Metal size effects over metal/zeolite bifunctional catalysts in the selective hydroalkylation of benzene

Junjie Li, Chuang Liu, Zhenlong Jia, Yingchun Ye, Dawei Lan, Wei Meng, Jianqiang Wang, Zhendong Wang, Yongfeng Hu, Weimin Yang

PDF(6589 KB)
PDF(6589 KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (4) : 45. DOI: 10.1007/s11705-024-2406-4
RESEARCH ARTICLE

Metal size effects over metal/zeolite bifunctional catalysts in the selective hydroalkylation of benzene

Author information +
History +

Abstract

Bifunctional metal/zeolite materials are some of the most suitable catalysts for the direct hydroalkylation of benzene to cyclohexylbenzene. The overall catalytic performance of this reaction is strongly influenced by the hydrogenation, which is dependent on the metal sizes. Thus, systematically investigating the metal size effects in the hydroalkylation of benzene is essential. In this work, we successfully synthesized Ru and Pd nanoparticles on Sinopec Composition Materials No.1 zeolite with various metal sizes. We demonstrated the size-dependent catalytic activity of zeolite-supported Ru and Pd catalysts in the hydroalkylation of benzene, which can be attributed to the size-induced hydrogen spillover capability differences. Our work presents new insights into the hydroalkylation reaction and may open up a new avenue for the smart design of advanced metal/zeolite bi-functional catalysts.

Graphical abstract

Keywords

size effects / bifunctional catalysts / metal/zeolite / hydroalkylation

Cite this article

Download citation ▾
Junjie Li, Chuang Liu, Zhenlong Jia, Yingchun Ye, Dawei Lan, Wei Meng, Jianqiang Wang, Zhendong Wang, Yongfeng Hu, Weimin Yang. Metal size effects over metal/zeolite bifunctional catalysts in the selective hydroalkylation of benzene. Front. Chem. Sci. Eng., 2024, 18(4): 45 https://doi.org/10.1007/s11705-024-2406-4

References

[1]
Molinari R , Poerio T . Remarks on studies for direct production of phenol in conventional and membrane reactors. Asia-Pacific Journal of Chemical Engineering, 2010, 5(1): 191–206
CrossRef Google scholar
[2]
Martin G A , Dalmon J A . Benzene hydrogenation over nickel catalysts at low and high temperatures: structure-sensitivity and copper alloying effects. Journal of Catalysis, 1982, 75(2): 233–242
CrossRef Google scholar
[3]
Sato K , Hamakawa S , Natsui M , Nishioka M , Inoue T , Mizukami F . Palladium-based bifunctional membrane reactor for one-step conversion of benzene to phenol and cyclohexanone. Catalysis Today, 2010, 156(3–4): 276–281
CrossRef Google scholar
[4]
Lu L , Rong Z , Du W , Ma S , Hu S . Selective hydrogenation of single benzene ring in biphenyl catalyzed by skeletal Ni. ChemCatChem, 2009, 1(3): 369–371
CrossRef Google scholar
[5]
Ipatieff V N , Corson B B , Pines H . Influence of sulfuric acid concentration upon reaction between olefins and benzene. Journal of the American Chemical Society, 1936, 58(6): 919–922
CrossRef Google scholar
[6]
Hiyoshi N , Rode C V , Sato O , Shirai M . Biphenyl hydrogenation over supported transition metal catalysts under supercritical carbon dioxide solvent. Applied Catalysis A: General, 2005, 288(1–2): 43–47
CrossRef Google scholar
[7]
Zhang Y , Yang Y , Hou Q , Xu E , Wang L , Li F , Wei M . Metal-acid bifunctional catalysts toward tandem reaction: one-step hydroalkylation of benzene to cyclohexylbenzene. ACS Applied Materials & Interfaces, 2022, 14(28): 31998–32008
CrossRef Google scholar
[8]
Huang J , Li Z , Yang J , Peng Z , Liu Q , Liu Z . Identification of metal/acid matching balance over bifunctional Pd/Hβ toward benzene hydroalkylation. Industrial & Engineering Chemistry Research, 2021, 60(5): 2326–2336
CrossRef Google scholar
[9]
Meng F , Dong L , Meng W , Ding Y , Qiu J . High efficiency catalyst of modified Y molecular sieve by rare earth La3+ catalyzed the synthesis of cyclohexylbenzene from benzene and cyclohexene. Catalysis Letters, 2021, 152: 745–754
[10]
Li Z Q , Fu X , Gao C , Huang J , Li B , Yang Y , Gao J , Shen Y , Peng Z , Yang J H . . Enhancing the matching of acid/metal balance by engineering an extra Si–Al framework outside the Pd/HBeta catalyst towards benzene hydroalkylation. Catalysis Science & Technology, 2020, 10(5): 1467–1476
CrossRef Google scholar
[11]
Kishore Kumar S A , John M , Pai S M , Ghosh S , Newalkar B L , Pant K K . Selective hydroalkylation of benzene over palladium supported Y-Zeolite: effect of metal acid balance. Molecular Catalysis, 2017, 442: 27–38
CrossRef Google scholar
[12]
Qiu J , Komura K , Kubota Y , Sugi Y . Synthesis of cyclohexylbenzene by hydroalkylation of benzene over Pd/Hβ binary catalyst. Chinese Journal of Catalysis, 2007, 28(3): 246–250
CrossRef Google scholar
[13]
Fahy J , Trimm D L , Cookson D J . Four component catalysis for the hydroalkylation of benzene. Applied Catalysis A: General, 2001, 211(2): 259–268
CrossRef Google scholar
[14]
Shi J , Wang Y , Yang W , Tang Y , Xie Z . Recent advances of pore system construction in zeolite-catalyzed chemical industry processes. Chemical Society Reviews, 2015, 44(24): 8877–8903
CrossRef Google scholar
[15]
Sun H , Chen Z , Li C , Chen L , Li Y , Peng Z , Liu Z , Liu S . Selective hydrogenation of benzene to cyclohexene over monometallic Ru catalysts: investigation of ZnO and ZnSO4 as reaction additives as well as particle size effect. Catalysts, 2018, 8(5): 172
CrossRef Google scholar
[16]
Foppa L , Dupont J . Benzene partial hydrogenation: advances and perspectives. Chemical Society Reviews, 2015, 44(7): 1886–1897
CrossRef Google scholar
[17]
Zhou G , Pei Y , Jiang Z , Fan K , Qiao M , Sun B , Zong B . Doping effects of B in ZrO2 on structural and catalytic properties of Ru/B-ZrO2 catalysts for benzene partial hydrogenation. Journal of Catalysis, 2014, 311: 393–403
CrossRef Google scholar
[18]
Vilé G , Albani D , Almora-Barrios N , López N , Pérez-Ramírez J . Advances in the design of nanostructured catalysts for selective hydrogenation. ChemCatChem, 2016, 8(1): 21–33
CrossRef Google scholar
[19]
Scirè S , Fiorenza R , Gulino A , Cristaldi A , Riccobene P M . Selective oxidation of CO in H2-rich stream over ZSM5 zeolites supported Ru catalysts: an investigation on the role of the support and the Ru particle size. Applied Catalysis A: General, 2016, 520: 82–91
CrossRef Google scholar
[20]
Navlani-García M , Mori K , Nozaki A , Kuwahara Y , Yamashita H . Investigation of size sensitivity in the hydrogen production from formic acid over carbon-supported Pd nanoparticles. ChemistrySelect, 2016, 1(9): 1879–1886
CrossRef Google scholar
[21]
Campbell P S , Santini C C , Bayard F , Chauvin Y , Collière V , Podgoršek A , Costa Gomes M F , Sá J . Olefin hydrogenation by ruthenium nanoparticles in ionic liquid media: does size matter?. Journal of Catalysis, 2010, 275(1): 99–107
CrossRef Google scholar
[22]
Plomp A J , Vuori H , Krause A O I , de Jong K P , Bitter J H . Particle size effects for carbon nanofiber supported platinum and ruthenium catalysts for the selective hydrogenation of cinnamaldehyde. Applied Catalysis A: General, 2008, 351(1): 9–15
CrossRef Google scholar
[23]
Zhang X , Gu Q , Ma Y , Guan Q , Jin R , Wang H , Yang B , Lu J . Support-induced unusual size dependence of Pd catalysts in chemoselective hydrogenation of para-chloronitrobenzene. Journal of Catalysis, 2021, 400: 173–183
CrossRef Google scholar
[24]
Wang Z , Cichocka M O , Luo Y , Zhang B , Sun H , Tang Y , Yang W . Controllable direct-syntheses of delaminated MWW-type zeolites. Chinese Journal of Catalysis, 2020, 41(7): 1062–1066
CrossRef Google scholar
[25]
Li X , Yuan X , Xia G , Liang J , Liu C , Qin Y , Wang Z , Yang W . Postsynthesis of delaminated MWW-type stannosilicate as a robust catalyst for sugar conversion to methyl lactate. Industrial & Engineering Chemistry Research, 2021, 60(22): 8027–8034
CrossRef Google scholar
[26]
Li X , Yuan X , Xia G , Liang J , Liu C , Wang Z , Yang W . Catalytic production of γ-valerolactone from xylose over delaminated Zr-Al-SCM-1 zeolite via a cascade process. Journal of Catalysis, 2020, 392: 175–185
CrossRef Google scholar
[27]
Lu J , Elam J W , Stair P C . Atomic layer deposition—sequential self-limiting surface reactions for advanced catalyst “bottom-up” synthesis. Surface Science Reports, 2016, 71(2): 410–472
CrossRef Google scholar
[28]
Gong T , Huang Y , Qin L , Zhang W , Li J , Hui L , Feng H . Atomic layer deposited palladium nanoparticle catalysts supported on titanium dioxide modified MCM-41 for selective hydrogenation of acetylene. Applied Surface Science, 2019, 495: 143495
CrossRef Google scholar
[29]
Wang H , Lin Y , Lu J . Ultra-thin nickel oxide overcoating of noble metal catalysts for directing selective hydrogenation of nitriles to secondary amines. Catalysis Today, 2023, 410: 253–263
CrossRef Google scholar
[30]
Song Y , Zhang M , Fan G , Yang L , Li F . Combining a supported Ru catalyst with HBeta zeolite to construct a high-performance bifunctional catalyst for one-step cascade transformation of benzene to cyclohexylbenzene. Industrial & Engineering Chemistry Research, 2022, 61(51): 18663–18675
CrossRef Google scholar
[31]
Murakami K , Sekine Y . Recent progress in use and observation of surface hydrogen migration over metal oxides. Physical Chemistry Chemical Physics, 2020, 22(40): 22852–22863
CrossRef Google scholar
[32]
Karim W , Spreafico C , Kleibert A , Gobrecht J , VandeVondele J , Ekinci Y , van Bokhoven J A . Catalyst support effects on hydrogen spillover. Nature, 2017, 541(7635): 68–71
CrossRef Google scholar
[33]
Zou H , Dai J , Suo J , Ettelaie R , Li Y , Xue N , Wang R , Yang H . Dual metal nanoparticles within multicompartmentalized mesoporous organosilicas for efficient sequential hydrogenation. Nature Communications, 2021, 12(1): 4968
CrossRef Google scholar
[34]
Xiong M , Gao Z , Zhao P , Wang G , Yan W , Xing S , Wang P , Ma J , Jiang Z , Liu X . . In situ tuning of electronic structure of catalysts using controllable hydrogen spillover for enhanced selectivity. Nature Communications, 2020, 11(1): 4773
CrossRef Google scholar
[35]
Prins R . Hydrogen spillover. Facts and fiction. Chemical Reviews, 2012, 112(5): 2714–2738
CrossRef Google scholar
[36]
Xiong M , Gao Z , Qin Y . Spillover in heterogeneous catalysis: new insights and opportunities. ACS Catalysis, 2021, 11(5): 3159–3172
CrossRef Google scholar
[37]
Ma Y , Zhang X , Cao L , Lu J . Effects of the morphology and heteroatom doping of CeO2 support on the hydrogenation activity of Pt single-atoms. Catalysis Science & Technology, 2021, 11(8): 2844–2851
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by China Petrochemical Corporation and the National Natural Science Foundation of China (Grant Nos. U19B6002, 21972168, and 22302234).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2406-4 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(6589 KB)

Accesses

Citations

Detail

Sections
Recommended

/