Metal size effects over metal/zeolite bifunctional catalysts in the selective hydroalkylation of benzene
Junjie Li, Chuang Liu, Zhenlong Jia, Yingchun Ye, Dawei Lan, Wei Meng, Jianqiang Wang, Zhendong Wang, Yongfeng Hu, Weimin Yang
Metal size effects over metal/zeolite bifunctional catalysts in the selective hydroalkylation of benzene
Bifunctional metal/zeolite materials are some of the most suitable catalysts for the direct hydroalkylation of benzene to cyclohexylbenzene. The overall catalytic performance of this reaction is strongly influenced by the hydrogenation, which is dependent on the metal sizes. Thus, systematically investigating the metal size effects in the hydroalkylation of benzene is essential. In this work, we successfully synthesized Ru and Pd nanoparticles on Sinopec Composition Materials No.1 zeolite with various metal sizes. We demonstrated the size-dependent catalytic activity of zeolite-supported Ru and Pd catalysts in the hydroalkylation of benzene, which can be attributed to the size-induced hydrogen spillover capability differences. Our work presents new insights into the hydroalkylation reaction and may open up a new avenue for the smart design of advanced metal/zeolite bi-functional catalysts.
size effects / bifunctional catalysts / metal/zeolite / hydroalkylation
[1] |
Molinari R , Poerio T . Remarks on studies for direct production of phenol in conventional and membrane reactors. Asia-Pacific Journal of Chemical Engineering, 2010, 5(1): 191–206
CrossRef
Google scholar
|
[2] |
Martin G A , Dalmon J A . Benzene hydrogenation over nickel catalysts at low and high temperatures: structure-sensitivity and copper alloying effects. Journal of Catalysis, 1982, 75(2): 233–242
CrossRef
Google scholar
|
[3] |
Sato K , Hamakawa S , Natsui M , Nishioka M , Inoue T , Mizukami F . Palladium-based bifunctional membrane reactor for one-step conversion of benzene to phenol and cyclohexanone. Catalysis Today, 2010, 156(3–4): 276–281
CrossRef
Google scholar
|
[4] |
Lu L , Rong Z , Du W , Ma S , Hu S . Selective hydrogenation of single benzene ring in biphenyl catalyzed by skeletal Ni. ChemCatChem, 2009, 1(3): 369–371
CrossRef
Google scholar
|
[5] |
Ipatieff V N , Corson B B , Pines H . Influence of sulfuric acid concentration upon reaction between olefins and benzene. Journal of the American Chemical Society, 1936, 58(6): 919–922
CrossRef
Google scholar
|
[6] |
Hiyoshi N , Rode C V , Sato O , Shirai M . Biphenyl hydrogenation over supported transition metal catalysts under supercritical carbon dioxide solvent. Applied Catalysis A: General, 2005, 288(1–2): 43–47
CrossRef
Google scholar
|
[7] |
Zhang Y , Yang Y , Hou Q , Xu E , Wang L , Li F , Wei M . Metal-acid bifunctional catalysts toward tandem reaction: one-step hydroalkylation of benzene to cyclohexylbenzene. ACS Applied Materials & Interfaces, 2022, 14(28): 31998–32008
CrossRef
Google scholar
|
[8] |
Huang J , Li Z , Yang J , Peng Z , Liu Q , Liu Z . Identification of metal/acid matching balance over bifunctional Pd/Hβ toward benzene hydroalkylation. Industrial & Engineering Chemistry Research, 2021, 60(5): 2326–2336
CrossRef
Google scholar
|
[9] |
Meng F , Dong L , Meng W , Ding Y , Qiu J . High efficiency catalyst of modified Y molecular sieve by rare earth La3+ catalyzed the synthesis of cyclohexylbenzene from benzene and cyclohexene. Catalysis Letters, 2021, 152: 745–754
|
[10] |
Li Z Q , Fu X , Gao C , Huang J , Li B , Yang Y , Gao J , Shen Y , Peng Z , Yang J H .
CrossRef
Google scholar
|
[11] |
Kishore Kumar S A , John M , Pai S M , Ghosh S , Newalkar B L , Pant K K . Selective hydroalkylation of benzene over palladium supported Y-Zeolite: effect of metal acid balance. Molecular Catalysis, 2017, 442: 27–38
CrossRef
Google scholar
|
[12] |
Qiu J , Komura K , Kubota Y , Sugi Y . Synthesis of cyclohexylbenzene by hydroalkylation of benzene over Pd/Hβ binary catalyst. Chinese Journal of Catalysis, 2007, 28(3): 246–250
CrossRef
Google scholar
|
[13] |
Fahy J , Trimm D L , Cookson D J . Four component catalysis for the hydroalkylation of benzene. Applied Catalysis A: General, 2001, 211(2): 259–268
CrossRef
Google scholar
|
[14] |
Shi J , Wang Y , Yang W , Tang Y , Xie Z . Recent advances of pore system construction in zeolite-catalyzed chemical industry processes. Chemical Society Reviews, 2015, 44(24): 8877–8903
CrossRef
Google scholar
|
[15] |
Sun H , Chen Z , Li C , Chen L , Li Y , Peng Z , Liu Z , Liu S . Selective hydrogenation of benzene to cyclohexene over monometallic Ru catalysts: investigation of ZnO and ZnSO4 as reaction additives as well as particle size effect. Catalysts, 2018, 8(5): 172
CrossRef
Google scholar
|
[16] |
Foppa L , Dupont J . Benzene partial hydrogenation: advances and perspectives. Chemical Society Reviews, 2015, 44(7): 1886–1897
CrossRef
Google scholar
|
[17] |
Zhou G , Pei Y , Jiang Z , Fan K , Qiao M , Sun B , Zong B . Doping effects of B in ZrO2 on structural and catalytic properties of Ru/B-ZrO2 catalysts for benzene partial hydrogenation. Journal of Catalysis, 2014, 311: 393–403
CrossRef
Google scholar
|
[18] |
Vilé G , Albani D , Almora-Barrios N , López N , Pérez-Ramírez J . Advances in the design of nanostructured catalysts for selective hydrogenation. ChemCatChem, 2016, 8(1): 21–33
CrossRef
Google scholar
|
[19] |
Scirè S , Fiorenza R , Gulino A , Cristaldi A , Riccobene P M . Selective oxidation of CO in H2-rich stream over ZSM5 zeolites supported Ru catalysts: an investigation on the role of the support and the Ru particle size. Applied Catalysis A: General, 2016, 520: 82–91
CrossRef
Google scholar
|
[20] |
Navlani-García M , Mori K , Nozaki A , Kuwahara Y , Yamashita H . Investigation of size sensitivity in the hydrogen production from formic acid over carbon-supported Pd nanoparticles. ChemistrySelect, 2016, 1(9): 1879–1886
CrossRef
Google scholar
|
[21] |
Campbell P S , Santini C C , Bayard F , Chauvin Y , Collière V , Podgoršek A , Costa Gomes M F , Sá J . Olefin hydrogenation by ruthenium nanoparticles in ionic liquid media: does size matter?. Journal of Catalysis, 2010, 275(1): 99–107
CrossRef
Google scholar
|
[22] |
Plomp A J , Vuori H , Krause A O I , de Jong K P , Bitter J H . Particle size effects for carbon nanofiber supported platinum and ruthenium catalysts for the selective hydrogenation of cinnamaldehyde. Applied Catalysis A: General, 2008, 351(1): 9–15
CrossRef
Google scholar
|
[23] |
Zhang X , Gu Q , Ma Y , Guan Q , Jin R , Wang H , Yang B , Lu J . Support-induced unusual size dependence of Pd catalysts in chemoselective hydrogenation of para-chloronitrobenzene. Journal of Catalysis, 2021, 400: 173–183
CrossRef
Google scholar
|
[24] |
Wang Z , Cichocka M O , Luo Y , Zhang B , Sun H , Tang Y , Yang W . Controllable direct-syntheses of delaminated MWW-type zeolites. Chinese Journal of Catalysis, 2020, 41(7): 1062–1066
CrossRef
Google scholar
|
[25] |
Li X , Yuan X , Xia G , Liang J , Liu C , Qin Y , Wang Z , Yang W . Postsynthesis of delaminated MWW-type stannosilicate as a robust catalyst for sugar conversion to methyl lactate. Industrial & Engineering Chemistry Research, 2021, 60(22): 8027–8034
CrossRef
Google scholar
|
[26] |
Li X , Yuan X , Xia G , Liang J , Liu C , Wang Z , Yang W . Catalytic production of γ-valerolactone from xylose over delaminated Zr-Al-SCM-1 zeolite via a cascade process. Journal of Catalysis, 2020, 392: 175–185
CrossRef
Google scholar
|
[27] |
Lu J , Elam J W , Stair P C . Atomic layer deposition—sequential self-limiting surface reactions for advanced catalyst “bottom-up” synthesis. Surface Science Reports, 2016, 71(2): 410–472
CrossRef
Google scholar
|
[28] |
Gong T , Huang Y , Qin L , Zhang W , Li J , Hui L , Feng H . Atomic layer deposited palladium nanoparticle catalysts supported on titanium dioxide modified MCM-41 for selective hydrogenation of acetylene. Applied Surface Science, 2019, 495: 143495
CrossRef
Google scholar
|
[29] |
Wang H , Lin Y , Lu J . Ultra-thin nickel oxide overcoating of noble metal catalysts for directing selective hydrogenation of nitriles to secondary amines. Catalysis Today, 2023, 410: 253–263
CrossRef
Google scholar
|
[30] |
Song Y , Zhang M , Fan G , Yang L , Li F . Combining a supported Ru catalyst with HBeta zeolite to construct a high-performance bifunctional catalyst for one-step cascade transformation of benzene to cyclohexylbenzene. Industrial & Engineering Chemistry Research, 2022, 61(51): 18663–18675
CrossRef
Google scholar
|
[31] |
Murakami K , Sekine Y . Recent progress in use and observation of surface hydrogen migration over metal oxides. Physical Chemistry Chemical Physics, 2020, 22(40): 22852–22863
CrossRef
Google scholar
|
[32] |
Karim W , Spreafico C , Kleibert A , Gobrecht J , VandeVondele J , Ekinci Y , van Bokhoven J A . Catalyst support effects on hydrogen spillover. Nature, 2017, 541(7635): 68–71
CrossRef
Google scholar
|
[33] |
Zou H , Dai J , Suo J , Ettelaie R , Li Y , Xue N , Wang R , Yang H . Dual metal nanoparticles within multicompartmentalized mesoporous organosilicas for efficient sequential hydrogenation. Nature Communications, 2021, 12(1): 4968
CrossRef
Google scholar
|
[34] |
Xiong M , Gao Z , Zhao P , Wang G , Yan W , Xing S , Wang P , Ma J , Jiang Z , Liu X .
CrossRef
Google scholar
|
[35] |
Prins R . Hydrogen spillover. Facts and fiction. Chemical Reviews, 2012, 112(5): 2714–2738
CrossRef
Google scholar
|
[36] |
Xiong M , Gao Z , Qin Y . Spillover in heterogeneous catalysis: new insights and opportunities. ACS Catalysis, 2021, 11(5): 3159–3172
CrossRef
Google scholar
|
[37] |
Ma Y , Zhang X , Cao L , Lu J . Effects of the morphology and heteroatom doping of CeO2 support on the hydrogenation activity of Pt single-atoms. Catalysis Science & Technology, 2021, 11(8): 2844–2851
CrossRef
Google scholar
|
/
〈 | 〉 |