tang B , Kaeswurm L , Wang L , Feldhoff A , Weidenkaff A . A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δ Ruddlesden-Popper membrane for oxygen separation. Frontiers of Chemical Science and Engineering, 2020, 14(3): 405–414
|
14 |
Bai W , Feng J , Luo C , Zhang P , Wang H , Yang Y , Zhao Y , Fan H A . A comprehensive review on oxygen transport membranes: development history, current status, and future directions. International Journal of Hydrogen Energy, 2021, 46(73): 36257–36290
|
15 |
Tan X , Alsaiari M , Shen Z , Asif S , Harraz F A , Šljukić B , Santos D M F , Zhang W , Bokhari A , Han N . Rational design of mixed ionic-electronic conducting membranes for oxygen transport. Chemosphere, 2022, 305: 135483
|
16 |
Alam M S , Kagomiya I , Kakimoto K . Tailoring the oxygen permeability of BaCo0.4Fe0.4Y0.2–xAxO3–δ (x = 0, 0.1; A: Zr, Mg, Zn) cubic perovskite. Ceramics International, 2023, 49(7): 11368–11377
|
17 |
Zhao Z , Chen G , Escobar Cano G , Kißling P A , Stölting O , Breidenstein B , Polarz S , Bigall N C , Weidenkaff A , Feldhoff A . Multiplying oxygen permeability of a ruddlesden-popper oxide by orientation control via magnets. Angewandte Chemie International Edition, 2024, 63(8): e202312473
|
18 |
Johanning M , Widenmeyer M , Escobar Cano G , Zeller V , Klemenz S , Chen G , Feldhoff A , Weidenkaff A . Recycling process development with integrated life cycle assessment—a case study on oxygen transport membrane material. Green Chemistry, 2023, 25(12): 4735–4749
|
19 |
Chen G , Buck F , Kistner I , Widenmeyer M , Schiestel T , Schulz A , Walker M , Weidenkaff A . A novel plasma-assisted hollow fiber membrane concept for efficiently separating oxygen from CO in a CO2 plasma. Chemical Engineering Journal, 2020, 392: 123699
|
20 |
Chen G , Snyders R , Britun N . CO2 conversion using catalyst-free and catalyst-assisted plasma-processes: recent progress and understanding. Journal of CO2 Utilization, 2021, 49: 101557
|
21 |
Widenmeyer M , Wiegers K S , Chen G , Yoon S , Feldhoff A , Weidenkaff A . Engineering of oxygen pathways for better oxygen permeability in Cr-substituted Ba2In2O5 membranes. Journal of Membrane Science, 2020, 595: 117558
|
22 |
Arratibel Plazaola A , Cruellas Labella A , Liu Y , Badiola Porras N , Pacheco Tanaka D A , Sint Annaland M V , Gallucci F . Mixed ionic-electronic conducting membranes (MIEC) for their application in membrane reactors: a review. Processes, 2019, 7(3): 128
|
23 |
Wang H , Tablet C , Feldhoff A , Caro J . Investigation of phase structure, sintering, and permeability of perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. Journal of Membrane Science, 2005, 262(1–2): 20–26
|
24 |
Chen G , Tang B , Widenmeyer M , Wang L , Feldhoff A , Weidenkaff A . Novel CO2-tolerant dual-phase Ce0.9Pr0.1O2–δ-La0.5Sr0.5Fe0.9Cu0.1O3–δ membranes with high oxygen permeability. Journal of Membrane Science, 2020, 595: 117530
|
25 |
Chen G , Zhao Z , Widenmeyer M , Frömling T , Hellmann T , Yan R , Qu F , Homm G , Hofmann J P , Feldhoff A .
|
26 |
Kiebach R , Pirou S , Martinez Aguilera L , Haugen A B , Kaiser A , Hendriksen P V , Balaguer M , García-Fayos J , Serra J M , Schulze-Küppers F .
|
27 |
Luo H , Efimov K , Jiang H , Feldhoff A , Wang H , Caro J . CO2-stable and cobalt-free dual-phase membrane for oxygen separation. Angewandte Chemie International Edition, 2011, 50(3): 759–763
|
28 |
Li C , Song J , Zhang S , Tan X , Meng X , Sunarso J , Liu S . SDC-SCFZ dual-phase ceramics: structure, electrical conductivity, thermal expansion, and O2 permeability. Journal of the American Ceramic Society, 2021, 104(5): 2268–2284
|
29 |
Wang S , Shi L , Xie Z , He Y , Yan D , Li M R , Caro J , Luo H . High-flux dual-phase percolation membrane for oxygen separation. Journal of the European Ceramic Society, 2019, 39(15): 4882–4890
|
30 |
Huang Y , Zhang C , Wang X , Li D , Zeng L , He Y , Yu P , Luo H . High CO2 resistance of indium-doped cobalt-free 60wt% Ce0.9Pr0.1O2–δ-40wt%Pr0.6Sr0.4Fe1–xInxO3–δ oxygen transport membranes. Ceramics International, 2022, 48(1): 415–426
|
31 |
Wang X , Huang Y , Li D , Zeng L , He Y , Boubeche M , Luo H . High oxygen permeation flux of cobalt-free Cu-based ceramic dual-phase membranes. Journal of Membrane Science, 2021, 633: 119403
|
32 |
Zhu X , Liu H , Cong Y , Yang W . Novel dual-phase membranes for CO2 capture via an oxyfuel route. Chemical Communications, 2012, 48(2): 251–253
|
33 |
Zhang S , Yeo J Y J , Li C , Meng X , Yang N , Sunarso J , Liu S . Oxygen permeation simulation of La0.8Ca0.2Fe0.95O3–δ-Ag hollow fiber membrane at different modes and flow configurations. AIChE Journal, 2022, 68(2): e17508
|
34 |
Chen G , Liu W , Widenmeyer M , Ying P , Dou M , Xie W , Bubeck C , Wang L , Fyta M , Feldhoff A .
|
35 |
Efimov K , Klande T , Juditzki N , Feldhoff A . Ca-containing CO2-tolerant perovskite materials for oxygen separation. Journal of Membrane Science, 2012, 389: 205–215
|
36 |
Shannon R D . Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 1976, 32(5): 751–767
|
37 |
Kresse G , Furthmüller J . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1): 15–50
|
38 |
Blöchl P E . Projector augmented-wave method. Physical Review B: Condensed Matter, 1994, 50(24): 17953–17979
|
39 |
Perdew J P , Burke K , Ernzerhof M . Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868
|
40 |
Troullier N , Martins J L . Efficient pseudopotentials for plane-wave calculations. Physical Review B: Condensed Matter, 1991, 43(3): 1993–2006
|
41 |
Yang W H , Smolen V F , Peppas N A . Oxygen permeability coefficients of polymers for hard and soft contact lens applications. Journal of Membrane Science, 1981, 9(1–2): 53–67
|
42 |
Wang Z , Peng R , Zhang W , Wu X , Xia C , Lu Y . Oxygen reduction and transport on the La1–xSrxCo1–yFeyO3–δ cathode in solid oxide fuel cells: a first-principles study. Journal of Materials Chemistry A, 2013, 1(41): 12932–12940
|
43 |
Freysoldt C , Grabowski B , Hickel T , Neugebauer J , Kresse G , Janotti A , Van de Walle C G . First-principles calculations for point defects in solids. Reviews of Modern Physics, 2014, 86(1): 253–305
|
44 |
Henkelman G , Uberuaga B P , Jónsson H . A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics, 2000, 113(22): 9901–9904
|
45 |
JonssonHMillsGJacobsenK W. Chapter 16. Nudged elastic band method for finding minimum energy paths of transitions. In: Berne B, Ciccotti G, Coker D, eds. Classical and Quantum Dynamics in Condensed Phase Simulations. New Jersey: World Scientific, 1998, 385–404
|
46 |
Klein A , Albe K , Bein N , Clemens O , Creutz K A , Erhart P , Frericks M , Ghorbani E , Hofmann J P , Huang B .
|
47 |
KhromushinI VAksenovaT IZhotabaevZ R. Mechanism of gas-solid exchange processes for some perovskites. Solid State Ionics, 2003, 162–163: 37–40
|
48 |
Sunarso J , Baumann S , Serra J M , Meulenberg W A , Liu S , Lin Y S , Diniz da Costa J C . Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. Journal of Membrane Science, 2008, 320(1–2): 13–41
|
49 |
Ten Elshof J E , Bouwmeester H J M , Verweij H . Oxygen transport through La1–xSrxFeO3–δ membranes II. Permeation in air/CO, CO2 gradients. Solid State Ionics, 1996, 89(1–2): 81–92
|
50 |
Fang W , Steinbach F , Chen C , Feldhoff A . An approach to enhance the CO2 tolerance of fluorite-perovskite dual-phase oxygen-transporting membrane. Chemistry of Materials, 2015, 27(22): 7820–7826
|
51 |
Liang F , Luo H , Partovi K , Ravkina O , Cao Z , Liu Y , Caro J . A novel CO2-stable dual phase membrane with high oxygen permeability. Chemical Communications, 2014, 50(19): 2451–2454
|
52 |
Luo H , Klande T , Cao Z , Liang F , Wang H , Caro J . A CO2-stable reduction-tolerant Nd-containing dual phase membrane for oxyfuel CO2 capture. Journal of Materials Chemistry A, 2014, 2(21): 7780–7787
|
53 |
Xue J , Liao Q , Wei Y , Li Z , Wang H . A CO2-tolerance oxygen permeable 60Ce0.9Gd0.1O2–δ–40Ba0.5Sr0.5Co0.8Fe0.2O3–δ dual phase membrane. Journal of Membrane Science, 2013, 443: 124–130
|
/
〈 | 〉 |