Improving chitosan-based composite membrane by introducing a novel hybrid functional nano-hydroxyapatite with carboxymethyl cellulose and phytic acid
Received date: 31 Oct 2023
Accepted date: 16 Jan 2024
Copyright
A functional hybrid nano-hydroxyapatite (carboxymethyl cellulose-phytic acid-n-HA, CMC-PA-n-HA) was prepared by adding CMC and PA. The results of Fourier transformation infrared spectra, X-ray diffraction, thermal gravimetric analysis and dispersion experiments indicated that the addition of CMC and PA affected the morphology, crystallinity and crystal size of hybrid n-HA, and CMC endowed hybrid n-HA with excellent dispersion. Scanning electron microscope results showed that CMC-PA-n-HA nanoparticle could be uniformly dispersed in chitosan (CS) matrix to obtain composite membrane by casting technology, so that the highest tensile strength of CMC-PA-n-HA/CS composite membrane was 69.64% and 144.45% higher than that of CS membrane and n-HA/CS composite membrane, respectively. Contact angle test showed that CMC-PA-n-HA effectively improved hydrophilicity of the CS membrane. The simulated body fluid immersion results indicated that the CMC-PA-n-HA/CS composite membrane not only exhibited good degradability but also promoted bone-like apatite deposition. The cell proliferation experiments proved that the introduction of PA made the composite membrane have better cell adhesion and proliferation ability. Antibacterial tests demonstrated that PA could effectively improve the antibacterial properties of the composite membrane, which is expected to be applied as guide bone tissue regeneration membrane.
Liuyun Jiang , Yingjun Ma , Shuo Tang , Yuqing Wang , Yan Zhang , Shengpei Su , Xiang Hu , Jun He . Improving chitosan-based composite membrane by introducing a novel hybrid functional nano-hydroxyapatite with carboxymethyl cellulose and phytic acid[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(6) : 61 . DOI: 10.1007/s11705-024-2418-0
1 |
Alauddin M S , Hayei N A A , Sabarudin M A , Baharin N H M . Barrier membrane in regenerative therapy: a narrative review. Membranes, 2022, 12(5): 444
|
2 |
Bee S L , Hamid Z A A . Asymmetric resorbable-based dental barrier membrane for periodontal guided tissue regeneration and guided bone regeneration: a review. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 2022, 110(9): 2157–2182
|
3 |
Solomon S M , Sufaru I G , Teslaru S , Ghiciuc C M , Stafie C S . Finding the perfect membrane: current knowledge on barrier membranes in regenerative procedures: a descriptive review. Applied Sciences, 2022, 12(3): 1042
|
4 |
Niu X L , Wang L F , Xu M J , Qin M , Zhao L Q , Wei Y , Hu Y C , Lian X J , Liang Z W , Chen S .
|
5 |
Barber H D , Lignelli J , Smith B M , Bartee B K . Using a dense PTFE membrane without primary closure to achieve bone and tissue regeneration. Journal of Oral and Maxillofacial Surgery, 2007, 65(4): 748–752
|
6 |
Gao Y , Wang S , Shi B Y , Wang Y X , Chen Y M , Wang X Y , Lee E S , Jiang H B . Advances in modification methods based on biodegradable membranes in guided bone/tissue regeneration: a review. Polymers, 2022, 14(5): 871
|
7 |
Fenbo M , Xingyu X , Bin T . Strontium chondroitin sulfate/silk fibroin blend membrane containing microporous structure modulates macrophage responses for guided bone regeneration. Carbohydrate Polymers, 2019, 213: 266–275
|
8 |
Ren Y R , Fan L , Alkildani S , Liu L , Emmert S , Najman S , Rimashevskiy D , Schnettler R , Jung O L , Xiong X .
|
9 |
Zhou Z L , Yun J H , Li J , Chen Y M , Duan T T , Wang L Q , Han J M , Jiang H B , Niu G L . Comparison of the efficacy of different biodegradable membranes in guided bone/tissue regeneration: a systematic review and network meta-analysis. Biomedical Materials, 2023, 18(3): 032003
|
10 |
Mora-Boza A , Garcia-Fernandez L , Barbosa F A , Oliveira A L , Vazquez-Lasa B , San Román J . Glycerylphytate crosslinker as a potential osteoinductor of chitosan-based systems for guided bone regeneration. Carbohydrate Polymers, 2020, 241: 116269
|
11 |
Duan P Z , Shen J , Zou G H , Xia X , Jin B . Biomimetic mineralization and cytocompatibility of nanorod hydroxyapatite/graphene oxide composites. Frontiers of Chemical Science and Engineering, 2018, 12(4): 798–805
|
12 |
Ding H J , Jiang L J , Ma B L , Su S P . Preparation of a highly dispersed nano-hydroxyapatite by a new surface modification strategy used for a reinforce filler for poly(lactic-co-glycolide). Industrial & Engineering Chemistry Research, 2018, 57(50): 17119–17128
|
13 |
Ding H J , Jiang L Y , Tang C Y , Tang S , Ma B L , Zhang N , Wen Y , Zhang Y , Sheng L P , Su S P .
|
14 |
Tang C Y , Ding H J , Tang S , Jiang L Y , Ma B L , Wen Y , Zhang N , Sheng L P , Su S P . A combined-modification method of carboxymethyl β-cyclodextrin and lignin for nano-hydroxyapatite to reinforce poly(lactide-co-glycolide) for bone materials. International Journal of Molecular Sciences, 2020, 160: 142–152
|
15 |
Javanbakht S , Shaabani A . Carboxymethyl cellulose-based oral delivery systems. International Journal of Biological Macromolecules, 2019, 133: 21–29
|
16 |
Okuda K , Shigemasa R , Hirota K , Mizutani T . In situ crystallization of hydroxyapatite on carboxymethyl cellulose as a biomimetic approach to biomass-derived composite materials. ACS Omega, 2022, 7(14): 12127–12137
|
17 |
Panahirad S , Dadpour M , Peighambardoust S H , Soltanzadeh M , Gullon B , Alirezalu K , Lorenzo J M . Applications of carboxymethyl cellulose- and pectin-based active edible coatings in preservation of fruits and vegetables: a review. Trends in Food Science & Technology, 2021, 110: 663–673
|
18 |
Lian M F , Sun B B , Qiao Z G , Zhao K , Zhou X J , Zhang Q Q , Zou D H , He C L , Zhang X Y . Bi-layered electrospun nanofibrous membrane with osteogenic and antibacterial properties for guided bone regeneration. Colloids and Surfaces. B, Biointerfaces, 2019, 176: 219–229
|
19 |
Ren X X , Gao R F , van der Mei H C , Ren Y J , Peterson B W , Busscher H J . Eradicating infecting bacteria while maintaining tissue integration on photothermal nanoparticle-coated titanium surfaces. ACS Applied Materials & Interfaces, 2020, 12(31): 34610–34619
|
20 |
Chalmers E , Li Y , Liu X Q . Molecular tailoring to improve polypyrrole hydrogels’ stiffness and electrochemical energy storage capacity. Frontiers of Chemical Science and Engineering, 2019, 13(4): 684–694
|
21 |
Gan N , Qin W , Zhang C L , Jiao T . One-step in situ deposition of phytic acid-metal coordination complexes for combined porphyromonas gingivalis infection prevention and osteogenic induction. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2022, 10(22): 4293–4305
|
22 |
Liu Y J , Wu J , Zhang H , Wu Y Z , Tang C B . Covalent immobilization of the phytic acid-magnesium layer on titanium improves the osteogenic and antibacterial properties. Colloids and Surfaces. B, Biointerfaces, 2021, 203: 111768
|
23 |
Ali A F , Alrowaili Z A , El-Giar E M , Ahmed M M , El-Kady A M . Novel green synthesis of hydroxyapatite uniform nanorods via microwave-hydrothermal route using licorice root extract as template. Ceramics International, 2021, 47(3): 3928–3937
|
24 |
Turki T , Othmani M , Bantignies J L , Bouzouita K . Hydroxyapatite-phosphonoformic acid hybrid compounds prepared by hydrothermal method. Applied Surface Science, 2014, 290: 327–331
|
25 |
Deng H , Wang Y M , Zhou Y , Zhai D L , Chen J , Hao S L , Chen X L . In vitro and in vivo evaluation of folic acid modified DOX-loaded 32P-nHA nanoparticles in prostate cancer therapy. International Journal of Nanomedicine, 2023, 18: 2003–2015
|
26 |
Khoshakhlagh P , Rabiee S M , Kiaee G , Heidari P , Miri A K , Moradi R , Moztarzadeh F , Ravarian R . Development and characterization of a bioglass/chitosan composite as an injectable bone substitute. Carbohydrate Polymers, 2017, 157: 1261–1271
|
27 |
Tang S , Jiang L Y , Ma B L , Tang C Y , Wen Y , Zhang N , Zhang Y , Su S P . Preparation and characterization of bamboo fifiber/chitosan/nano hydroxyapatite composite membrane by ionic crosslinking. Cellulos, 2020, 27(9): 5089–5100
|
28 |
Buzarovska A , Dinescu S , Chitoiu L , Costache M . Porous poly(l-lactic acid) nanocomposite scaffolds with functionalized TiO2 nanoparticles: properties, cytocompatibility and drug release capability. Journal of Materials Science, 2018, 53(16): 11151–11166
|
29 |
Rokkala U , Bontha S , Ramesh M R , Balla V K . Influence of friction stir processing on microstructure, mechanical properties and corrosion behaviour of Mg-Zn-Dy alloy. Journal of Materials Science, 2023, 58(6): 2893–2914
|
30 |
Ren Y Y , Yang H , Wang T , Wang C . Bio-synthesis of silver nanoparticles with antibacterial activity. Materials Chemistry and Physics, 2019, 235: 121746
|
31 |
Liu Z L , Shang S M , Chiu K L , Jiang S X , Dai F Y . Fabrication of conductive and flame-retardant bifunctional cotton fabric by polymerizing pyrrole and doping phytic acid. Polymer Degradation & Stability, 2019, 167: 277–282
|
32 |
Garai S , Sinha A . Biomimetic nanocomposites of carboxymethyl cellulose-hydroxyapatite: novel threedimensional load bearing bone grafts. Colloids and Surfaces. B, Biointerfaces, 2014, 115: 182–190
|
33 |
Sarkar C , Chowdhuri A R , Kumar A , Laha D , Garai S , Chakraborty J , Sahu S K . One pot synthesis of carbon dots decorated carboxymethyl cellulose-hydroxyapatite nanocomposite for drug delivery, tissue engineering and Fe3+ ion sensing. Carbohydrate Polymers, 2018, 181: 710–718
|
34 |
ChaiX HWangW LWuK GZhangTDuanX JHeDHuangY QZhangZ H. Fabrication and characterization of tea seed oil pickering emulsion stabilized synergistically by carboxymethylcellulose and beta-cyclodextrin. Journal of Dispersion Science and Technology, 2023: 2234479
|
35 |
Shirvanimoghaddam K , Balaji K V , Yadav R , Zabihi O , Ahmadi M , Adetunji P , Naebe M . Balancing the toughness and strength in polypropylene composites. Composites. Part B, Engineering, 2021, 223: 109121
|
36 |
Kiran M D , Govindaraju H K , Jayaraju T , Kumar N . Review-effect of fillers on mechanical properties of polymer matrix composites. Materials Today: Proceedings, 2018, 5(10): 22421–22424
|
37 |
Cheng X M , Li Y B , Zuo Y , Zhang L , Li J D , Wang H N . Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Materials Science and Engineering C, 2009, 29(1): 29–35
|
38 |
Mujtaba M , Morsi R E , Kerch G , Elsabee M Z , Kaya M , Labidi J , Khawar K M . Current advancements in chitosan-based film production for food technology: a review. International Journal of Biological Macromolecules, 2019, 121: 889–904
|
39 |
Luo Y Q , Pan X Q , Ling Y Z , Wang X Y , Sun R C . Facile fabrication of chitosan active film with xylan via direct immersion. Cellulose, 2014, 21(3): 1873–1883
|
40 |
Sowmya S , Bumgardener J D , Chennazhi K P , Nair S V , Jayakumar R . Role of nanostructured biopolymers and bioceramics in enamel, dentin and periodontal tissue regeneration. Progress in Polymer Science, 2013, 38(10-11): 1748–1772
|
41 |
Mallakpour S , Okhovat M . Hydroxyapatite mineralization of chitosan-tragacanth blend/ZnO/Ag nanocomposite films with enhanced antibacterial activity. International Journal of Biological Macromolecules, 2021, 175: 330–340
|
42 |
Castro J I , Valencia-Llano C H , Valencia Zapata M E , Restrepo Y J , Mina Hernandez J H , Navia-Porras D P , Valencia Y , Valencia C , Grande-Tovar C D . Chitosan/polyvinyl alcohol/tea tree essential oil composite films for biomedical applications. Polymers, 2021, 13(21): 3753
|
43 |
Shahriarpanah S , Nourmohammadi J , Amoabediny G . Fabrication and characterization of carboxylated starch-chitosan bioactive scaffold for bone regeneration. International Journal of Biological Macromolecules, 2016, 93: 1069–1078
|
44 |
Bhowmick A , Pramanik N , Mitra T , Gnanamani A , Das M , Kundu P P . Mechanical and biological investigations of chitosan-polyvinyl alcohol based ZrO2 doped porous hybrid composites for bone tissue engineering applications. New Journal of Chemistry, 2017, 41(15): 7524–7530
|
45 |
Li B , Ren K X , Wang Y P , Qi Y X , Chen X S , Huang Y B . Protein-cross-linked hydrogels with tailored swelling and bioactivity performance: a comparative study. ACS Applied Materials & Interfaces, 2016, 8(45): 30788–30796
|
/
〈 | 〉 |