Asymmetric copolyimide membranes fabricated by nonsolvent-induced phase separation for He/CH4 and He/N2 separation
Ying Li, Lu Wang, Junyan Xie, Yong Dai, Xuehong Gu, Xuerui Wang
Asymmetric copolyimide membranes fabricated by nonsolvent-induced phase separation for He/CH4 and He/N2 separation
Membrane gas separation is considered an energy-saving technique to extract He from natural gas due to no phase change and room temperature operation. However, the membrane performance was strongly limited by the trade-off between permeance and selectivity. Herein, novel 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA)-2,2′-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (APAF)-5-amino-2-(4-aminobenzene)benzimidazole (BIA) asymmetric membranes with a thickness of 300 nm were successfully prepared by the non-solvent induced phase separation method. The membrane performance was modulated by regulating dope solution compositions (e.g., tetrahydrofuran and polymer concentration). The ideal He/CH4 selectivity was 124 and the optimized He permeance reached 87 GPU, beyond the current upper bound. He/CH4 selectivity was 75 and He permeance was 73 GPU for the binary mixture feed containing 0.2 mol % He. The membrane showed good resistance to CO2 and C2H6, which are the typical impurities in natural gas. The 6FDA-APAF-BIA membranes have good stability (> 160 h), which can provide great potential in He extraction from natural gas.
He separation / membrane / natural gas / copolyimide
[1] |
Berganza C J , Zhang J H . The role of helium gas in medicine. Medical Gas Research, 2013, 3(1): 18
CrossRef
Google scholar
|
[2] |
Dai Z , Deng J , He X , Scholes C A , Jiang X , Wang B , Guo H , Ma Y , Deng L . Helium separation using membrane technology: recent advances and perspectives. Separation and Purification Technology, 2021, 274: 119044
CrossRef
Google scholar
|
[3] |
Sunarso J , Hashim S S , Lin Y S , Liu S M . Membranes for helium recovery: an overview on the context, materials and future directions. Separation and Purification Technology, 2017, 176: 335–383
CrossRef
Google scholar
|
[4] |
Alders M , Winterhalder D , Wessling M . Helium recovery using membrane processes. Separation and Purification Technology, 2017, 189: 433–440
CrossRef
Google scholar
|
[5] |
Mansoori S A A , Pakizeh M , Jomekian A . CO2 and H2 selectivity properties of PDMS/PSf membrane prepared at different conditions. Frontiers of Chemical Science and Engineering, 2011, 5(4): 500–513
CrossRef
Google scholar
|
[6] |
Gantzel P K , Merten U . Gas separations with high-flux cellulose acetate membranes. Industrial & Engineering Chemistry Process Design and Development, 1970, 9(2): 331–332
CrossRef
Google scholar
|
[7] |
Aitken C L , Koros W J , Paul D R . Effect of structural symmetry on gas transport properties of polysulfones. Macromolecules, 1992, 25(13): 3424–3434
CrossRef
Google scholar
|
[8] |
Sanders D F , Smith Z P , Guo R , Robeson L M , McGrath J E , Paul D R , Freeman B D . Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer, 2013, 54(18): 4729–4761
CrossRef
Google scholar
|
[9] |
Esposito E , Mazzei I , Monteleone M , Fuoco A , Carta M , McKeown N B , Malpass-Evans R , Jansen J C . Highly permeable matrimid®/PIM-EA(H2)-TB blend membrane for gas separation. Polymers, 2018, 11(1): 46
CrossRef
Google scholar
|
[10] |
Yavari M , Fang M , Nguyen H , Merkel T C , Lin H , Okamoto Y . Dioxolane-based perfluoropolymers with superior membrane gas separation properties. Macromolecules, 2018, 51(7): 2489–2497
CrossRef
Google scholar
|
[11] |
Yampolskii Y , Belov N , Alentiev A . Perfluorinated polymers as materials of membranes for gas and vapor separation. Journal of Membrane Science, 2020, 598: 117779
CrossRef
Google scholar
|
[12] |
Fang M , He Z , Merkel T C , Okamoto Y . High-performance perfluorodioxolane copolymer membranes for gas separation with tailored selectivity enhancement. Journal of Materials Chemistry A, 2018, 6(2): 652–658
CrossRef
Google scholar
|
[13] |
Li K , Li Q , Cai Z , Weng Y , Ye C , Ji W , Li J , Cheng B , Ma X . Microporosity effect of intrinsic microporous polyimide membranes on their helium enrichment performance after direct fluorination. Journal of Membrane Science, 2022, 660: 120868
CrossRef
Google scholar
|
[14] |
Jiang X , Xiao X , Dong J , Xu X , Zhao X , Zhang Q . Effects of non-TR-able codiamines and rearrangement conditions on the chain packing and gas separation performance of thermally rearranged poly(benzoxazole-co-imide) membranes. Journal of Membrane Science, 2018, 564: 605–616
CrossRef
Google scholar
|
[15] |
Wang L , Li Y , Pu L , Yang M , Lu H , Gu X , Wang X . Copolyimide membranes fabricated by nonsolvent-induced phase separation for helium extraction from natural gas. Separation and Purification Technology, 2023, 313: 123455
CrossRef
Google scholar
|
[16] |
Wang L , Li Y , Zhang P , Chen X , Nian P , Wei Y , Lu H , Gu X , Wang X . Thermally rearranged poly(benzoxazole-co-imide) composite membranes on α-Al2O3 support for helium extraction from natural gas. Journal of Membrane Science, 2022, 657: 120614
CrossRef
Google scholar
|
[17] |
Jiao Y , Liu M , Wu Q , Zheng P , Xu W , Ye B , Zhang H , Guo R , Luo S . Finely tuning the microporosity in phosphoric acid doped triptycene-containing polybenzimidazole membranes for highly permselective helium and hydrogen recovery. Journal of Membrane Science, 2023, 672: 121474
CrossRef
Google scholar
|
[18] |
Zhuang Y , Seong J , Lee W H , Do Y , Lee M J , Wang G , Guiver M , Lee Y M . Mechanically tough, thermally rearranged (TR) random/block poly(benzoxazole-co-imide) gas separation membranes. Macromolecules, 2015, 48(15): 5286–5299
CrossRef
Google scholar
|
[19] |
Gan F , Dong J , Zheng S , Zhao X , Zhang Q . Constructing gas molecule transport channels in thermally rearranged multiblock poly(benzoxazole-co-imide) membranes for effective CO2/CH4 separation. ACS Sustainable Chemistry & Engineering, 2020, 8(26): 9669–9679
CrossRef
Google scholar
|
[20] |
Pan J , Zhang L , Wang Z , Sun S P , Cui Z , Tavajohi N . Poly(vinylidene fluoride-co-hexafluoro propylene) membranes prepared via thermally induced phase separation and application in direct contact membrane distillation. Frontiers of Chemical Science and Engineering, 2022, 16(5): 720–730
CrossRef
Google scholar
|
[21] |
Ge C , Sheng M , Yuan Y , Shi F , Yang Y , Zhao S , Wang J , Wang Z . Recent advances of the interfacial polymerization process in gas separation membranes fabrication. Journal of Membrane Science, 2023, 683: 121854
CrossRef
Google scholar
|
[22] |
Li Y , Shen J , Guan K , Liu G , Zhou H , Jin W . PEBA/ceramic hollow fiber composite membrane for high-efficiency recovery of bio-butanol via pervaporation. Journal of Membrane Science, 2016, 510: 338–347
CrossRef
Google scholar
|
[23] |
Wang X , Shan M , Liu X , Wang M , Doherty C M , Osadchii D , Kapteijn F . High-performance polybenzimidazole membranes for helium extraction from natural gas. ACS Applied Materials & Interfaces, 2019, 11(22): 20098–20103
CrossRef
Google scholar
|
[24] |
Choi S H , Sultan M M B , Alsuwailem A A , Zuabi S M . Preparation and characterization of multilayer thin-film composite hollow fiber membranes for helium extraction from its mixtures. Separation and Purification Technology, 2019, 222: 152–161
CrossRef
Google scholar
|
[25] |
Pinnau I , Koros W J . A qualitative skin layer formation mechanism for membranes made by dry/wet phase inversion. Journal of Polymer Science Part B: Polymer Physics, 1993, 31(4): 419–427
CrossRef
Google scholar
|
[26] |
Kosuri M R , Koros W J . Defect-free asymmetric hollow fiber membranes from Torlon®, a polyamide-imide polymer, for high-pressure CO2 separations. Journal of Membrane Science, 2008, 320(1–2): 65–72
CrossRef
Google scholar
|
[27] |
Pak S H , Jeon Y W , Shin M S , Koh H C . Preparation of cellulose acetate hollow-fiber membranes for CO2/CH4 separation. Environmental Engineering Science, 2016, 33(1): 17–24
CrossRef
Google scholar
|
[28] |
Dibrov G , Ivanov M , Semyashkin M , Sudin V , Kagramanov G . High-pressure aging of asymmetric Torlon® hollow fibers for helium separation from natural gas. Fibers, 2018, 6(4): 83
CrossRef
Google scholar
|
[29] |
Bridge A T , Pedretti B J , Brennecke J F , Freeman B D . Preparation of defect-free asymmetric gas separation membranes with dihydrolevoglucosenone (CyreneTM) as a greener polar aprotic solvent. Journal of Membrane Science, 2022, 644: 120173
CrossRef
Google scholar
|
[30] |
Zhou T , Shi M , Chen L , Gong C , Zhang P , Xie J , Wang X , Gu X . Fluorine-free synthesis of all-silica STT zeolite membranes for H2/CH4 separation. Chemical Engineering Journal, 2022, 433: 133567
CrossRef
Google scholar
|
[31] |
Chung T S , Teoh S K , Hu X . Formation of ultrathin high-performance polyethersulfone hollow-fiber membranes. Journal of Membrane Science, 1997, 133(2): 161–175
CrossRef
Google scholar
|
[32] |
Kim S , Han S H , Lee Y M . Thermally rearranged (TR) polybenzoxazole hollow fiber membranes for CO2 capture. Journal of Membrane Science, 2012, 403–404: 169–178
CrossRef
Google scholar
|
[33] |
Woo K T , Lee J , Dong G , Kim J S , Do Y S , Hung W S , Lee K R , Barbieri G , Drioli E , Lee Y M . Fabrication of thermally rearranged (TR) polybenzoxazole hollow fiber membranes with superior CO2/N2 separation performance. Journal of Membrane Science, 2015, 490: 129–138
CrossRef
Google scholar
|
[34] |
Clausi D T , Koros W J . Formation of defect-free polyimide hollow fiber membranes for gas separations. Journal of Membrane Science, 2000, 167(1): 79–89
CrossRef
Google scholar
|
[35] |
Gan F , Dong J , Xu X , Li M , Zhao X , Zhang Q . Preparation of thermally rearranged poly(benzoxazole-co-imide) membranes containing heteroaromatic moieties for CO2/CH4 separation. Polymer, 2019, 185: 121945
CrossRef
Google scholar
|
[36] |
McHattie J S , Koros W J , Paul D R . Gas transport properties of polysulphones: 2. Effect of bisphenol connector groups. Polymer, 1991, 32(14): 2618–2625
CrossRef
Google scholar
|
[37] |
Choi S H , Qahtani M S , Qasem E A . Multilayer thin-film composite membranes for helium enrichment. Journal of Membrane Science, 2018, 553: 180–188
CrossRef
Google scholar
|
[38] |
Kostina J , Rusakova O , Bondarenko G , Alentiev A , Meleshko T , Kukarkina N , Yakimanskii A , Yampolskii Y . Thermal rearrangement of functionalized polyimides: IR-spectral, quantum chemical studies, and gas permeability of TR polymers. Industrial & Engineering Chemistry Research, 2013, 52(31): 10476–10483
CrossRef
Google scholar
|
[39] |
Abdulhamid M A , Genduso G , Wang Y , Ma X , Pinnau I . Plasticization-resistant carboxyl-functionalized 6FDA-polyimide of intrinsic microporosity (PIM-PI) for membrane-based gas separation. Industrial & Engineering Chemistry Research, 2020, 59(12): 5247–5256
CrossRef
Google scholar
|
[40] |
Gong C , Peng X , Zhu M , Zhou T , You L , Ren S , Wang X , Gu X . Synthesis and performance of STT zeolite membranes for He/N2 and He/CH4 separation. Separation and Purification Technology, 2022, 301: 121927
CrossRef
Google scholar
|
[41] |
Zhang P , Gong C , Zhou T , Du P , Song J , Shi M , Wang X , Gu X . Helium extraction from natural gas using DD3R zeolite membranes. Chinese Journal of Chemical Engineering, 2022, 49: 122–129
CrossRef
Google scholar
|
[42] |
Scholes C A , Ghosh U . Helium separation through polymeric membranes: selectivity targets. Journal of Membrane Science, 2016, 520: 221–230
CrossRef
Google scholar
|
[43] |
Scholes C A , Stevens G W , Kentish S E . Membrane gas separation applications in natural gas processing. Fuel, 2012, 96: 15–28
CrossRef
Google scholar
|
[44] |
Scholes C A , Ghosh U K . Review of membranes for helium separation and purification. Membranes, 2017, 7(1): 9
CrossRef
Google scholar
|
[45] |
Babkina N V , Kosyanchuk L F , Todosiichuk T T , Kozak N V , Menzheres G Y , Nesterenko G M . Structural changes in blends of linear polymers during their physical aging. Polymer Science Series A, 2012, 54(2): 125–134
CrossRef
Google scholar
|
[46] |
Staiger C L , Pas S J , Hill A J , Cornelius C J . Gas separation, free volume distribution, and physical aging of a highly microporous spirobisindane polymer. Chemistry of Materials, 2008, 20(8): 2606–2608
CrossRef
Google scholar
|
[47] |
Kim J H , Koros W J , Paul D R . Effects of CO2 exposure and physical aging on the gas permeability of thin 6FDA-based polyimide membranes: Part 2. With crosslinking. Journal of Membrane Science, 2006, 282(1–2): 32–43
CrossRef
Google scholar
|
[48] |
Wang H , Chung T S , Paul D R . Physical aging and plasticization of thick and thin films of the thermally rearranged ortho-functional polyimide 6FDA-HAB. Journal of Membrane Science, 2014, 458: 27–35
CrossRef
Google scholar
|
[49] |
Rufford T E , Chan K I , Huang S H , May E F . A review of conventional and emerging process technologies for the recovery of helium from natural gas. Adsorption Science and Technology, 2014, 32(1): 49–72
CrossRef
Google scholar
|
/
〈 | 〉 |