Metal size effects over metal/zeolite bifunctional catalysts in the selective hydroalkylation of benzene

  • Junjie Li 1 ,
  • Chuang Liu 1 ,
  • Zhenlong Jia 1 ,
  • Yingchun Ye 1 ,
  • Dawei Lan 1 ,
  • Wei Meng 1 ,
  • Jianqiang Wang 1 ,
  • Zhendong Wang 1 ,
  • Yongfeng Hu , 1 ,
  • Weimin Yang , 1,2
Expand
  • 1. State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology Co., Ltd., Shanghai 201208, China
  • 2. School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
yhu08544@yahoo.com
yangwm.sshy@sinopec.com

Received date: 16 Oct 2023

Accepted date: 28 Dec 2023

Copyright

2024 Higher Education Press

Abstract

Bifunctional metal/zeolite materials are some of the most suitable catalysts for the direct hydroalkylation of benzene to cyclohexylbenzene. The overall catalytic performance of this reaction is strongly influenced by the hydrogenation, which is dependent on the metal sizes. Thus, systematically investigating the metal size effects in the hydroalkylation of benzene is essential. In this work, we successfully synthesized Ru and Pd nanoparticles on Sinopec Composition Materials No.1 zeolite with various metal sizes. We demonstrated the size-dependent catalytic activity of zeolite-supported Ru and Pd catalysts in the hydroalkylation of benzene, which can be attributed to the size-induced hydrogen spillover capability differences. Our work presents new insights into the hydroalkylation reaction and may open up a new avenue for the smart design of advanced metal/zeolite bi-functional catalysts.

Cite this article

Junjie Li , Chuang Liu , Zhenlong Jia , Yingchun Ye , Dawei Lan , Wei Meng , Jianqiang Wang , Zhendong Wang , Yongfeng Hu , Weimin Yang . Metal size effects over metal/zeolite bifunctional catalysts in the selective hydroalkylation of benzene[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(4) : 45 . DOI: 10.1007/s11705-024-2406-4

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by China Petrochemical Corporation and the National Natural Science Foundation of China (Grant Nos. U19B6002, 21972168, and 22302234).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2406-4 and is accessible for authorized users.
1
Molinari R , Poerio T . Remarks on studies for direct production of phenol in conventional and membrane reactors. Asia-Pacific Journal of Chemical Engineering, 2010, 5(1): 191–206

DOI

2
Martin G A , Dalmon J A . Benzene hydrogenation over nickel catalysts at low and high temperatures: structure-sensitivity and copper alloying effects. Journal of Catalysis, 1982, 75(2): 233–242

DOI

3
Sato K , Hamakawa S , Natsui M , Nishioka M , Inoue T , Mizukami F . Palladium-based bifunctional membrane reactor for one-step conversion of benzene to phenol and cyclohexanone. Catalysis Today, 2010, 156(3–4): 276–281

DOI

4
Lu L , Rong Z , Du W , Ma S , Hu S . Selective hydrogenation of single benzene ring in biphenyl catalyzed by skeletal Ni. ChemCatChem, 2009, 1(3): 369–371

DOI

5
Ipatieff V N , Corson B B , Pines H . Influence of sulfuric acid concentration upon reaction between olefins and benzene. Journal of the American Chemical Society, 1936, 58(6): 919–922

DOI

6
Hiyoshi N , Rode C V , Sato O , Shirai M . Biphenyl hydrogenation over supported transition metal catalysts under supercritical carbon dioxide solvent. Applied Catalysis A: General, 2005, 288(1–2): 43–47

DOI

7
Zhang Y , Yang Y , Hou Q , Xu E , Wang L , Li F , Wei M . Metal-acid bifunctional catalysts toward tandem reaction: one-step hydroalkylation of benzene to cyclohexylbenzene. ACS Applied Materials & Interfaces, 2022, 14(28): 31998–32008

DOI

8
Huang J , Li Z , Yang J , Peng Z , Liu Q , Liu Z . Identification of metal/acid matching balance over bifunctional Pd/Hβ toward benzene hydroalkylation. Industrial & Engineering Chemistry Research, 2021, 60(5): 2326–2336

DOI

9
Meng F , Dong L , Meng W , Ding Y , Qiu J . High efficiency catalyst of modified Y molecular sieve by rare earth La3+ catalyzed the synthesis of cyclohexylbenzene from benzene and cyclohexene. Catalysis Letters, 2021, 152: 745–754

10
Li Z Q , Fu X , Gao C , Huang J , Li B , Yang Y , Gao J , Shen Y , Peng Z , Yang J H . . Enhancing the matching of acid/metal balance by engineering an extra Si–Al framework outside the Pd/HBeta catalyst towards benzene hydroalkylation. Catalysis Science & Technology, 2020, 10(5): 1467–1476

DOI

11
Kishore Kumar S A , John M , Pai S M , Ghosh S , Newalkar B L , Pant K K . Selective hydroalkylation of benzene over palladium supported Y-Zeolite: effect of metal acid balance. Molecular Catalysis, 2017, 442: 27–38

DOI

12
Qiu J , Komura K , Kubota Y , Sugi Y . Synthesis of cyclohexylbenzene by hydroalkylation of benzene over Pd/Hβ binary catalyst. Chinese Journal of Catalysis, 2007, 28(3): 246–250

DOI

13
Fahy J , Trimm D L , Cookson D J . Four component catalysis for the hydroalkylation of benzene. Applied Catalysis A: General, 2001, 211(2): 259–268

DOI

14
Shi J , Wang Y , Yang W , Tang Y , Xie Z . Recent advances of pore system construction in zeolite-catalyzed chemical industry processes. Chemical Society Reviews, 2015, 44(24): 8877–8903

DOI

15
Sun H , Chen Z , Li C , Chen L , Li Y , Peng Z , Liu Z , Liu S . Selective hydrogenation of benzene to cyclohexene over monometallic Ru catalysts: investigation of ZnO and ZnSO4 as reaction additives as well as particle size effect. Catalysts, 2018, 8(5): 172

DOI

16
Foppa L , Dupont J . Benzene partial hydrogenation: advances and perspectives. Chemical Society Reviews, 2015, 44(7): 1886–1897

DOI

17
Zhou G , Pei Y , Jiang Z , Fan K , Qiao M , Sun B , Zong B . Doping effects of B in ZrO2 on structural and catalytic properties of Ru/B-ZrO2 catalysts for benzene partial hydrogenation. Journal of Catalysis, 2014, 311: 393–403

DOI

18
Vilé G , Albani D , Almora-Barrios N , López N , Pérez-Ramírez J . Advances in the design of nanostructured catalysts for selective hydrogenation. ChemCatChem, 2016, 8(1): 21–33

DOI

19
Scirè S , Fiorenza R , Gulino A , Cristaldi A , Riccobene P M . Selective oxidation of CO in H2-rich stream over ZSM5 zeolites supported Ru catalysts: an investigation on the role of the support and the Ru particle size. Applied Catalysis A: General, 2016, 520: 82–91

DOI

20
Navlani-García M , Mori K , Nozaki A , Kuwahara Y , Yamashita H . Investigation of size sensitivity in the hydrogen production from formic acid over carbon-supported Pd nanoparticles. ChemistrySelect, 2016, 1(9): 1879–1886

DOI

21
Campbell P S , Santini C C , Bayard F , Chauvin Y , Collière V , Podgoršek A , Costa Gomes M F , Sá J . Olefin hydrogenation by ruthenium nanoparticles in ionic liquid media: does size matter?. Journal of Catalysis, 2010, 275(1): 99–107

DOI

22
Plomp A J , Vuori H , Krause A O I , de Jong K P , Bitter J H . Particle size effects for carbon nanofiber supported platinum and ruthenium catalysts for the selective hydrogenation of cinnamaldehyde. Applied Catalysis A: General, 2008, 351(1): 9–15

DOI

23
Zhang X , Gu Q , Ma Y , Guan Q , Jin R , Wang H , Yang B , Lu J . Support-induced unusual size dependence of Pd catalysts in chemoselective hydrogenation of para-chloronitrobenzene. Journal of Catalysis, 2021, 400: 173–183

DOI

24
Wang Z , Cichocka M O , Luo Y , Zhang B , Sun H , Tang Y , Yang W . Controllable direct-syntheses of delaminated MWW-type zeolites. Chinese Journal of Catalysis, 2020, 41(7): 1062–1066

DOI

25
Li X , Yuan X , Xia G , Liang J , Liu C , Qin Y , Wang Z , Yang W . Postsynthesis of delaminated MWW-type stannosilicate as a robust catalyst for sugar conversion to methyl lactate. Industrial & Engineering Chemistry Research, 2021, 60(22): 8027–8034

DOI

26
Li X , Yuan X , Xia G , Liang J , Liu C , Wang Z , Yang W . Catalytic production of γ-valerolactone from xylose over delaminated Zr-Al-SCM-1 zeolite via a cascade process. Journal of Catalysis, 2020, 392: 175–185

DOI

27
Lu J , Elam J W , Stair P C . Atomic layer deposition—sequential self-limiting surface reactions for advanced catalyst “bottom-up” synthesis. Surface Science Reports, 2016, 71(2): 410–472

DOI

28
Gong T , Huang Y , Qin L , Zhang W , Li J , Hui L , Feng H . Atomic layer deposited palladium nanoparticle catalysts supported on titanium dioxide modified MCM-41 for selective hydrogenation of acetylene. Applied Surface Science, 2019, 495: 143495

DOI

29
Wang H , Lin Y , Lu J . Ultra-thin nickel oxide overcoating of noble metal catalysts for directing selective hydrogenation of nitriles to secondary amines. Catalysis Today, 2023, 410: 253–263

DOI

30
Song Y , Zhang M , Fan G , Yang L , Li F . Combining a supported Ru catalyst with HBeta zeolite to construct a high-performance bifunctional catalyst for one-step cascade transformation of benzene to cyclohexylbenzene. Industrial & Engineering Chemistry Research, 2022, 61(51): 18663–18675

DOI

31
Murakami K , Sekine Y . Recent progress in use and observation of surface hydrogen migration over metal oxides. Physical Chemistry Chemical Physics, 2020, 22(40): 22852–22863

DOI

32
Karim W , Spreafico C , Kleibert A , Gobrecht J , VandeVondele J , Ekinci Y , van Bokhoven J A . Catalyst support effects on hydrogen spillover. Nature, 2017, 541(7635): 68–71

DOI

33
Zou H , Dai J , Suo J , Ettelaie R , Li Y , Xue N , Wang R , Yang H . Dual metal nanoparticles within multicompartmentalized mesoporous organosilicas for efficient sequential hydrogenation. Nature Communications, 2021, 12(1): 4968

DOI

34
Xiong M , Gao Z , Zhao P , Wang G , Yan W , Xing S , Wang P , Ma J , Jiang Z , Liu X . . In situ tuning of electronic structure of catalysts using controllable hydrogen spillover for enhanced selectivity. Nature Communications, 2020, 11(1): 4773

DOI

35
Prins R . Hydrogen spillover. Facts and fiction. Chemical Reviews, 2012, 112(5): 2714–2738

DOI

36
Xiong M , Gao Z , Qin Y . Spillover in heterogeneous catalysis: new insights and opportunities. ACS Catalysis, 2021, 11(5): 3159–3172

DOI

37
Ma Y , Zhang X , Cao L , Lu J . Effects of the morphology and heteroatom doping of CeO2 support on the hydrogenation activity of Pt single-atoms. Catalysis Science & Technology, 2021, 11(8): 2844–2851

DOI

Outlines

/