Advancing oxygen separation: insights from experimental and computational analysis of La0.7Ca0.3Co0.3Fe0.6M0.1O3–δ (M = Cu, Zn) oxygen transport membranes
Guoxing Chen, Wenmei Liu, Marc Widenmeyer, Xiao Yu, Zhijun Zhao, Songhak Yoon, Ruijuan Yan, Wenjie Xie, Armin Feldhoff, Gert Homm, Emanuel Ionescu, Maria Fyta, Anke Weidenkaff
Advancing oxygen separation: insights from experimental and computational analysis of La0.7Ca0.3Co0.3Fe0.6M0.1O3–δ (M = Cu, Zn) oxygen transport membranes
In this study, perovskite-type La0.7Ca0.3Co0.3Fe0.6M0.1O3–δ (M = Cu, Zn) powders were synthesized using a scalable reverse co-precipitation method, presenting them as novel materials for oxygen transport membranes. The comprehensive study covered various aspects including oxygen permeability, crystal structure, conductivity, morphology, CO2 tolerance, and long-term regenerative durability with a focus on phase structure and composition. The membrane La0.7Ca0.3Co0.3Fe0.6Zn0.1O3–δ exhibited high oxygen permeation fluxes, reaching up to 0.88 and 0.64 mL·min−1·cm−2 under air/He and air/CO2 gradients at 1173 K, respectively. After 1600 h of CO2 exposure, the perovskite structure remained intact, showcasing superior CO2 resistance. A combination of first principles simulations and experimental measurements was employed to deepen the understanding of Cu/Zn substitution effects on the structure, oxygen vacancy formation, and transport behavior of the membranes. These findings underscore the potential of this highly CO2-tolerant membrane for applications in high-temperature oxygen separation. The enhanced insights into the oxygen transport mechanism contribute to the advancement of next-generation membrane materials.
perovskite / oxygen permeation / membrane / oxygen ions diffusion / oxygen vacancy / formation energy / energy barrier
[1] |
Chen G , Feldhoff A , Weidenkaff A , Li C , Liu S , Zhu X , Sunarso J , Huang K , Wu X , Ghoniem A F .
CrossRef
Google scholar
|
[2] |
Zou X , Lu Q , Zhong Y , Liao K , Zhou W , Shao Z . Flexible, flame-resistant, and dendrite-impermeable gel-polymer electrolyte for Li–O2/air batteries workable under hurdle conditions. Small, 2018, 14(34): e1801798
CrossRef
Google scholar
|
[3] |
Du M , Liao K , Lu Q , Shao Z . Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization. Energy & Environmental Science, 2019, 12(6): 1780–1804
CrossRef
Google scholar
|
[4] |
Guo J , Tang W , Xiong X , Liu H , Wang T , Wu Y , Cheng X . Localized high-concentration electrolytes for lithium metal batteries: progress and prospect. Frontiers of Chemical Science and Engineering, 2023, 17(10): 1354–1371
CrossRef
Google scholar
|
[5] |
Ren J , He Y , Sun H , Zhang R , Li J , Ma W , Liu Z , Li J , Du X , Hao X . Construction of nitrogen-doped carbon cladding LiMn2O4 film electrode with enhanced stability for electrochemically selective extraction of lithium ions. Frontiers of Chemical Science and Engineering, 2023, 17(12): 2050–2060
CrossRef
Google scholar
|
[6] |
Yu X , Chen G , Widenmeyer M , Kinski I , Liu X , Kunz U , Schüpfer D , Molina-Luna L , Tu X , Homm G .
CrossRef
Google scholar
|
[7] |
Amaya-Dueñas D M , Chen G , Weidenkaff A , Sata N , Han F , Biswas I , Costa R , Friedrich K A . A-site deficient chromite with in situ Ni exsolution as a fuel electrode for solid oxide cells (SOCs). Journal of Materials Chemistry A, 2021, 9(9): 5685–5701
CrossRef
Google scholar
|
[8] |
Wang S , Xiao P , Yang J , Carabineiro S A C , Wiśniewski M , Zhu J , Liu X . Catalytic combustion of volatile organic compounds using perovskite oxides catalysts—a review. Frontiers of Chemical Science and Engineering, 2023, 17(11): 1649–1676
CrossRef
Google scholar
|
[9] |
Zhu X , Yang W . Microstructural and interfacial designs of oxygen-permeable membranes for oxygen separation and reaction-separation coupling. Advanced Materials, 2019, 31(50): e1902547
CrossRef
Google scholar
|
[10] |
Chen G , Widenmeyer M , Yu X , Han N , Tan X , Homm G , Liu S , Weidenkaff A . Perspectives on achievements and challenges of oxygen transport dual-functional membrane reactors. Journal of the American Ceramic Society, 2024, 107(3): 1490–1504
CrossRef
Google scholar
|
[11] |
Zhang C , Sunarso J , Liu S . Designing CO2-resistant oxygen-selective mixed ionic-electronic conducting membranes: guidelines, recent advances, and forward directions. Chemical Society Reviews, 2017, 46(10): 2941–3005
CrossRef
Google scholar
|
[12] |
Geffroy P M , Blond E , Richet N , Chartier T . Understanding and identifying the oxygen transport mechanisms through a mixed-conductor membrane. Chemical Engineering Science, 2017, 162: 245–261
CrossRef
Google scholar
|
[13] |
Chen G , Widenmeyer M , Tang B , Kaeswurm L , Wang L , Feldhoff A , Weidenkaff A . A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δ Ruddlesden-Popper membrane for oxygen separation. Frontiers of Chemical Science and Engineering, 2020, 14(3): 405–414
CrossRef
Google scholar
|
[14] |
Bai W , Feng J , Luo C , Zhang P , Wang H , Yang Y , Zhao Y , Fan H A . A comprehensive review on oxygen transport membranes: development history, current status, and future directions. International Journal of Hydrogen Energy, 2021, 46(73): 36257–36290
CrossRef
Google scholar
|
[15] |
Tan X , Alsaiari M , Shen Z , Asif S , Harraz F A , Šljukić B , Santos D M F , Zhang W , Bokhari A , Han N . Rational design of mixed ionic-electronic conducting membranes for oxygen transport. Chemosphere, 2022, 305: 135483
CrossRef
Google scholar
|
[16] |
Alam M S , Kagomiya I , Kakimoto K . Tailoring the oxygen permeability of BaCo0.4Fe0.4Y0.2–xAxO3–δ (x = 0, 0.1; A: Zr, Mg, Zn) cubic perovskite. Ceramics International, 2023, 49(7): 11368–11377
CrossRef
Google scholar
|
[17] |
Zhao Z , Chen G , Escobar Cano G , Kißling P A , Stölting O , Breidenstein B , Polarz S , Bigall N C , Weidenkaff A , Feldhoff A . Multiplying oxygen permeability of a ruddlesden-popper oxide by orientation control via magnets. Angewandte Chemie International Edition, 2024, 63(8): e202312473
CrossRef
Google scholar
|
[18] |
Johanning M , Widenmeyer M , Escobar Cano G , Zeller V , Klemenz S , Chen G , Feldhoff A , Weidenkaff A . Recycling process development with integrated life cycle assessment—a case study on oxygen transport membrane material. Green Chemistry, 2023, 25(12): 4735–4749
CrossRef
Google scholar
|
[19] |
Chen G , Buck F , Kistner I , Widenmeyer M , Schiestel T , Schulz A , Walker M , Weidenkaff A . A novel plasma-assisted hollow fiber membrane concept for efficiently separating oxygen from CO in a CO2 plasma. Chemical Engineering Journal, 2020, 392: 123699
CrossRef
Google scholar
|
[20] |
Chen G , Snyders R , Britun N . CO2 conversion using catalyst-free and catalyst-assisted plasma-processes: recent progress and understanding. Journal of CO2 Utilization, 2021, 49: 101557
|
[21] |
Widenmeyer M , Wiegers K S , Chen G , Yoon S , Feldhoff A , Weidenkaff A . Engineering of oxygen pathways for better oxygen permeability in Cr-substituted Ba2In2O5 membranes. Journal of Membrane Science, 2020, 595: 117558
CrossRef
Google scholar
|
[22] |
Arratibel Plazaola A , Cruellas Labella A , Liu Y , Badiola Porras N , Pacheco Tanaka D A , Sint Annaland M V , Gallucci F . Mixed ionic-electronic conducting membranes (MIEC) for their application in membrane reactors: a review. Processes, 2019, 7(3): 128
CrossRef
Google scholar
|
[23] |
Wang H , Tablet C , Feldhoff A , Caro J . Investigation of phase structure, sintering, and permeability of perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. Journal of Membrane Science, 2005, 262(1–2): 20–26
CrossRef
Google scholar
|
[24] |
Chen G , Tang B , Widenmeyer M , Wang L , Feldhoff A , Weidenkaff A . Novel CO2-tolerant dual-phase Ce0.9Pr0.1O2–δ-La0.5Sr0.5Fe0.9Cu0.1O3–δ membranes with high oxygen permeability. Journal of Membrane Science, 2020, 595: 117530
CrossRef
Google scholar
|
[25] |
Chen G , Zhao Z , Widenmeyer M , Frömling T , Hellmann T , Yan R , Qu F , Homm G , Hofmann J P , Feldhoff A .
CrossRef
Google scholar
|
[26] |
Kiebach R , Pirou S , Martinez Aguilera L , Haugen A B , Kaiser A , Hendriksen P V , Balaguer M , García-Fayos J , Serra J M , Schulze-Küppers F .
CrossRef
Google scholar
|
[27] |
Luo H , Efimov K , Jiang H , Feldhoff A , Wang H , Caro J . CO2-stable and cobalt-free dual-phase membrane for oxygen separation. Angewandte Chemie International Edition, 2011, 50(3): 759–763
CrossRef
Google scholar
|
[28] |
Li C , Song J , Zhang S , Tan X , Meng X , Sunarso J , Liu S . SDC-SCFZ dual-phase ceramics: structure, electrical conductivity, thermal expansion, and O2 permeability. Journal of the American Ceramic Society, 2021, 104(5): 2268–2284
CrossRef
Google scholar
|
[29] |
Wang S , Shi L , Xie Z , He Y , Yan D , Li M R , Caro J , Luo H . High-flux dual-phase percolation membrane for oxygen separation. Journal of the European Ceramic Society, 2019, 39(15): 4882–4890
CrossRef
Google scholar
|
[30] |
Huang Y , Zhang C , Wang X , Li D , Zeng L , He Y , Yu P , Luo H . High CO2 resistance of indium-doped cobalt-free 60wt% Ce0.9Pr0.1O2–δ-40wt%Pr0.6Sr0.4Fe1–xInxO3–δ oxygen transport membranes. Ceramics International, 2022, 48(1): 415–426
CrossRef
Google scholar
|
[31] |
Wang X , Huang Y , Li D , Zeng L , He Y , Boubeche M , Luo H . High oxygen permeation flux of cobalt-free Cu-based ceramic dual-phase membranes. Journal of Membrane Science, 2021, 633: 119403
CrossRef
Google scholar
|
[32] |
Zhu X , Liu H , Cong Y , Yang W . Novel dual-phase membranes for CO2 capture via an oxyfuel route. Chemical Communications, 2012, 48(2): 251–253
CrossRef
Google scholar
|
[33] |
Zhang S , Yeo J Y J , Li C , Meng X , Yang N , Sunarso J , Liu S . Oxygen permeation simulation of La0.8Ca0.2Fe0.95O3–δ-Ag hollow fiber membrane at different modes and flow configurations. AIChE Journal, 2022, 68(2): e17508
CrossRef
Google scholar
|
[34] |
Chen G , Liu W , Widenmeyer M , Ying P , Dou M , Xie W , Bubeck C , Wang L , Fyta M , Feldhoff A .
CrossRef
Google scholar
|
[35] |
Efimov K , Klande T , Juditzki N , Feldhoff A . Ca-containing CO2-tolerant perovskite materials for oxygen separation. Journal of Membrane Science, 2012, 389: 205–215
CrossRef
Google scholar
|
[36] |
Shannon R D . Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 1976, 32(5): 751–767
CrossRef
Google scholar
|
[37] |
Kresse G , Furthmüller J . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1): 15–50
CrossRef
Google scholar
|
[38] |
Blöchl P E . Projector augmented-wave method. Physical Review B: Condensed Matter, 1994, 50(24): 17953–17979
CrossRef
Google scholar
|
[39] |
Perdew J P , Burke K , Ernzerhof M . Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868
CrossRef
Google scholar
|
[40] |
Troullier N , Martins J L . Efficient pseudopotentials for plane-wave calculations. Physical Review B: Condensed Matter, 1991, 43(3): 1993–2006
CrossRef
Google scholar
|
[41] |
Yang W H , Smolen V F , Peppas N A . Oxygen permeability coefficients of polymers for hard and soft contact lens applications. Journal of Membrane Science, 1981, 9(1–2): 53–67
CrossRef
Google scholar
|
[42] |
Wang Z , Peng R , Zhang W , Wu X , Xia C , Lu Y . Oxygen reduction and transport on the La1–xSrxCo1–yFeyO3–δ cathode in solid oxide fuel cells: a first-principles study. Journal of Materials Chemistry A, 2013, 1(41): 12932–12940
CrossRef
Google scholar
|
[43] |
Freysoldt C , Grabowski B , Hickel T , Neugebauer J , Kresse G , Janotti A , Van de Walle C G . First-principles calculations for point defects in solids. Reviews of Modern Physics, 2014, 86(1): 253–305
CrossRef
Google scholar
|
[44] |
Henkelman G , Uberuaga B P , Jónsson H . A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics, 2000, 113(22): 9901–9904
CrossRef
Google scholar
|
[45] |
JonssonHMillsGJacobsenK W. Chapter 16. Nudged elastic band method for finding minimum energy paths of transitions. In: Berne B, Ciccotti G, Coker D, eds. Classical and Quantum Dynamics in Condensed Phase Simulations. New Jersey: World Scientific, 1998, 385–404
|
[46] |
Klein A , Albe K , Bein N , Clemens O , Creutz K A , Erhart P , Frericks M , Ghorbani E , Hofmann J P , Huang B .
|
[47] |
KhromushinI VAksenovaT IZhotabaevZ R. Mechanism of gas-solid exchange processes for some perovskites. Solid State Ionics, 2003, 162–163: 37–40
|
[48] |
Sunarso J , Baumann S , Serra J M , Meulenberg W A , Liu S , Lin Y S , Diniz da Costa J C . Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. Journal of Membrane Science, 2008, 320(1–2): 13–41
CrossRef
Google scholar
|
[49] |
Ten Elshof J E , Bouwmeester H J M , Verweij H . Oxygen transport through La1–xSrxFeO3–δ membranes II. Permeation in air/CO, CO2 gradients. Solid State Ionics, 1996, 89(1–2): 81–92
CrossRef
Google scholar
|
[50] |
Fang W , Steinbach F , Chen C , Feldhoff A . An approach to enhance the CO2 tolerance of fluorite-perovskite dual-phase oxygen-transporting membrane. Chemistry of Materials, 2015, 27(22): 7820–7826
CrossRef
Google scholar
|
[51] |
Liang F , Luo H , Partovi K , Ravkina O , Cao Z , Liu Y , Caro J . A novel CO2-stable dual phase membrane with high oxygen permeability. Chemical Communications, 2014, 50(19): 2451–2454
CrossRef
Google scholar
|
[52] |
Luo H , Klande T , Cao Z , Liang F , Wang H , Caro J . A CO2-stable reduction-tolerant Nd-containing dual phase membrane for oxyfuel CO2 capture. Journal of Materials Chemistry A, 2014, 2(21): 7780–7787
CrossRef
Google scholar
|
[53] |
Xue J , Liao Q , Wei Y , Li Z , Wang H . A CO2-tolerance oxygen permeable 60Ce0.9Gd0.1O2–δ–40Ba0.5Sr0.5Co0.8Fe0.2O3–δ dual phase membrane. Journal of Membrane Science, 2013, 443: 124–130
CrossRef
Google scholar
|
/
〈 | 〉 |