Improving chitosan-based composite membrane by introducing a novel hybrid functional nano-hydroxyapatite with carboxymethyl cellulose and phytic acid

  • Liuyun Jiang , 1 ,
  • Yingjun Ma 1 ,
  • Shuo Tang 1 ,
  • Yuqing Wang 1 ,
  • Yan Zhang 1 ,
  • Shengpei Su 1 ,
  • Xiang Hu , 2 ,
  • Jun He , 3
Expand
  • 1. National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
  • 2. State Key Laboratory Developmental Biology of Freshwater Fish, School of Life Science, Hunan Normal University, Changsha 410081, China
  • 3. Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Matemal & Child Health Care Aiffiliated to Hunan Normal University, Changsha 410081, China
jiangly@hunnu.edu.cn
huxiang@hunnu.edu.cn
19252702@qq.com

Received date: 31 Oct 2023

Accepted date: 16 Jan 2024

Copyright

2024 Higher Education Press

Abstract

A functional hybrid nano-hydroxyapatite (carboxymethyl cellulose-phytic acid-n-HA, CMC-PA-n-HA) was prepared by adding CMC and PA. The results of Fourier transformation infrared spectra, X-ray diffraction, thermal gravimetric analysis and dispersion experiments indicated that the addition of CMC and PA affected the morphology, crystallinity and crystal size of hybrid n-HA, and CMC endowed hybrid n-HA with excellent dispersion. Scanning electron microscope results showed that CMC-PA-n-HA nanoparticle could be uniformly dispersed in chitosan (CS) matrix to obtain composite membrane by casting technology, so that the highest tensile strength of CMC-PA-n-HA/CS composite membrane was 69.64% and 144.45% higher than that of CS membrane and n-HA/CS composite membrane, respectively. Contact angle test showed that CMC-PA-n-HA effectively improved hydrophilicity of the CS membrane. The simulated body fluid immersion results indicated that the CMC-PA-n-HA/CS composite membrane not only exhibited good degradability but also promoted bone-like apatite deposition. The cell proliferation experiments proved that the introduction of PA made the composite membrane have better cell adhesion and proliferation ability. Antibacterial tests demonstrated that PA could effectively improve the antibacterial properties of the composite membrane, which is expected to be applied as guide bone tissue regeneration membrane.

Cite this article

Liuyun Jiang , Yingjun Ma , Shuo Tang , Yuqing Wang , Yan Zhang , Shengpei Su , Xiang Hu , Jun He . Improving chitosan-based composite membrane by introducing a novel hybrid functional nano-hydroxyapatite with carboxymethyl cellulose and phytic acid[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(6) : 61 . DOI: 10.1007/s11705-024-2418-0

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was financially supported by Postgraduate Scientific Research Innovation Project of Hunan Province (China) (Grant No. CX20230518).
1
Alauddin M S , Hayei N A A , Sabarudin M A , Baharin N H M . Barrier membrane in regenerative therapy: a narrative review. Membranes, 2022, 12(5): 444

DOI

2
Bee S L , Hamid Z A A . Asymmetric resorbable-based dental barrier membrane for periodontal guided tissue regeneration and guided bone regeneration: a review. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 2022, 110(9): 2157–2182

DOI

3
Solomon S M , Sufaru I G , Teslaru S , Ghiciuc C M , Stafie C S . Finding the perfect membrane: current knowledge on barrier membranes in regenerative procedures: a descriptive review. Applied Sciences, 2022, 12(3): 1042

DOI

4
Niu X L , Wang L F , Xu M J , Qin M , Zhao L Q , Wei Y , Hu Y C , Lian X J , Liang Z W , Chen S . . Electrospun polyamide-6/chitosan nanofibers reinforced nano-hydroxyapatite/polyamide-6 composite bilayered membranes for guided bone regeneration. Carbohydrate Polymers, 2021, 260: 117769

DOI

5
Barber H D , Lignelli J , Smith B M , Bartee B K . Using a dense PTFE membrane without primary closure to achieve bone and tissue regeneration. Journal of Oral and Maxillofacial Surgery, 2007, 65(4): 748–752

DOI

6
Gao Y , Wang S , Shi B Y , Wang Y X , Chen Y M , Wang X Y , Lee E S , Jiang H B . Advances in modification methods based on biodegradable membranes in guided bone/tissue regeneration: a review. Polymers, 2022, 14(5): 871

DOI

7
Fenbo M , Xingyu X , Bin T . Strontium chondroitin sulfate/silk fibroin blend membrane containing microporous structure modulates macrophage responses for guided bone regeneration. Carbohydrate Polymers, 2019, 213: 266–275

DOI

8
Ren Y R , Fan L , Alkildani S , Liu L , Emmert S , Najman S , Rimashevskiy D , Schnettler R , Jung O L , Xiong X . . Barrier membranes for guided bone regeneration (GBR): a focus on recent advances in collagen membranes. International Journal of Molecular Sciences, 2022, 23(23): 14987

DOI

9
Zhou Z L , Yun J H , Li J , Chen Y M , Duan T T , Wang L Q , Han J M , Jiang H B , Niu G L . Comparison of the efficacy of different biodegradable membranes in guided bone/tissue regeneration: a systematic review and network meta-analysis. Biomedical Materials, 2023, 18(3): 032003

DOI

10
Mora-Boza A , Garcia-Fernandez L , Barbosa F A , Oliveira A L , Vazquez-Lasa B , San Román J . Glycerylphytate crosslinker as a potential osteoinductor of chitosan-based systems for guided bone regeneration. Carbohydrate Polymers, 2020, 241: 116269

DOI

11
Duan P Z , Shen J , Zou G H , Xia X , Jin B . Biomimetic mineralization and cytocompatibility of nanorod hydroxyapatite/graphene oxide composites. Frontiers of Chemical Science and Engineering, 2018, 12(4): 798–805

DOI

12
Ding H J , Jiang L J , Ma B L , Su S P . Preparation of a highly dispersed nano-hydroxyapatite by a new surface modification strategy used for a reinforce filler for poly(lactic-co-glycolide). Industrial & Engineering Chemistry Research, 2018, 57(50): 17119–17128

DOI

13
Ding H J , Jiang L Y , Tang C Y , Tang S , Ma B L , Zhang N , Wen Y , Zhang Y , Sheng L P , Su S P . . Study on the surface-modification of nano-hydroxyapatite with lignin and the corresponding nanocomposite with poly(lactide-co-glycolide). Frontiers of Chemical Science and Engineering, 2021, 15(3): 630–642

DOI

14
Tang C Y , Ding H J , Tang S , Jiang L Y , Ma B L , Wen Y , Zhang N , Sheng L P , Su S P . A combined-modification method of carboxymethyl β-cyclodextrin and lignin for nano-hydroxyapatite to reinforce poly(lactide-co-glycolide) for bone materials. International Journal of Molecular Sciences, 2020, 160: 142–152

15
Javanbakht S , Shaabani A . Carboxymethyl cellulose-based oral delivery systems. International Journal of Biological Macromolecules, 2019, 133: 21–29

DOI

16
Okuda K , Shigemasa R , Hirota K , Mizutani T . In situ crystallization of hydroxyapatite on carboxymethyl cellulose as a biomimetic approach to biomass-derived composite materials. ACS Omega, 2022, 7(14): 12127–12137

DOI

17
Panahirad S , Dadpour M , Peighambardoust S H , Soltanzadeh M , Gullon B , Alirezalu K , Lorenzo J M . Applications of carboxymethyl cellulose- and pectin-based active edible coatings in preservation of fruits and vegetables: a review. Trends in Food Science & Technology, 2021, 110: 663–673

DOI

18
Lian M F , Sun B B , Qiao Z G , Zhao K , Zhou X J , Zhang Q Q , Zou D H , He C L , Zhang X Y . Bi-layered electrospun nanofibrous membrane with osteogenic and antibacterial properties for guided bone regeneration. Colloids and Surfaces. B, Biointerfaces, 2019, 176: 219–229

DOI

19
Ren X X , Gao R F , van der Mei H C , Ren Y J , Peterson B W , Busscher H J . Eradicating infecting bacteria while maintaining tissue integration on photothermal nanoparticle-coated titanium surfaces. ACS Applied Materials & Interfaces, 2020, 12(31): 34610–34619

DOI

20
Chalmers E , Li Y , Liu X Q . Molecular tailoring to improve polypyrrole hydrogels’ stiffness and electrochemical energy storage capacity. Frontiers of Chemical Science and Engineering, 2019, 13(4): 684–694

DOI

21
Gan N , Qin W , Zhang C L , Jiao T . One-step in situ deposition of phytic acid-metal coordination complexes for combined porphyromonas gingivalis infection prevention and osteogenic induction. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2022, 10(22): 4293–4305

DOI

22
Liu Y J , Wu J , Zhang H , Wu Y Z , Tang C B . Covalent immobilization of the phytic acid-magnesium layer on titanium improves the osteogenic and antibacterial properties. Colloids and Surfaces. B, Biointerfaces, 2021, 203: 111768

DOI

23
Ali A F , Alrowaili Z A , El-Giar E M , Ahmed M M , El-Kady A M . Novel green synthesis of hydroxyapatite uniform nanorods via microwave-hydrothermal route using licorice root extract as template. Ceramics International, 2021, 47(3): 3928–3937

DOI

24
Turki T , Othmani M , Bantignies J L , Bouzouita K . Hydroxyapatite-phosphonoformic acid hybrid compounds prepared by hydrothermal method. Applied Surface Science, 2014, 290: 327–331

DOI

25
Deng H , Wang Y M , Zhou Y , Zhai D L , Chen J , Hao S L , Chen X L . In vitro and in vivo evaluation of folic acid modified DOX-loaded 32P-nHA nanoparticles in prostate cancer therapy. International Journal of Nanomedicine, 2023, 18: 2003–2015

DOI

26
Khoshakhlagh P , Rabiee S M , Kiaee G , Heidari P , Miri A K , Moradi R , Moztarzadeh F , Ravarian R . Development and characterization of a bioglass/chitosan composite as an injectable bone substitute. Carbohydrate Polymers, 2017, 157: 1261–1271

DOI

27
Tang S , Jiang L Y , Ma B L , Tang C Y , Wen Y , Zhang N , Zhang Y , Su S P . Preparation and characterization of bamboo fifiber/chitosan/nano hydroxyapatite composite membrane by ionic crosslinking. Cellulos, 2020, 27(9): 5089–5100

DOI

28
Buzarovska A , Dinescu S , Chitoiu L , Costache M . Porous poly(l-lactic acid) nanocomposite scaffolds with functionalized TiO2 nanoparticles: properties, cytocompatibility and drug release capability. Journal of Materials Science, 2018, 53(16): 11151–11166

DOI

29
Rokkala U , Bontha S , Ramesh M R , Balla V K . Influence of friction stir processing on microstructure, mechanical properties and corrosion behaviour of Mg-Zn-Dy alloy. Journal of Materials Science, 2023, 58(6): 2893–2914

DOI

30
Ren Y Y , Yang H , Wang T , Wang C . Bio-synthesis of silver nanoparticles with antibacterial activity. Materials Chemistry and Physics, 2019, 235: 121746

DOI

31
Liu Z L , Shang S M , Chiu K L , Jiang S X , Dai F Y . Fabrication of conductive and flame-retardant bifunctional cotton fabric by polymerizing pyrrole and doping phytic acid. Polymer Degradation & Stability, 2019, 167: 277–282

DOI

32
Garai S , Sinha A . Biomimetic nanocomposites of carboxymethyl cellulose-hydroxyapatite: novel threedimensional load bearing bone grafts. Colloids and Surfaces. B, Biointerfaces, 2014, 115: 182–190

DOI

33
Sarkar C , Chowdhuri A R , Kumar A , Laha D , Garai S , Chakraborty J , Sahu S K . One pot synthesis of carbon dots decorated carboxymethyl cellulose-hydroxyapatite nanocomposite for drug delivery, tissue engineering and Fe3+ ion sensing. Carbohydrate Polymers, 2018, 181: 710–718

DOI

34
ChaiX HWangW LWuK GZhangTDuanX JHeDHuangY QZhangZ H. Fabrication and characterization of tea seed oil pickering emulsion stabilized synergistically by carboxymethylcellulose and beta-cyclodextrin. Journal of Dispersion Science and Technology, 2023: 2234479

35
Shirvanimoghaddam K , Balaji K V , Yadav R , Zabihi O , Ahmadi M , Adetunji P , Naebe M . Balancing the toughness and strength in polypropylene composites. Composites. Part B, Engineering, 2021, 223: 109121

DOI

36
Kiran M D , Govindaraju H K , Jayaraju T , Kumar N . Review-effect of fillers on mechanical properties of polymer matrix composites. Materials Today: Proceedings, 2018, 5(10): 22421–22424

DOI

37
Cheng X M , Li Y B , Zuo Y , Zhang L , Li J D , Wang H N . Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Materials Science and Engineering C, 2009, 29(1): 29–35

DOI

38
Mujtaba M , Morsi R E , Kerch G , Elsabee M Z , Kaya M , Labidi J , Khawar K M . Current advancements in chitosan-based film production for food technology: a review. International Journal of Biological Macromolecules, 2019, 121: 889–904

DOI

39
Luo Y Q , Pan X Q , Ling Y Z , Wang X Y , Sun R C . Facile fabrication of chitosan active film with xylan via direct immersion. Cellulose, 2014, 21(3): 1873–1883

DOI

40
Sowmya S , Bumgardener J D , Chennazhi K P , Nair S V , Jayakumar R . Role of nanostructured biopolymers and bioceramics in enamel, dentin and periodontal tissue regeneration. Progress in Polymer Science, 2013, 38(10-11): 1748–1772

DOI

41
Mallakpour S , Okhovat M . Hydroxyapatite mineralization of chitosan-tragacanth blend/ZnO/Ag nanocomposite films with enhanced antibacterial activity. International Journal of Biological Macromolecules, 2021, 175: 330–340

DOI

42
Castro J I , Valencia-Llano C H , Valencia Zapata M E , Restrepo Y J , Mina Hernandez J H , Navia-Porras D P , Valencia Y , Valencia C , Grande-Tovar C D . Chitosan/polyvinyl alcohol/tea tree essential oil composite films for biomedical applications. Polymers, 2021, 13(21): 3753

DOI

43
Shahriarpanah S , Nourmohammadi J , Amoabediny G . Fabrication and characterization of carboxylated starch-chitosan bioactive scaffold for bone regeneration. International Journal of Biological Macromolecules, 2016, 93: 1069–1078

DOI

44
Bhowmick A , Pramanik N , Mitra T , Gnanamani A , Das M , Kundu P P . Mechanical and biological investigations of chitosan-polyvinyl alcohol based ZrO2 doped porous hybrid composites for bone tissue engineering applications. New Journal of Chemistry, 2017, 41(15): 7524–7530

DOI

45
Li B , Ren K X , Wang Y P , Qi Y X , Chen X S , Huang Y B . Protein-cross-linked hydrogels with tailored swelling and bioactivity performance: a comparative study. ACS Applied Materials & Interfaces, 2016, 8(45): 30788–30796

DOI

Outlines

/