Asymmetric copolyimide membranes fabricated by nonsolvent-induced phase separation for He/CH4 and He/N2 separation

  • Ying Li 1,2 ,
  • Lu Wang 1 ,
  • Junyan Xie 1 ,
  • Yong Dai 1 ,
  • Xuehong Gu 1 ,
  • Xuerui Wang , 1
Expand
  • 1. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
  • 2. Quzhou Membrane Material Innovation Institute, Quzhou 324000, China
x.wang@njtech.edu.cn

Received date: 20 Nov 2023

Accepted date: 23 Dec 2023

Copyright

2024 Higher Education Press

Abstract

Membrane gas separation is considered an energy-saving technique to extract He from natural gas due to no phase change and room temperature operation. However, the membrane performance was strongly limited by the trade-off between permeance and selectivity. Herein, novel 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA)-2,2′-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (APAF)-5-amino-2-(4-aminobenzene)benzimidazole (BIA) asymmetric membranes with a thickness of 300 nm were successfully prepared by the non-solvent induced phase separation method. The membrane performance was modulated by regulating dope solution compositions (e.g., tetrahydrofuran and polymer concentration). The ideal He/CH4 selectivity was 124 and the optimized He permeance reached 87 GPU, beyond the current upper bound. He/CH4 selectivity was 75 and He permeance was 73 GPU for the binary mixture feed containing 0.2 mol % He. The membrane showed good resistance to CO2 and C2H6, which are the typical impurities in natural gas. The 6FDA-APAF-BIA membranes have good stability (> 160 h), which can provide great potential in He extraction from natural gas.

Cite this article

Ying Li , Lu Wang , Junyan Xie , Yong Dai , Xuehong Gu , Xuerui Wang . Asymmetric copolyimide membranes fabricated by nonsolvent-induced phase separation for He/CH4 and He/N2 separation[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(4) : 44 . DOI: 10.1007/s11705-024-2405-5

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was sponsored by the National Key Research and Development Program of China (Grant No. 2021YFC2101203), the National Natural Science Foundation of China (Grant Nos. 22178164 and U22B20148), the Jiangsu Provincial Carbon Peak Carbon Neutral Science and Technology Innovation Special Fund (Grant No. BE2022033), the Jiangsu Specially-Appointed Professors Program, and the State Key Laboratory of Materials-Oriented Chemical Engineering (Grant No. ZK202002). We thank the support given by Liming Pu and Miao Yang from China Petroleum Engineering Construction Co., Ltd.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2405-5 and is accessible for authorized users.
1
Berganza C J , Zhang J H . The role of helium gas in medicine. Medical Gas Research, 2013, 3(1): 18

DOI

2
Dai Z , Deng J , He X , Scholes C A , Jiang X , Wang B , Guo H , Ma Y , Deng L . Helium separation using membrane technology: recent advances and perspectives. Separation and Purification Technology, 2021, 274: 119044

DOI

3
Sunarso J , Hashim S S , Lin Y S , Liu S M . Membranes for helium recovery: an overview on the context, materials and future directions. Separation and Purification Technology, 2017, 176: 335–383

DOI

4
Alders M , Winterhalder D , Wessling M . Helium recovery using membrane processes. Separation and Purification Technology, 2017, 189: 433–440

DOI

5
Mansoori S A A , Pakizeh M , Jomekian A . CO2 and H2 selectivity properties of PDMS/PSf membrane prepared at different conditions. Frontiers of Chemical Science and Engineering, 2011, 5(4): 500–513

DOI

6
Gantzel P K , Merten U . Gas separations with high-flux cellulose acetate membranes. Industrial & Engineering Chemistry Process Design and Development, 1970, 9(2): 331–332

DOI

7
Aitken C L , Koros W J , Paul D R . Effect of structural symmetry on gas transport properties of polysulfones. Macromolecules, 1992, 25(13): 3424–3434

DOI

8
Sanders D F , Smith Z P , Guo R , Robeson L M , McGrath J E , Paul D R , Freeman B D . Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer, 2013, 54(18): 4729–4761

DOI

9
Esposito E , Mazzei I , Monteleone M , Fuoco A , Carta M , McKeown N B , Malpass-Evans R , Jansen J C . Highly permeable matrimid®/PIM-EA(H2)-TB blend membrane for gas separation. Polymers, 2018, 11(1): 46

DOI

10
Yavari M , Fang M , Nguyen H , Merkel T C , Lin H , Okamoto Y . Dioxolane-based perfluoropolymers with superior membrane gas separation properties. Macromolecules, 2018, 51(7): 2489–2497

DOI

11
Yampolskii Y , Belov N , Alentiev A . Perfluorinated polymers as materials of membranes for gas and vapor separation. Journal of Membrane Science, 2020, 598: 117779

DOI

12
Fang M , He Z , Merkel T C , Okamoto Y . High-performance perfluorodioxolane copolymer membranes for gas separation with tailored selectivity enhancement. Journal of Materials Chemistry A, 2018, 6(2): 652–658

DOI

13
Li K , Li Q , Cai Z , Weng Y , Ye C , Ji W , Li J , Cheng B , Ma X . Microporosity effect of intrinsic microporous polyimide membranes on their helium enrichment performance after direct fluorination. Journal of Membrane Science, 2022, 660: 120868

DOI

14
Jiang X , Xiao X , Dong J , Xu X , Zhao X , Zhang Q . Effects of non-TR-able codiamines and rearrangement conditions on the chain packing and gas separation performance of thermally rearranged poly(benzoxazole-co-imide) membranes. Journal of Membrane Science, 2018, 564: 605–616

DOI

15
Wang L , Li Y , Pu L , Yang M , Lu H , Gu X , Wang X . Copolyimide membranes fabricated by nonsolvent-induced phase separation for helium extraction from natural gas. Separation and Purification Technology, 2023, 313: 123455

DOI

16
Wang L , Li Y , Zhang P , Chen X , Nian P , Wei Y , Lu H , Gu X , Wang X . Thermally rearranged poly(benzoxazole-co-imide) composite membranes on α-Al2O3 support for helium extraction from natural gas. Journal of Membrane Science, 2022, 657: 120614

DOI

17
Jiao Y , Liu M , Wu Q , Zheng P , Xu W , Ye B , Zhang H , Guo R , Luo S . Finely tuning the microporosity in phosphoric acid doped triptycene-containing polybenzimidazole membranes for highly permselective helium and hydrogen recovery. Journal of Membrane Science, 2023, 672: 121474

DOI

18
Zhuang Y , Seong J , Lee W H , Do Y , Lee M J , Wang G , Guiver M , Lee Y M . Mechanically tough, thermally rearranged (TR) random/block poly(benzoxazole-co-imide) gas separation membranes. Macromolecules, 2015, 48(15): 5286–5299

DOI

19
Gan F , Dong J , Zheng S , Zhao X , Zhang Q . Constructing gas molecule transport channels in thermally rearranged multiblock poly(benzoxazole-co-imide) membranes for effective CO2/CH4 separation. ACS Sustainable Chemistry & Engineering, 2020, 8(26): 9669–9679

DOI

20
Pan J , Zhang L , Wang Z , Sun S P , Cui Z , Tavajohi N . Poly(vinylidene fluoride-co-hexafluoro propylene) membranes prepared via thermally induced phase separation and application in direct contact membrane distillation. Frontiers of Chemical Science and Engineering, 2022, 16(5): 720–730

DOI

21
Ge C , Sheng M , Yuan Y , Shi F , Yang Y , Zhao S , Wang J , Wang Z . Recent advances of the interfacial polymerization process in gas separation membranes fabrication. Journal of Membrane Science, 2023, 683: 121854

DOI

22
Li Y , Shen J , Guan K , Liu G , Zhou H , Jin W . PEBA/ceramic hollow fiber composite membrane for high-efficiency recovery of bio-butanol via pervaporation. Journal of Membrane Science, 2016, 510: 338–347

DOI

23
Wang X , Shan M , Liu X , Wang M , Doherty C M , Osadchii D , Kapteijn F . High-performance polybenzimidazole membranes for helium extraction from natural gas. ACS Applied Materials & Interfaces, 2019, 11(22): 20098–20103

DOI

24
Choi S H , Sultan M M B , Alsuwailem A A , Zuabi S M . Preparation and characterization of multilayer thin-film composite hollow fiber membranes for helium extraction from its mixtures. Separation and Purification Technology, 2019, 222: 152–161

DOI

25
Pinnau I , Koros W J . A qualitative skin layer formation mechanism for membranes made by dry/wet phase inversion. Journal of Polymer Science Part B: Polymer Physics, 1993, 31(4): 419–427

DOI

26
Kosuri M R , Koros W J . Defect-free asymmetric hollow fiber membranes from Torlon®, a polyamide-imide polymer, for high-pressure CO2 separations. Journal of Membrane Science, 2008, 320(1–2): 65–72

DOI

27
Pak S H , Jeon Y W , Shin M S , Koh H C . Preparation of cellulose acetate hollow-fiber membranes for CO2/CH4 separation. Environmental Engineering Science, 2016, 33(1): 17–24

DOI

28
Dibrov G , Ivanov M , Semyashkin M , Sudin V , Kagramanov G . High-pressure aging of asymmetric Torlon® hollow fibers for helium separation from natural gas. Fibers, 2018, 6(4): 83

DOI

29
Bridge A T , Pedretti B J , Brennecke J F , Freeman B D . Preparation of defect-free asymmetric gas separation membranes with dihydrolevoglucosenone (CyreneTM) as a greener polar aprotic solvent. Journal of Membrane Science, 2022, 644: 120173

DOI

30
Zhou T , Shi M , Chen L , Gong C , Zhang P , Xie J , Wang X , Gu X . Fluorine-free synthesis of all-silica STT zeolite membranes for H2/CH4 separation. Chemical Engineering Journal, 2022, 433: 133567

DOI

31
Chung T S , Teoh S K , Hu X . Formation of ultrathin high-performance polyethersulfone hollow-fiber membranes. Journal of Membrane Science, 1997, 133(2): 161–175

DOI

32
Kim S , Han S H , Lee Y M . Thermally rearranged (TR) polybenzoxazole hollow fiber membranes for CO2 capture. Journal of Membrane Science, 2012, 403–404: 169–178

DOI

33
Woo K T , Lee J , Dong G , Kim J S , Do Y S , Hung W S , Lee K R , Barbieri G , Drioli E , Lee Y M . Fabrication of thermally rearranged (TR) polybenzoxazole hollow fiber membranes with superior CO2/N2 separation performance. Journal of Membrane Science, 2015, 490: 129–138

DOI

34
Clausi D T , Koros W J . Formation of defect-free polyimide hollow fiber membranes for gas separations. Journal of Membrane Science, 2000, 167(1): 79–89

DOI

35
Gan F , Dong J , Xu X , Li M , Zhao X , Zhang Q . Preparation of thermally rearranged poly(benzoxazole-co-imide) membranes containing heteroaromatic moieties for CO2/CH4 separation. Polymer, 2019, 185: 121945

DOI

36
McHattie J S , Koros W J , Paul D R . Gas transport properties of polysulphones: 2. Effect of bisphenol connector groups. Polymer, 1991, 32(14): 2618–2625

DOI

37
Choi S H , Qahtani M S , Qasem E A . Multilayer thin-film composite membranes for helium enrichment. Journal of Membrane Science, 2018, 553: 180–188

DOI

38
Kostina J , Rusakova O , Bondarenko G , Alentiev A , Meleshko T , Kukarkina N , Yakimanskii A , Yampolskii Y . Thermal rearrangement of functionalized polyimides: IR-spectral, quantum chemical studies, and gas permeability of TR polymers. Industrial & Engineering Chemistry Research, 2013, 52(31): 10476–10483

DOI

39
Abdulhamid M A , Genduso G , Wang Y , Ma X , Pinnau I . Plasticization-resistant carboxyl-functionalized 6FDA-polyimide of intrinsic microporosity (PIM-PI) for membrane-based gas separation. Industrial & Engineering Chemistry Research, 2020, 59(12): 5247–5256

DOI

40
Gong C , Peng X , Zhu M , Zhou T , You L , Ren S , Wang X , Gu X . Synthesis and performance of STT zeolite membranes for He/N2 and He/CH4 separation. Separation and Purification Technology, 2022, 301: 121927

DOI

41
Zhang P , Gong C , Zhou T , Du P , Song J , Shi M , Wang X , Gu X . Helium extraction from natural gas using DD3R zeolite membranes. Chinese Journal of Chemical Engineering, 2022, 49: 122–129

DOI

42
Scholes C A , Ghosh U . Helium separation through polymeric membranes: selectivity targets. Journal of Membrane Science, 2016, 520: 221–230

DOI

43
Scholes C A , Stevens G W , Kentish S E . Membrane gas separation applications in natural gas processing. Fuel, 2012, 96: 15–28

DOI

44
Scholes C A , Ghosh U K . Review of membranes for helium separation and purification. Membranes, 2017, 7(1): 9

DOI

45
Babkina N V , Kosyanchuk L F , Todosiichuk T T , Kozak N V , Menzheres G Y , Nesterenko G M . Structural changes in blends of linear polymers during their physical aging. Polymer Science Series A, 2012, 54(2): 125–134

DOI

46
Staiger C L , Pas S J , Hill A J , Cornelius C J . Gas separation, free volume distribution, and physical aging of a highly microporous spirobisindane polymer. Chemistry of Materials, 2008, 20(8): 2606–2608

DOI

47
Kim J H , Koros W J , Paul D R . Effects of CO2 exposure and physical aging on the gas permeability of thin 6FDA-based polyimide membranes: Part 2. With crosslinking. Journal of Membrane Science, 2006, 282(1–2): 32–43

DOI

48
Wang H , Chung T S , Paul D R . Physical aging and plasticization of thick and thin films of the thermally rearranged ortho-functional polyimide 6FDA-HAB. Journal of Membrane Science, 2014, 458: 27–35

DOI

49
Rufford T E , Chan K I , Huang S H , May E F . A review of conventional and emerging process technologies for the recovery of helium from natural gas. Adsorption Science and Technology, 2014, 32(1): 49–72

DOI

Outlines

/