Advancing oxygen separation: insights from experimental and computational analysis of La0.7Ca0.3Co0.3Fe0.6M0.1O3–δ (M = Cu, Zn) oxygen transport membranes

Guoxing Chen, Wenmei Liu, Marc Widenmeyer, Xiao Yu, Zhijun Zhao, Songhak Yoon, Ruijuan Yan, Wenjie Xie, Armin Feldhoff, Gert Homm, Emanuel Ionescu, Maria Fyta, Anke Weidenkaff

PDF(6245 KB)
PDF(6245 KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (6) : 62. DOI: 10.1007/s11705-024-2421-5
RESEARCH ARTICLE

Advancing oxygen separation: insights from experimental and computational analysis of La0.7Ca0.3Co0.3Fe0.6M0.1O3–δ (M = Cu, Zn) oxygen transport membranes

Author information +
History +

Abstract

In this study, perovskite-type La0.7Ca0.3Co0.3Fe0.6M0.1O3–δ (M = Cu, Zn) powders were synthesized using a scalable reverse co-precipitation method, presenting them as novel materials for oxygen transport membranes. The comprehensive study covered various aspects including oxygen permeability, crystal structure, conductivity, morphology, CO2 tolerance, and long-term regenerative durability with a focus on phase structure and composition. The membrane La0.7Ca0.3Co0.3Fe0.6Zn0.1O3–δ exhibited high oxygen permeation fluxes, reaching up to 0.88 and 0.64 mL·min−1·cm−2 under air/He and air/CO2 gradients at 1173 K, respectively. After 1600 h of CO2 exposure, the perovskite structure remained intact, showcasing superior CO2 resistance. A combination of first principles simulations and experimental measurements was employed to deepen the understanding of Cu/Zn substitution effects on the structure, oxygen vacancy formation, and transport behavior of the membranes. These findings underscore the potential of this highly CO2-tolerant membrane for applications in high-temperature oxygen separation. The enhanced insights into the oxygen transport mechanism contribute to the advancement of next-generation membrane materials.

Graphical abstract

Keywords

perovskite / oxygen permeation / membrane / oxygen ions diffusion / oxygen vacancy / formation energy / energy barrier

Cite this article

Download citation ▾
Guoxing Chen, Wenmei Liu, Marc Widenmeyer, Xiao Yu, Zhijun Zhao, Songhak Yoon, Ruijuan Yan, Wenjie Xie, Armin Feldhoff, Gert Homm, Emanuel Ionescu, Maria Fyta, Anke Weidenkaff. Advancing oxygen separation: insights from experimental and computational analysis of La0.7Ca0.3Co0.3Fe0.6M0.1O3–δ (M = Cu, Zn) oxygen transport membranes. Front. Chem. Sci. Eng., 2024, 18(6): 62 https://doi.org/10.1007/s11705-024-2421-5

References

[1]
Chen G , Feldhoff A , Weidenkaff A , Li C , Liu S , Zhu X , Sunarso J , Huang K , Wu X , Ghoniem A F . . Roadmap for sustainable mixed ionic-electronic conducting membranes. Advanced Functional Materials, 2022, 32(6): 2105702
CrossRef Google scholar
[2]
Zou X , Lu Q , Zhong Y , Liao K , Zhou W , Shao Z . Flexible, flame-resistant, and dendrite-impermeable gel-polymer electrolyte for Li–O2/air batteries workable under hurdle conditions. Small, 2018, 14(34): e1801798
CrossRef Google scholar
[3]
Du M , Liao K , Lu Q , Shao Z . Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization. Energy & Environmental Science, 2019, 12(6): 1780–1804
CrossRef Google scholar
[4]
Guo J , Tang W , Xiong X , Liu H , Wang T , Wu Y , Cheng X . Localized high-concentration electrolytes for lithium metal batteries: progress and prospect. Frontiers of Chemical Science and Engineering, 2023, 17(10): 1354–1371
CrossRef Google scholar
[5]
Ren J , He Y , Sun H , Zhang R , Li J , Ma W , Liu Z , Li J , Du X , Hao X . Construction of nitrogen-doped carbon cladding LiMn2O4 film electrode with enhanced stability for electrochemically selective extraction of lithium ions. Frontiers of Chemical Science and Engineering, 2023, 17(12): 2050–2060
CrossRef Google scholar
[6]
Yu X , Chen G , Widenmeyer M , Kinski I , Liu X , Kunz U , Schüpfer D , Molina-Luna L , Tu X , Homm G . . Catalytic recycling of medical plastic wastes over La0.6Ca0.4Co1–xFexO3−δ pre-catalysts for co-production of H2 and high-value added carbon nanomaterials. Applied Catalysis B: Environmental, 2023, 334: 122838
CrossRef Google scholar
[7]
Amaya-Dueñas D M , Chen G , Weidenkaff A , Sata N , Han F , Biswas I , Costa R , Friedrich K A . A-site deficient chromite with in situ Ni exsolution as a fuel electrode for solid oxide cells (SOCs). Journal of Materials Chemistry A, 2021, 9(9): 5685–5701
CrossRef Google scholar
[8]
Wang S , Xiao P , Yang J , Carabineiro S A C , Wiśniewski M , Zhu J , Liu X . Catalytic combustion of volatile organic compounds using perovskite oxides catalysts—a review. Frontiers of Chemical Science and Engineering, 2023, 17(11): 1649–1676
CrossRef Google scholar
[9]
Zhu X , Yang W . Microstructural and interfacial designs of oxygen-permeable membranes for oxygen separation and reaction-separation coupling. Advanced Materials, 2019, 31(50): e1902547
CrossRef Google scholar
[10]
Chen G , Widenmeyer M , Yu X , Han N , Tan X , Homm G , Liu S , Weidenkaff A . Perspectives on achievements and challenges of oxygen transport dual-functional membrane reactors. Journal of the American Ceramic Society, 2024, 107(3): 1490–1504
CrossRef Google scholar
[11]
Zhang C , Sunarso J , Liu S . Designing CO2-resistant oxygen-selective mixed ionic-electronic conducting membranes: guidelines, recent advances, and forward directions. Chemical Society Reviews, 2017, 46(10): 2941–3005
CrossRef Google scholar
[12]
Geffroy P M , Blond E , Richet N , Chartier T . Understanding and identifying the oxygen transport mechanisms through a mixed-conductor membrane. Chemical Engineering Science, 2017, 162: 245–261
CrossRef Google scholar
[13]
Chen G , Widenmeyer M , Tang B , Kaeswurm L , Wang L , Feldhoff A , Weidenkaff A . A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δ Ruddlesden-Popper membrane for oxygen separation. Frontiers of Chemical Science and Engineering, 2020, 14(3): 405–414
CrossRef Google scholar
[14]
Bai W , Feng J , Luo C , Zhang P , Wang H , Yang Y , Zhao Y , Fan H A . A comprehensive review on oxygen transport membranes: development history, current status, and future directions. International Journal of Hydrogen Energy, 2021, 46(73): 36257–36290
CrossRef Google scholar
[15]
Tan X , Alsaiari M , Shen Z , Asif S , Harraz F A , Šljukić B , Santos D M F , Zhang W , Bokhari A , Han N . Rational design of mixed ionic-electronic conducting membranes for oxygen transport. Chemosphere, 2022, 305: 135483
CrossRef Google scholar
[16]
Alam M S , Kagomiya I , Kakimoto K . Tailoring the oxygen permeability of BaCo0.4Fe0.4Y0.2–xAxO3–δ (x = 0, 0.1; A: Zr, Mg, Zn) cubic perovskite. Ceramics International, 2023, 49(7): 11368–11377
CrossRef Google scholar
[17]
Zhao Z , Chen G , Escobar Cano G , Kißling P A , Stölting O , Breidenstein B , Polarz S , Bigall N C , Weidenkaff A , Feldhoff A . Multiplying oxygen permeability of a ruddlesden-popper oxide by orientation control via magnets. Angewandte Chemie International Edition, 2024, 63(8): e202312473
CrossRef Google scholar
[18]
Johanning M , Widenmeyer M , Escobar Cano G , Zeller V , Klemenz S , Chen G , Feldhoff A , Weidenkaff A . Recycling process development with integrated life cycle assessment—a case study on oxygen transport membrane material. Green Chemistry, 2023, 25(12): 4735–4749
CrossRef Google scholar
[19]
Chen G , Buck F , Kistner I , Widenmeyer M , Schiestel T , Schulz A , Walker M , Weidenkaff A . A novel plasma-assisted hollow fiber membrane concept for efficiently separating oxygen from CO in a CO2 plasma. Chemical Engineering Journal, 2020, 392: 123699
CrossRef Google scholar
[20]
Chen G , Snyders R , Britun N . CO2 conversion using catalyst-free and catalyst-assisted plasma-processes: recent progress and understanding. Journal of CO2 Utilization, 2021, 49: 101557
[21]
Widenmeyer M , Wiegers K S , Chen G , Yoon S , Feldhoff A , Weidenkaff A . Engineering of oxygen pathways for better oxygen permeability in Cr-substituted Ba2In2O5 membranes. Journal of Membrane Science, 2020, 595: 117558
CrossRef Google scholar
[22]
Arratibel Plazaola A , Cruellas Labella A , Liu Y , Badiola Porras N , Pacheco Tanaka D A , Sint Annaland M V , Gallucci F . Mixed ionic-electronic conducting membranes (MIEC) for their application in membrane reactors: a review. Processes, 2019, 7(3): 128
CrossRef Google scholar
[23]
Wang H , Tablet C , Feldhoff A , Caro J . Investigation of phase structure, sintering, and permeability of perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. Journal of Membrane Science, 2005, 262(1–2): 20–26
CrossRef Google scholar
[24]
Chen G , Tang B , Widenmeyer M , Wang L , Feldhoff A , Weidenkaff A . Novel CO2-tolerant dual-phase Ce0.9Pr0.1O2–δ-La0.5Sr0.5Fe0.9Cu0.1O3–δ membranes with high oxygen permeability. Journal of Membrane Science, 2020, 595: 117530
CrossRef Google scholar
[25]
Chen G , Zhao Z , Widenmeyer M , Frömling T , Hellmann T , Yan R , Qu F , Homm G , Hofmann J P , Feldhoff A . . A comprehensive comparative study of CO2-resistance and oxygen permeability of 60 wt % Ce0.8M0.2O2–δ (M = La, Pr, Nd, Sm, Gd)-40 wt % La0.5Sr0.5Fe0.8Cu0.2O3–δ dual-phase membranes. Journal of Membrane Science, 2021, 639: 119783
CrossRef Google scholar
[26]
Kiebach R , Pirou S , Martinez Aguilera L , Haugen A B , Kaiser A , Hendriksen P V , Balaguer M , García-Fayos J , Serra J M , Schulze-Küppers F . . A review on dual-phase oxygen transport membranes: from fundamentals to commercial deployment. Journal of Materials Chemistry A, 2022, 10(5): 2152–2195
CrossRef Google scholar
[27]
Luo H , Efimov K , Jiang H , Feldhoff A , Wang H , Caro J . CO2-stable and cobalt-free dual-phase membrane for oxygen separation. Angewandte Chemie International Edition, 2011, 50(3): 759–763
CrossRef Google scholar
[28]
Li C , Song J , Zhang S , Tan X , Meng X , Sunarso J , Liu S . SDC-SCFZ dual-phase ceramics: structure, electrical conductivity, thermal expansion, and O2 permeability. Journal of the American Ceramic Society, 2021, 104(5): 2268–2284
CrossRef Google scholar
[29]
Wang S , Shi L , Xie Z , He Y , Yan D , Li M R , Caro J , Luo H . High-flux dual-phase percolation membrane for oxygen separation. Journal of the European Ceramic Society, 2019, 39(15): 4882–4890
CrossRef Google scholar
[30]
Huang Y , Zhang C , Wang X , Li D , Zeng L , He Y , Yu P , Luo H . High CO2 resistance of indium-doped cobalt-free 60wt% Ce0.9Pr0.1O2–δ-40wt%Pr0.6Sr0.4Fe1–xInxO3–δ oxygen transport membranes. Ceramics International, 2022, 48(1): 415–426
CrossRef Google scholar
[31]
Wang X , Huang Y , Li D , Zeng L , He Y , Boubeche M , Luo H . High oxygen permeation flux of cobalt-free Cu-based ceramic dual-phase membranes. Journal of Membrane Science, 2021, 633: 119403
CrossRef Google scholar
[32]
Zhu X , Liu H , Cong Y , Yang W . Novel dual-phase membranes for CO2 capture via an oxyfuel route. Chemical Communications, 2012, 48(2): 251–253
CrossRef Google scholar
[33]
Zhang S , Yeo J Y J , Li C , Meng X , Yang N , Sunarso J , Liu S . Oxygen permeation simulation of La0.8Ca0.2Fe0.95O3–δ-Ag hollow fiber membrane at different modes and flow configurations. AIChE Journal, 2022, 68(2): e17508
CrossRef Google scholar
[34]
Chen G , Liu W , Widenmeyer M , Ying P , Dou M , Xie W , Bubeck C , Wang L , Fyta M , Feldhoff A . . High flux and CO2-resistance of La0.6Ca0.4Co1–xFexO3–δ oxygen-transporting membranes. Journal of Membrane Science, 2019, 590: 117082
CrossRef Google scholar
[35]
Efimov K , Klande T , Juditzki N , Feldhoff A . Ca-containing CO2-tolerant perovskite materials for oxygen separation. Journal of Membrane Science, 2012, 389: 205–215
CrossRef Google scholar
[36]
Shannon R D . Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 1976, 32(5): 751–767
CrossRef Google scholar
[37]
Kresse G , Furthmüller J . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1): 15–50
CrossRef Google scholar
[38]
Blöchl P E . Projector augmented-wave method. Physical Review B: Condensed Matter, 1994, 50(24): 17953–17979
CrossRef Google scholar
[39]
Perdew J P , Burke K , Ernzerhof M . Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868
CrossRef Google scholar
[40]
Troullier N , Martins J L . Efficient pseudopotentials for plane-wave calculations. Physical Review B: Condensed Matter, 1991, 43(3): 1993–2006
CrossRef Google scholar
[41]
Yang W H , Smolen V F , Peppas N A . Oxygen permeability coefficients of polymers for hard and soft contact lens applications. Journal of Membrane Science, 1981, 9(1–2): 53–67
CrossRef Google scholar
[42]
Wang Z , Peng R , Zhang W , Wu X , Xia C , Lu Y . Oxygen reduction and transport on the La1–xSrxCo1–yFeyO3–δ cathode in solid oxide fuel cells: a first-principles study. Journal of Materials Chemistry A, 2013, 1(41): 12932–12940
CrossRef Google scholar
[43]
Freysoldt C , Grabowski B , Hickel T , Neugebauer J , Kresse G , Janotti A , Van de Walle C G . First-principles calculations for point defects in solids. Reviews of Modern Physics, 2014, 86(1): 253–305
CrossRef Google scholar
[44]
Henkelman G , Uberuaga B P , Jónsson H . A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics, 2000, 113(22): 9901–9904
CrossRef Google scholar
[45]
JonssonHMillsGJacobsenK W. Chapter 16. Nudged elastic band method for finding minimum energy paths of transitions. In: Berne B, Ciccotti G, Coker D, eds. Classical and Quantum Dynamics in Condensed Phase Simulations. New Jersey: World Scientific, 1998, 385–404
[46]
Klein A , Albe K , Bein N , Clemens O , Creutz K A , Erhart P , Frericks M , Ghorbani E , Hofmann J P , Huang B . . The Fermi energy as common parameter to describe charge compensation mechanisms: a path to Fermi level engineering of oxide electroceramics. Journal of Electroceramics, 2023, 1: 1–31
[47]
KhromushinI VAksenovaT IZhotabaevZ R. Mechanism of gas-solid exchange processes for some perovskites. Solid State Ionics, 2003, 162–163: 37–40
[48]
Sunarso J , Baumann S , Serra J M , Meulenberg W A , Liu S , Lin Y S , Diniz da Costa J C . Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. Journal of Membrane Science, 2008, 320(1–2): 13–41
CrossRef Google scholar
[49]
Ten Elshof J E , Bouwmeester H J M , Verweij H . Oxygen transport through La1–xSrxFeO3–δ membranes II. Permeation in air/CO, CO2 gradients. Solid State Ionics, 1996, 89(1–2): 81–92
CrossRef Google scholar
[50]
Fang W , Steinbach F , Chen C , Feldhoff A . An approach to enhance the CO2 tolerance of fluorite-perovskite dual-phase oxygen-transporting membrane. Chemistry of Materials, 2015, 27(22): 7820–7826
CrossRef Google scholar
[51]
Liang F , Luo H , Partovi K , Ravkina O , Cao Z , Liu Y , Caro J . A novel CO2-stable dual phase membrane with high oxygen permeability. Chemical Communications, 2014, 50(19): 2451–2454
CrossRef Google scholar
[52]
Luo H , Klande T , Cao Z , Liang F , Wang H , Caro J . A CO2-stable reduction-tolerant Nd-containing dual phase membrane for oxyfuel CO2 capture. Journal of Materials Chemistry A, 2014, 2(21): 7780–7787
CrossRef Google scholar
[53]
Xue J , Liao Q , Wei Y , Li Z , Wang H . A CO2-tolerance oxygen permeable 60Ce0.9Gd0.1O2–δ–40Ba0.5Sr0.5Co0.8Fe0.2O3–δ dual phase membrane. Journal of Membrane Science, 2013, 443: 124–130
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

G.C., M.W., and A.W. kindly thank the Federal Ministry of Education and Research for financial support during PiCK project (Grant No. 03SFK2S3B). G.C., G.H., and A.W. kindly thank the Hydrogen performance center in Hesse for financial support during the Green materials for Green H2 project. M.W. and A.W. kindly thank the Federal Ministry of Education and Research for financial support during the NexPlas project (Grant No. 03SF0618B). The simulations presented in this work were performed on the computational resource For HLR II funded by the Ministry of Science, Research and the Arts Baden-Württemberg and the Deutsche Forschungsgemeinschaft. W.L. and M.F. are thankful for being granted access to these facilities.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2421-5 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(6245 KB)

Accesses

Citations

Detail

Sections
Recommended

/