Advancing oxygen separation: insights from experimental and computational analysis of La0.7Ca0.3Co0.3Fe0.6M0.1O3–δ (M = Cu, Zn) oxygen transport membranes

Guoxing Chen , Wenmei Liu , Marc Widenmeyer , Xiao Yu , Zhijun Zhao , Songhak Yoon , Ruijuan Yan , Wenjie Xie , Armin Feldhoff , Gert Homm , Emanuel Ionescu , Maria Fyta , Anke Weidenkaff

Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (6) : 62

PDF (6245KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (6) : 62 DOI: 10.1007/s11705-024-2421-5
RESEARCH ARTICLE

Advancing oxygen separation: insights from experimental and computational analysis of La0.7Ca0.3Co0.3Fe0.6M0.1O3–δ (M = Cu, Zn) oxygen transport membranes

Author information +
History +
PDF (6245KB)

Abstract

In this study, perovskite-type La0.7Ca0.3Co0.3Fe0.6M0.1O3–δ (M = Cu, Zn) powders were synthesized using a scalable reverse co-precipitation method, presenting them as novel materials for oxygen transport membranes. The comprehensive study covered various aspects including oxygen permeability, crystal structure, conductivity, morphology, CO2 tolerance, and long-term regenerative durability with a focus on phase structure and composition. The membrane La0.7Ca0.3Co0.3Fe0.6Zn0.1O3–δ exhibited high oxygen permeation fluxes, reaching up to 0.88 and 0.64 mL·min−1·cm−2 under air/He and air/CO2 gradients at 1173 K, respectively. After 1600 h of CO2 exposure, the perovskite structure remained intact, showcasing superior CO2 resistance. A combination of first principles simulations and experimental measurements was employed to deepen the understanding of Cu/Zn substitution effects on the structure, oxygen vacancy formation, and transport behavior of the membranes. These findings underscore the potential of this highly CO2-tolerant membrane for applications in high-temperature oxygen separation. The enhanced insights into the oxygen transport mechanism contribute to the advancement of next-generation membrane materials.

Graphical abstract

Keywords

perovskite / oxygen permeation / membrane / oxygen ions diffusion / oxygen vacancy / formation energy / energy barrier

Cite this article

Download citation ▾
Guoxing Chen, Wenmei Liu, Marc Widenmeyer, Xiao Yu, Zhijun Zhao, Songhak Yoon, Ruijuan Yan, Wenjie Xie, Armin Feldhoff, Gert Homm, Emanuel Ionescu, Maria Fyta, Anke Weidenkaff. Advancing oxygen separation: insights from experimental and computational analysis of La0.7Ca0.3Co0.3Fe0.6M0.1O3–δ (M = Cu, Zn) oxygen transport membranes. Front. Chem. Sci. Eng., 2024, 18(6): 62 DOI:10.1007/s11705-024-2421-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen G , Feldhoff A , Weidenkaff A , Li C , Liu S , Zhu X , Sunarso J , Huang K , Wu X , Ghoniem A F . . Roadmap for sustainable mixed ionic-electronic conducting membranes. Advanced Functional Materials, 2022, 32(6): 2105702

[2]

Zou X , Lu Q , Zhong Y , Liao K , Zhou W , Shao Z . Flexible, flame-resistant, and dendrite-impermeable gel-polymer electrolyte for Li–O2/air batteries workable under hurdle conditions. Small, 2018, 14(34): e1801798

[3]

Du M , Liao K , Lu Q , Shao Z . Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization. Energy & Environmental Science, 2019, 12(6): 1780–1804

[4]

Guo J , Tang W , Xiong X , Liu H , Wang T , Wu Y , Cheng X . Localized high-concentration electrolytes for lithium metal batteries: progress and prospect. Frontiers of Chemical Science and Engineering, 2023, 17(10): 1354–1371

[5]

Ren J , He Y , Sun H , Zhang R , Li J , Ma W , Liu Z , Li J , Du X , Hao X . Construction of nitrogen-doped carbon cladding LiMn2O4 film electrode with enhanced stability for electrochemically selective extraction of lithium ions. Frontiers of Chemical Science and Engineering, 2023, 17(12): 2050–2060

[6]

Yu X , Chen G , Widenmeyer M , Kinski I , Liu X , Kunz U , Schüpfer D , Molina-Luna L , Tu X , Homm G . . Catalytic recycling of medical plastic wastes over La0.6Ca0.4Co1–xFexO3−δ pre-catalysts for co-production of H2 and high-value added carbon nanomaterials. Applied Catalysis B: Environmental, 2023, 334: 122838

[7]

Amaya-Dueñas D M , Chen G , Weidenkaff A , Sata N , Han F , Biswas I , Costa R , Friedrich K A . A-site deficient chromite with in situ Ni exsolution as a fuel electrode for solid oxide cells (SOCs). Journal of Materials Chemistry A, 2021, 9(9): 5685–5701

[8]

Wang S , Xiao P , Yang J , Carabineiro S A C , Wiśniewski M , Zhu J , Liu X . Catalytic combustion of volatile organic compounds using perovskite oxides catalysts—a review. Frontiers of Chemical Science and Engineering, 2023, 17(11): 1649–1676

[9]

Zhu X , Yang W . Microstructural and interfacial designs of oxygen-permeable membranes for oxygen separation and reaction-separation coupling. Advanced Materials, 2019, 31(50): e1902547

[10]

Chen G , Widenmeyer M , Yu X , Han N , Tan X , Homm G , Liu S , Weidenkaff A . Perspectives on achievements and challenges of oxygen transport dual-functional membrane reactors. Journal of the American Ceramic Society, 2024, 107(3): 1490–1504

[11]

Zhang C , Sunarso J , Liu S . Designing CO2-resistant oxygen-selective mixed ionic-electronic conducting membranes: guidelines, recent advances, and forward directions. Chemical Society Reviews, 2017, 46(10): 2941–3005

[12]

Geffroy P M , Blond E , Richet N , Chartier T . Understanding and identifying the oxygen transport mechanisms through a mixed-conductor membrane. Chemical Engineering Science, 2017, 162: 245–261

[13]

Chen G , Widenmeyer M , Tang B , Kaeswurm L , Wang L , Feldhoff A , Weidenkaff A . A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δ Ruddlesden-Popper membrane for oxygen separation. Frontiers of Chemical Science and Engineering, 2020, 14(3): 405–414

[14]

Bai W , Feng J , Luo C , Zhang P , Wang H , Yang Y , Zhao Y , Fan H A . A comprehensive review on oxygen transport membranes: development history, current status, and future directions. International Journal of Hydrogen Energy, 2021, 46(73): 36257–36290

[15]

Tan X , Alsaiari M , Shen Z , Asif S , Harraz F A , Šljukić B , Santos D M F , Zhang W , Bokhari A , Han N . Rational design of mixed ionic-electronic conducting membranes for oxygen transport. Chemosphere, 2022, 305: 135483

[16]

Alam M S , Kagomiya I , Kakimoto K . Tailoring the oxygen permeability of BaCo0.4Fe0.4Y0.2–xAxO3–δ (x = 0, 0.1; A: Zr, Mg, Zn) cubic perovskite. Ceramics International, 2023, 49(7): 11368–11377

[17]

Zhao Z , Chen G , Escobar Cano G , Kißling P A , Stölting O , Breidenstein B , Polarz S , Bigall N C , Weidenkaff A , Feldhoff A . Multiplying oxygen permeability of a ruddlesden-popper oxide by orientation control via magnets. Angewandte Chemie International Edition, 2024, 63(8): e202312473

[18]

Johanning M , Widenmeyer M , Escobar Cano G , Zeller V , Klemenz S , Chen G , Feldhoff A , Weidenkaff A . Recycling process development with integrated life cycle assessment—a case study on oxygen transport membrane material. Green Chemistry, 2023, 25(12): 4735–4749

[19]

Chen G , Buck F , Kistner I , Widenmeyer M , Schiestel T , Schulz A , Walker M , Weidenkaff A . A novel plasma-assisted hollow fiber membrane concept for efficiently separating oxygen from CO in a CO2 plasma. Chemical Engineering Journal, 2020, 392: 123699

[20]

Chen G , Snyders R , Britun N . CO2 conversion using catalyst-free and catalyst-assisted plasma-processes: recent progress and understanding. Journal of CO2 Utilization, 2021, 49: 101557

[21]

Widenmeyer M , Wiegers K S , Chen G , Yoon S , Feldhoff A , Weidenkaff A . Engineering of oxygen pathways for better oxygen permeability in Cr-substituted Ba2In2O5 membranes. Journal of Membrane Science, 2020, 595: 117558

[22]

Arratibel Plazaola A , Cruellas Labella A , Liu Y , Badiola Porras N , Pacheco Tanaka D A , Sint Annaland M V , Gallucci F . Mixed ionic-electronic conducting membranes (MIEC) for their application in membrane reactors: a review. Processes, 2019, 7(3): 128

[23]

Wang H , Tablet C , Feldhoff A , Caro J . Investigation of phase structure, sintering, and permeability of perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. Journal of Membrane Science, 2005, 262(1–2): 20–26

[24]

Chen G , Tang B , Widenmeyer M , Wang L , Feldhoff A , Weidenkaff A . Novel CO2-tolerant dual-phase Ce0.9Pr0.1O2–δ-La0.5Sr0.5Fe0.9Cu0.1O3–δ membranes with high oxygen permeability. Journal of Membrane Science, 2020, 595: 117530

[25]

Chen G , Zhao Z , Widenmeyer M , Frömling T , Hellmann T , Yan R , Qu F , Homm G , Hofmann J P , Feldhoff A . . A comprehensive comparative study of CO2-resistance and oxygen permeability of 60 wt % Ce0.8M0.2O2–δ (M = La, Pr, Nd, Sm, Gd)-40 wt % La0.5Sr0.5Fe0.8Cu0.2O3–δ dual-phase membranes. Journal of Membrane Science, 2021, 639: 119783

[26]

Kiebach R , Pirou S , Martinez Aguilera L , Haugen A B , Kaiser A , Hendriksen P V , Balaguer M , García-Fayos J , Serra J M , Schulze-Küppers F . . A review on dual-phase oxygen transport membranes: from fundamentals to commercial deployment. Journal of Materials Chemistry A, 2022, 10(5): 2152–2195

[27]

Luo H , Efimov K , Jiang H , Feldhoff A , Wang H , Caro J . CO2-stable and cobalt-free dual-phase membrane for oxygen separation. Angewandte Chemie International Edition, 2011, 50(3): 759–763

[28]

Li C , Song J , Zhang S , Tan X , Meng X , Sunarso J , Liu S . SDC-SCFZ dual-phase ceramics: structure, electrical conductivity, thermal expansion, and O2 permeability. Journal of the American Ceramic Society, 2021, 104(5): 2268–2284

[29]

Wang S , Shi L , Xie Z , He Y , Yan D , Li M R , Caro J , Luo H . High-flux dual-phase percolation membrane for oxygen separation. Journal of the European Ceramic Society, 2019, 39(15): 4882–4890

[30]

Huang Y , Zhang C , Wang X , Li D , Zeng L , He Y , Yu P , Luo H . High CO2 resistance of indium-doped cobalt-free 60wt% Ce0.9Pr0.1O2–δ-40wt%Pr0.6Sr0.4Fe1–xInxO3–δ oxygen transport membranes. Ceramics International, 2022, 48(1): 415–426

[31]

Wang X , Huang Y , Li D , Zeng L , He Y , Boubeche M , Luo H . High oxygen permeation flux of cobalt-free Cu-based ceramic dual-phase membranes. Journal of Membrane Science, 2021, 633: 119403

[32]

Zhu X , Liu H , Cong Y , Yang W . Novel dual-phase membranes for CO2 capture via an oxyfuel route. Chemical Communications, 2012, 48(2): 251–253

[33]

Zhang S , Yeo J Y J , Li C , Meng X , Yang N , Sunarso J , Liu S . Oxygen permeation simulation of La0.8Ca0.2Fe0.95O3–δ-Ag hollow fiber membrane at different modes and flow configurations. AIChE Journal, 2022, 68(2): e17508

[34]

Chen G , Liu W , Widenmeyer M , Ying P , Dou M , Xie W , Bubeck C , Wang L , Fyta M , Feldhoff A . . High flux and CO2-resistance of La0.6Ca0.4Co1–xFexO3–δ oxygen-transporting membranes. Journal of Membrane Science, 2019, 590: 117082

[35]

Efimov K , Klande T , Juditzki N , Feldhoff A . Ca-containing CO2-tolerant perovskite materials for oxygen separation. Journal of Membrane Science, 2012, 389: 205–215

[36]

Shannon R D . Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 1976, 32(5): 751–767

[37]

Kresse G , Furthmüller J . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1): 15–50

[38]

Blöchl P E . Projector augmented-wave method. Physical Review B: Condensed Matter, 1994, 50(24): 17953–17979

[39]

Perdew J P , Burke K , Ernzerhof M . Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868

[40]

Troullier N , Martins J L . Efficient pseudopotentials for plane-wave calculations. Physical Review B: Condensed Matter, 1991, 43(3): 1993–2006

[41]

Yang W H , Smolen V F , Peppas N A . Oxygen permeability coefficients of polymers for hard and soft contact lens applications. Journal of Membrane Science, 1981, 9(1–2): 53–67

[42]

Wang Z , Peng R , Zhang W , Wu X , Xia C , Lu Y . Oxygen reduction and transport on the La1–xSrxCo1–yFeyO3–δ cathode in solid oxide fuel cells: a first-principles study. Journal of Materials Chemistry A, 2013, 1(41): 12932–12940

[43]

Freysoldt C , Grabowski B , Hickel T , Neugebauer J , Kresse G , Janotti A , Van de Walle C G . First-principles calculations for point defects in solids. Reviews of Modern Physics, 2014, 86(1): 253–305

[44]

Henkelman G , Uberuaga B P , Jónsson H . A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics, 2000, 113(22): 9901–9904

[45]

JonssonHMillsGJacobsenK W. Chapter 16. Nudged elastic band method for finding minimum energy paths of transitions. In: Berne B, Ciccotti G, Coker D, eds. Classical and Quantum Dynamics in Condensed Phase Simulations. New Jersey: World Scientific, 1998, 385–404

[46]

Klein A , Albe K , Bein N , Clemens O , Creutz K A , Erhart P , Frericks M , Ghorbani E , Hofmann J P , Huang B . . The Fermi energy as common parameter to describe charge compensation mechanisms: a path to Fermi level engineering of oxide electroceramics. Journal of Electroceramics, 2023, 1: 1–31

[47]

KhromushinI VAksenovaT IZhotabaevZ R. Mechanism of gas-solid exchange processes for some perovskites. Solid State Ionics, 2003, 162–163: 37–40

[48]

Sunarso J , Baumann S , Serra J M , Meulenberg W A , Liu S , Lin Y S , Diniz da Costa J C . Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. Journal of Membrane Science, 2008, 320(1–2): 13–41

[49]

Ten Elshof J E , Bouwmeester H J M , Verweij H . Oxygen transport through La1–xSrxFeO3–δ membranes II. Permeation in air/CO, CO2 gradients. Solid State Ionics, 1996, 89(1–2): 81–92

[50]

Fang W , Steinbach F , Chen C , Feldhoff A . An approach to enhance the CO2 tolerance of fluorite-perovskite dual-phase oxygen-transporting membrane. Chemistry of Materials, 2015, 27(22): 7820–7826

[51]

Liang F , Luo H , Partovi K , Ravkina O , Cao Z , Liu Y , Caro J . A novel CO2-stable dual phase membrane with high oxygen permeability. Chemical Communications, 2014, 50(19): 2451–2454

[52]

Luo H , Klande T , Cao Z , Liang F , Wang H , Caro J . A CO2-stable reduction-tolerant Nd-containing dual phase membrane for oxyfuel CO2 capture. Journal of Materials Chemistry A, 2014, 2(21): 7780–7787

[53]

Xue J , Liao Q , Wei Y , Li Z , Wang H . A CO2-tolerance oxygen permeable 60Ce0.9Gd0.1O2–δ–40Ba0.5Sr0.5Co0.8Fe0.2O3–δ dual phase membrane. Journal of Membrane Science, 2013, 443: 124–130

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (6245KB)

Supplementary files

FCE-23100-OF-CG_suppl_1

1332

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/