Metal size effects over metal/zeolite bifunctional catalysts in the selective hydroalkylation of benzene
Received date: 16 Oct 2023
Accepted date: 28 Dec 2023
Copyright
Bifunctional metal/zeolite materials are some of the most suitable catalysts for the direct hydroalkylation of benzene to cyclohexylbenzene. The overall catalytic performance of this reaction is strongly influenced by the hydrogenation, which is dependent on the metal sizes. Thus, systematically investigating the metal size effects in the hydroalkylation of benzene is essential. In this work, we successfully synthesized Ru and Pd nanoparticles on Sinopec Composition Materials No.1 zeolite with various metal sizes. We demonstrated the size-dependent catalytic activity of zeolite-supported Ru and Pd catalysts in the hydroalkylation of benzene, which can be attributed to the size-induced hydrogen spillover capability differences. Our work presents new insights into the hydroalkylation reaction and may open up a new avenue for the smart design of advanced metal/zeolite bi-functional catalysts.
Key words: size effects; bifunctional catalysts; metal/zeolite; hydroalkylation
Junjie Li , Chuang Liu , Zhenlong Jia , Yingchun Ye , Dawei Lan , Wei Meng , Jianqiang Wang , Zhendong Wang , Yongfeng Hu , Weimin Yang . Metal size effects over metal/zeolite bifunctional catalysts in the selective hydroalkylation of benzene[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(4) : 45 . DOI: 10.1007/s11705-024-2406-4
1 |
Molinari R , Poerio T . Remarks on studies for direct production of phenol in conventional and membrane reactors. Asia-Pacific Journal of Chemical Engineering, 2010, 5(1): 191–206
|
2 |
Martin G A , Dalmon J A . Benzene hydrogenation over nickel catalysts at low and high temperatures: structure-sensitivity and copper alloying effects. Journal of Catalysis, 1982, 75(2): 233–242
|
3 |
Sato K , Hamakawa S , Natsui M , Nishioka M , Inoue T , Mizukami F . Palladium-based bifunctional membrane reactor for one-step conversion of benzene to phenol and cyclohexanone. Catalysis Today, 2010, 156(3–4): 276–281
|
4 |
Lu L , Rong Z , Du W , Ma S , Hu S . Selective hydrogenation of single benzene ring in biphenyl catalyzed by skeletal Ni. ChemCatChem, 2009, 1(3): 369–371
|
5 |
Ipatieff V N , Corson B B , Pines H . Influence of sulfuric acid concentration upon reaction between olefins and benzene. Journal of the American Chemical Society, 1936, 58(6): 919–922
|
6 |
Hiyoshi N , Rode C V , Sato O , Shirai M . Biphenyl hydrogenation over supported transition metal catalysts under supercritical carbon dioxide solvent. Applied Catalysis A: General, 2005, 288(1–2): 43–47
|
7 |
Zhang Y , Yang Y , Hou Q , Xu E , Wang L , Li F , Wei M . Metal-acid bifunctional catalysts toward tandem reaction: one-step hydroalkylation of benzene to cyclohexylbenzene. ACS Applied Materials & Interfaces, 2022, 14(28): 31998–32008
|
8 |
Huang J , Li Z , Yang J , Peng Z , Liu Q , Liu Z . Identification of metal/acid matching balance over bifunctional Pd/Hβ toward benzene hydroalkylation. Industrial & Engineering Chemistry Research, 2021, 60(5): 2326–2336
|
9 |
Meng F , Dong L , Meng W , Ding Y , Qiu J . High efficiency catalyst of modified Y molecular sieve by rare earth La3+ catalyzed the synthesis of cyclohexylbenzene from benzene and cyclohexene. Catalysis Letters, 2021, 152: 745–754
|
10 |
Li Z Q , Fu X , Gao C , Huang J , Li B , Yang Y , Gao J , Shen Y , Peng Z , Yang J H .
|
11 |
Kishore Kumar S A , John M , Pai S M , Ghosh S , Newalkar B L , Pant K K . Selective hydroalkylation of benzene over palladium supported Y-Zeolite: effect of metal acid balance. Molecular Catalysis, 2017, 442: 27–38
|
12 |
Qiu J , Komura K , Kubota Y , Sugi Y . Synthesis of cyclohexylbenzene by hydroalkylation of benzene over Pd/Hβ binary catalyst. Chinese Journal of Catalysis, 2007, 28(3): 246–250
|
13 |
Fahy J , Trimm D L , Cookson D J . Four component catalysis for the hydroalkylation of benzene. Applied Catalysis A: General, 2001, 211(2): 259–268
|
14 |
Shi J , Wang Y , Yang W , Tang Y , Xie Z . Recent advances of pore system construction in zeolite-catalyzed chemical industry processes. Chemical Society Reviews, 2015, 44(24): 8877–8903
|
15 |
Sun H , Chen Z , Li C , Chen L , Li Y , Peng Z , Liu Z , Liu S . Selective hydrogenation of benzene to cyclohexene over monometallic Ru catalysts: investigation of ZnO and ZnSO4 as reaction additives as well as particle size effect. Catalysts, 2018, 8(5): 172
|
16 |
Foppa L , Dupont J . Benzene partial hydrogenation: advances and perspectives. Chemical Society Reviews, 2015, 44(7): 1886–1897
|
17 |
Zhou G , Pei Y , Jiang Z , Fan K , Qiao M , Sun B , Zong B . Doping effects of B in ZrO2 on structural and catalytic properties of Ru/B-ZrO2 catalysts for benzene partial hydrogenation. Journal of Catalysis, 2014, 311: 393–403
|
18 |
Vilé G , Albani D , Almora-Barrios N , López N , Pérez-Ramírez J . Advances in the design of nanostructured catalysts for selective hydrogenation. ChemCatChem, 2016, 8(1): 21–33
|
19 |
Scirè S , Fiorenza R , Gulino A , Cristaldi A , Riccobene P M . Selective oxidation of CO in H2-rich stream over ZSM5 zeolites supported Ru catalysts: an investigation on the role of the support and the Ru particle size. Applied Catalysis A: General, 2016, 520: 82–91
|
20 |
Navlani-García M , Mori K , Nozaki A , Kuwahara Y , Yamashita H . Investigation of size sensitivity in the hydrogen production from formic acid over carbon-supported Pd nanoparticles. ChemistrySelect, 2016, 1(9): 1879–1886
|
21 |
Campbell P S , Santini C C , Bayard F , Chauvin Y , Collière V , Podgoršek A , Costa Gomes M F , Sá J . Olefin hydrogenation by ruthenium nanoparticles in ionic liquid media: does size matter?. Journal of Catalysis, 2010, 275(1): 99–107
|
22 |
Plomp A J , Vuori H , Krause A O I , de Jong K P , Bitter J H . Particle size effects for carbon nanofiber supported platinum and ruthenium catalysts for the selective hydrogenation of cinnamaldehyde. Applied Catalysis A: General, 2008, 351(1): 9–15
|
23 |
Zhang X , Gu Q , Ma Y , Guan Q , Jin R , Wang H , Yang B , Lu J . Support-induced unusual size dependence of Pd catalysts in chemoselective hydrogenation of para-chloronitrobenzene. Journal of Catalysis, 2021, 400: 173–183
|
24 |
Wang Z , Cichocka M O , Luo Y , Zhang B , Sun H , Tang Y , Yang W . Controllable direct-syntheses of delaminated MWW-type zeolites. Chinese Journal of Catalysis, 2020, 41(7): 1062–1066
|
25 |
Li X , Yuan X , Xia G , Liang J , Liu C , Qin Y , Wang Z , Yang W . Postsynthesis of delaminated MWW-type stannosilicate as a robust catalyst for sugar conversion to methyl lactate. Industrial & Engineering Chemistry Research, 2021, 60(22): 8027–8034
|
26 |
Li X , Yuan X , Xia G , Liang J , Liu C , Wang Z , Yang W . Catalytic production of γ-valerolactone from xylose over delaminated Zr-Al-SCM-1 zeolite via a cascade process. Journal of Catalysis, 2020, 392: 175–185
|
27 |
Lu J , Elam J W , Stair P C . Atomic layer deposition—sequential self-limiting surface reactions for advanced catalyst “bottom-up” synthesis. Surface Science Reports, 2016, 71(2): 410–472
|
28 |
Gong T , Huang Y , Qin L , Zhang W , Li J , Hui L , Feng H . Atomic layer deposited palladium nanoparticle catalysts supported on titanium dioxide modified MCM-41 for selective hydrogenation of acetylene. Applied Surface Science, 2019, 495: 143495
|
29 |
Wang H , Lin Y , Lu J . Ultra-thin nickel oxide overcoating of noble metal catalysts for directing selective hydrogenation of nitriles to secondary amines. Catalysis Today, 2023, 410: 253–263
|
30 |
Song Y , Zhang M , Fan G , Yang L , Li F . Combining a supported Ru catalyst with HBeta zeolite to construct a high-performance bifunctional catalyst for one-step cascade transformation of benzene to cyclohexylbenzene. Industrial & Engineering Chemistry Research, 2022, 61(51): 18663–18675
|
31 |
Murakami K , Sekine Y . Recent progress in use and observation of surface hydrogen migration over metal oxides. Physical Chemistry Chemical Physics, 2020, 22(40): 22852–22863
|
32 |
Karim W , Spreafico C , Kleibert A , Gobrecht J , VandeVondele J , Ekinci Y , van Bokhoven J A . Catalyst support effects on hydrogen spillover. Nature, 2017, 541(7635): 68–71
|
33 |
Zou H , Dai J , Suo J , Ettelaie R , Li Y , Xue N , Wang R , Yang H . Dual metal nanoparticles within multicompartmentalized mesoporous organosilicas for efficient sequential hydrogenation. Nature Communications, 2021, 12(1): 4968
|
34 |
Xiong M , Gao Z , Zhao P , Wang G , Yan W , Xing S , Wang P , Ma J , Jiang Z , Liu X .
|
35 |
Prins R . Hydrogen spillover. Facts and fiction. Chemical Reviews, 2012, 112(5): 2714–2738
|
36 |
Xiong M , Gao Z , Qin Y . Spillover in heterogeneous catalysis: new insights and opportunities. ACS Catalysis, 2021, 11(5): 3159–3172
|
37 |
Ma Y , Zhang X , Cao L , Lu J . Effects of the morphology and heteroatom doping of CeO2 support on the hydrogenation activity of Pt single-atoms. Catalysis Science & Technology, 2021, 11(8): 2844–2851
|
/
〈 | 〉 |