Improving chitosan-based composite membrane by introducing a novel hybrid functional nano-hydroxyapatite with carboxymethyl cellulose and phytic acid
Liuyun Jiang, Yingjun Ma, Shuo Tang, Yuqing Wang, Yan Zhang, Shengpei Su, Xiang Hu, Jun He
Improving chitosan-based composite membrane by introducing a novel hybrid functional nano-hydroxyapatite with carboxymethyl cellulose and phytic acid
A functional hybrid nano-hydroxyapatite (carboxymethyl cellulose-phytic acid-n-HA, CMC-PA-n-HA) was prepared by adding CMC and PA. The results of Fourier transformation infrared spectra, X-ray diffraction, thermal gravimetric analysis and dispersion experiments indicated that the addition of CMC and PA affected the morphology, crystallinity and crystal size of hybrid n-HA, and CMC endowed hybrid n-HA with excellent dispersion. Scanning electron microscope results showed that CMC-PA-n-HA nanoparticle could be uniformly dispersed in chitosan (CS) matrix to obtain composite membrane by casting technology, so that the highest tensile strength of CMC-PA-n-HA/CS composite membrane was 69.64% and 144.45% higher than that of CS membrane and n-HA/CS composite membrane, respectively. Contact angle test showed that CMC-PA-n-HA effectively improved hydrophilicity of the CS membrane. The simulated body fluid immersion results indicated that the CMC-PA-n-HA/CS composite membrane not only exhibited good degradability but also promoted bone-like apatite deposition. The cell proliferation experiments proved that the introduction of PA made the composite membrane have better cell adhesion and proliferation ability. Antibacterial tests demonstrated that PA could effectively improve the antibacterial properties of the composite membrane, which is expected to be applied as guide bone tissue regeneration membrane.
nano-hydroxyapatite / chitosan / dispersion / guide bone tissue regeneration membrane
[1] |
Alauddin M S , Hayei N A A , Sabarudin M A , Baharin N H M . Barrier membrane in regenerative therapy: a narrative review. Membranes, 2022, 12(5): 444
CrossRef
Google scholar
|
[2] |
Bee S L , Hamid Z A A . Asymmetric resorbable-based dental barrier membrane for periodontal guided tissue regeneration and guided bone regeneration: a review. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 2022, 110(9): 2157–2182
CrossRef
Google scholar
|
[3] |
Solomon S M , Sufaru I G , Teslaru S , Ghiciuc C M , Stafie C S . Finding the perfect membrane: current knowledge on barrier membranes in regenerative procedures: a descriptive review. Applied Sciences, 2022, 12(3): 1042
CrossRef
Google scholar
|
[4] |
Niu X L , Wang L F , Xu M J , Qin M , Zhao L Q , Wei Y , Hu Y C , Lian X J , Liang Z W , Chen S .
CrossRef
Google scholar
|
[5] |
Barber H D , Lignelli J , Smith B M , Bartee B K . Using a dense PTFE membrane without primary closure to achieve bone and tissue regeneration. Journal of Oral and Maxillofacial Surgery, 2007, 65(4): 748–752
CrossRef
Google scholar
|
[6] |
Gao Y , Wang S , Shi B Y , Wang Y X , Chen Y M , Wang X Y , Lee E S , Jiang H B . Advances in modification methods based on biodegradable membranes in guided bone/tissue regeneration: a review. Polymers, 2022, 14(5): 871
CrossRef
Google scholar
|
[7] |
Fenbo M , Xingyu X , Bin T . Strontium chondroitin sulfate/silk fibroin blend membrane containing microporous structure modulates macrophage responses for guided bone regeneration. Carbohydrate Polymers, 2019, 213: 266–275
CrossRef
Google scholar
|
[8] |
Ren Y R , Fan L , Alkildani S , Liu L , Emmert S , Najman S , Rimashevskiy D , Schnettler R , Jung O L , Xiong X .
CrossRef
Google scholar
|
[9] |
Zhou Z L , Yun J H , Li J , Chen Y M , Duan T T , Wang L Q , Han J M , Jiang H B , Niu G L . Comparison of the efficacy of different biodegradable membranes in guided bone/tissue regeneration: a systematic review and network meta-analysis. Biomedical Materials, 2023, 18(3): 032003
CrossRef
Google scholar
|
[10] |
Mora-Boza A , Garcia-Fernandez L , Barbosa F A , Oliveira A L , Vazquez-Lasa B , San Román J . Glycerylphytate crosslinker as a potential osteoinductor of chitosan-based systems for guided bone regeneration. Carbohydrate Polymers, 2020, 241: 116269
CrossRef
Google scholar
|
[11] |
Duan P Z , Shen J , Zou G H , Xia X , Jin B . Biomimetic mineralization and cytocompatibility of nanorod hydroxyapatite/graphene oxide composites. Frontiers of Chemical Science and Engineering, 2018, 12(4): 798–805
CrossRef
Google scholar
|
[12] |
Ding H J , Jiang L J , Ma B L , Su S P . Preparation of a highly dispersed nano-hydroxyapatite by a new surface modification strategy used for a reinforce filler for poly(lactic-co-glycolide). Industrial & Engineering Chemistry Research, 2018, 57(50): 17119–17128
CrossRef
Google scholar
|
[13] |
Ding H J , Jiang L Y , Tang C Y , Tang S , Ma B L , Zhang N , Wen Y , Zhang Y , Sheng L P , Su S P .
CrossRef
Google scholar
|
[14] |
Tang C Y , Ding H J , Tang S , Jiang L Y , Ma B L , Wen Y , Zhang N , Sheng L P , Su S P . A combined-modification method of carboxymethyl β-cyclodextrin and lignin for nano-hydroxyapatite to reinforce poly(lactide-co-glycolide) for bone materials. International Journal of Molecular Sciences, 2020, 160: 142–152
|
[15] |
Javanbakht S , Shaabani A . Carboxymethyl cellulose-based oral delivery systems. International Journal of Biological Macromolecules, 2019, 133: 21–29
CrossRef
Google scholar
|
[16] |
Okuda K , Shigemasa R , Hirota K , Mizutani T . In situ crystallization of hydroxyapatite on carboxymethyl cellulose as a biomimetic approach to biomass-derived composite materials. ACS Omega, 2022, 7(14): 12127–12137
CrossRef
Google scholar
|
[17] |
Panahirad S , Dadpour M , Peighambardoust S H , Soltanzadeh M , Gullon B , Alirezalu K , Lorenzo J M . Applications of carboxymethyl cellulose- and pectin-based active edible coatings in preservation of fruits and vegetables: a review. Trends in Food Science & Technology, 2021, 110: 663–673
CrossRef
Google scholar
|
[18] |
Lian M F , Sun B B , Qiao Z G , Zhao K , Zhou X J , Zhang Q Q , Zou D H , He C L , Zhang X Y . Bi-layered electrospun nanofibrous membrane with osteogenic and antibacterial properties for guided bone regeneration. Colloids and Surfaces. B, Biointerfaces, 2019, 176: 219–229
CrossRef
Google scholar
|
[19] |
Ren X X , Gao R F , van der Mei H C , Ren Y J , Peterson B W , Busscher H J . Eradicating infecting bacteria while maintaining tissue integration on photothermal nanoparticle-coated titanium surfaces. ACS Applied Materials & Interfaces, 2020, 12(31): 34610–34619
CrossRef
Google scholar
|
[20] |
Chalmers E , Li Y , Liu X Q . Molecular tailoring to improve polypyrrole hydrogels’ stiffness and electrochemical energy storage capacity. Frontiers of Chemical Science and Engineering, 2019, 13(4): 684–694
CrossRef
Google scholar
|
[21] |
Gan N , Qin W , Zhang C L , Jiao T . One-step in situ deposition of phytic acid-metal coordination complexes for combined porphyromonas gingivalis infection prevention and osteogenic induction. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2022, 10(22): 4293–4305
CrossRef
Google scholar
|
[22] |
Liu Y J , Wu J , Zhang H , Wu Y Z , Tang C B . Covalent immobilization of the phytic acid-magnesium layer on titanium improves the osteogenic and antibacterial properties. Colloids and Surfaces. B, Biointerfaces, 2021, 203: 111768
CrossRef
Google scholar
|
[23] |
Ali A F , Alrowaili Z A , El-Giar E M , Ahmed M M , El-Kady A M . Novel green synthesis of hydroxyapatite uniform nanorods via microwave-hydrothermal route using licorice root extract as template. Ceramics International, 2021, 47(3): 3928–3937
CrossRef
Google scholar
|
[24] |
Turki T , Othmani M , Bantignies J L , Bouzouita K . Hydroxyapatite-phosphonoformic acid hybrid compounds prepared by hydrothermal method. Applied Surface Science, 2014, 290: 327–331
CrossRef
Google scholar
|
[25] |
Deng H , Wang Y M , Zhou Y , Zhai D L , Chen J , Hao S L , Chen X L . In vitro and in vivo evaluation of folic acid modified DOX-loaded 32P-nHA nanoparticles in prostate cancer therapy. International Journal of Nanomedicine, 2023, 18: 2003–2015
CrossRef
Google scholar
|
[26] |
Khoshakhlagh P , Rabiee S M , Kiaee G , Heidari P , Miri A K , Moradi R , Moztarzadeh F , Ravarian R . Development and characterization of a bioglass/chitosan composite as an injectable bone substitute. Carbohydrate Polymers, 2017, 157: 1261–1271
CrossRef
Google scholar
|
[27] |
Tang S , Jiang L Y , Ma B L , Tang C Y , Wen Y , Zhang N , Zhang Y , Su S P . Preparation and characterization of bamboo fifiber/chitosan/nano hydroxyapatite composite membrane by ionic crosslinking. Cellulos, 2020, 27(9): 5089–5100
CrossRef
Google scholar
|
[28] |
Buzarovska A , Dinescu S , Chitoiu L , Costache M . Porous poly(l-lactic acid) nanocomposite scaffolds with functionalized TiO2 nanoparticles: properties, cytocompatibility and drug release capability. Journal of Materials Science, 2018, 53(16): 11151–11166
CrossRef
Google scholar
|
[29] |
Rokkala U , Bontha S , Ramesh M R , Balla V K . Influence of friction stir processing on microstructure, mechanical properties and corrosion behaviour of Mg-Zn-Dy alloy. Journal of Materials Science, 2023, 58(6): 2893–2914
CrossRef
Google scholar
|
[30] |
Ren Y Y , Yang H , Wang T , Wang C . Bio-synthesis of silver nanoparticles with antibacterial activity. Materials Chemistry and Physics, 2019, 235: 121746
CrossRef
Google scholar
|
[31] |
Liu Z L , Shang S M , Chiu K L , Jiang S X , Dai F Y . Fabrication of conductive and flame-retardant bifunctional cotton fabric by polymerizing pyrrole and doping phytic acid. Polymer Degradation & Stability, 2019, 167: 277–282
CrossRef
Google scholar
|
[32] |
Garai S , Sinha A . Biomimetic nanocomposites of carboxymethyl cellulose-hydroxyapatite: novel threedimensional load bearing bone grafts. Colloids and Surfaces. B, Biointerfaces, 2014, 115: 182–190
CrossRef
Google scholar
|
[33] |
Sarkar C , Chowdhuri A R , Kumar A , Laha D , Garai S , Chakraborty J , Sahu S K . One pot synthesis of carbon dots decorated carboxymethyl cellulose-hydroxyapatite nanocomposite for drug delivery, tissue engineering and Fe3+ ion sensing. Carbohydrate Polymers, 2018, 181: 710–718
CrossRef
Google scholar
|
[34] |
ChaiX HWangW LWuK GZhangTDuanX JHeDHuangY QZhangZ H. Fabrication and characterization of tea seed oil pickering emulsion stabilized synergistically by carboxymethylcellulose and beta-cyclodextrin. Journal of Dispersion Science and Technology, 2023: 2234479
|
[35] |
Shirvanimoghaddam K , Balaji K V , Yadav R , Zabihi O , Ahmadi M , Adetunji P , Naebe M . Balancing the toughness and strength in polypropylene composites. Composites. Part B, Engineering, 2021, 223: 109121
CrossRef
Google scholar
|
[36] |
Kiran M D , Govindaraju H K , Jayaraju T , Kumar N . Review-effect of fillers on mechanical properties of polymer matrix composites. Materials Today: Proceedings, 2018, 5(10): 22421–22424
CrossRef
Google scholar
|
[37] |
Cheng X M , Li Y B , Zuo Y , Zhang L , Li J D , Wang H N . Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Materials Science and Engineering C, 2009, 29(1): 29–35
CrossRef
Google scholar
|
[38] |
Mujtaba M , Morsi R E , Kerch G , Elsabee M Z , Kaya M , Labidi J , Khawar K M . Current advancements in chitosan-based film production for food technology: a review. International Journal of Biological Macromolecules, 2019, 121: 889–904
CrossRef
Google scholar
|
[39] |
Luo Y Q , Pan X Q , Ling Y Z , Wang X Y , Sun R C . Facile fabrication of chitosan active film with xylan via direct immersion. Cellulose, 2014, 21(3): 1873–1883
CrossRef
Google scholar
|
[40] |
Sowmya S , Bumgardener J D , Chennazhi K P , Nair S V , Jayakumar R . Role of nanostructured biopolymers and bioceramics in enamel, dentin and periodontal tissue regeneration. Progress in Polymer Science, 2013, 38(10-11): 1748–1772
CrossRef
Google scholar
|
[41] |
Mallakpour S , Okhovat M . Hydroxyapatite mineralization of chitosan-tragacanth blend/ZnO/Ag nanocomposite films with enhanced antibacterial activity. International Journal of Biological Macromolecules, 2021, 175: 330–340
CrossRef
Google scholar
|
[42] |
Castro J I , Valencia-Llano C H , Valencia Zapata M E , Restrepo Y J , Mina Hernandez J H , Navia-Porras D P , Valencia Y , Valencia C , Grande-Tovar C D . Chitosan/polyvinyl alcohol/tea tree essential oil composite films for biomedical applications. Polymers, 2021, 13(21): 3753
CrossRef
Google scholar
|
[43] |
Shahriarpanah S , Nourmohammadi J , Amoabediny G . Fabrication and characterization of carboxylated starch-chitosan bioactive scaffold for bone regeneration. International Journal of Biological Macromolecules, 2016, 93: 1069–1078
CrossRef
Google scholar
|
[44] |
Bhowmick A , Pramanik N , Mitra T , Gnanamani A , Das M , Kundu P P . Mechanical and biological investigations of chitosan-polyvinyl alcohol based ZrO2 doped porous hybrid composites for bone tissue engineering applications. New Journal of Chemistry, 2017, 41(15): 7524–7530
CrossRef
Google scholar
|
[45] |
Li B , Ren K X , Wang Y P , Qi Y X , Chen X S , Huang Y B . Protein-cross-linked hydrogels with tailored swelling and bioactivity performance: a comparative study. ACS Applied Materials & Interfaces, 2016, 8(45): 30788–30796
CrossRef
Google scholar
|
/
〈 | 〉 |