Asymmetric copolyimide membranes fabricated by nonsolvent-induced phase separation for He/CH4 and He/N2 separation

Ying Li, Lu Wang, Junyan Xie, Yong Dai, Xuehong Gu, Xuerui Wang

PDF(5776 KB)
PDF(5776 KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (4) : 44. DOI: 10.1007/s11705-024-2405-5
RESEARCH ARTICLE

Asymmetric copolyimide membranes fabricated by nonsolvent-induced phase separation for He/CH4 and He/N2 separation

Author information +
History +

Abstract

Membrane gas separation is considered an energy-saving technique to extract He from natural gas due to no phase change and room temperature operation. However, the membrane performance was strongly limited by the trade-off between permeance and selectivity. Herein, novel 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA)-2,2′-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (APAF)-5-amino-2-(4-aminobenzene)benzimidazole (BIA) asymmetric membranes with a thickness of 300 nm were successfully prepared by the non-solvent induced phase separation method. The membrane performance was modulated by regulating dope solution compositions (e.g., tetrahydrofuran and polymer concentration). The ideal He/CH4 selectivity was 124 and the optimized He permeance reached 87 GPU, beyond the current upper bound. He/CH4 selectivity was 75 and He permeance was 73 GPU for the binary mixture feed containing 0.2 mol % He. The membrane showed good resistance to CO2 and C2H6, which are the typical impurities in natural gas. The 6FDA-APAF-BIA membranes have good stability (> 160 h), which can provide great potential in He extraction from natural gas.

Graphical abstract

Keywords

He separation / membrane / natural gas / copolyimide

Cite this article

Download citation ▾
Ying Li, Lu Wang, Junyan Xie, Yong Dai, Xuehong Gu, Xuerui Wang. Asymmetric copolyimide membranes fabricated by nonsolvent-induced phase separation for He/CH4 and He/N2 separation. Front. Chem. Sci. Eng., 2024, 18(4): 44 https://doi.org/10.1007/s11705-024-2405-5

References

[1]
Berganza C J , Zhang J H . The role of helium gas in medicine. Medical Gas Research, 2013, 3(1): 18
CrossRef Google scholar
[2]
Dai Z , Deng J , He X , Scholes C A , Jiang X , Wang B , Guo H , Ma Y , Deng L . Helium separation using membrane technology: recent advances and perspectives. Separation and Purification Technology, 2021, 274: 119044
CrossRef Google scholar
[3]
Sunarso J , Hashim S S , Lin Y S , Liu S M . Membranes for helium recovery: an overview on the context, materials and future directions. Separation and Purification Technology, 2017, 176: 335–383
CrossRef Google scholar
[4]
Alders M , Winterhalder D , Wessling M . Helium recovery using membrane processes. Separation and Purification Technology, 2017, 189: 433–440
CrossRef Google scholar
[5]
Mansoori S A A , Pakizeh M , Jomekian A . CO2 and H2 selectivity properties of PDMS/PSf membrane prepared at different conditions. Frontiers of Chemical Science and Engineering, 2011, 5(4): 500–513
CrossRef Google scholar
[6]
Gantzel P K , Merten U . Gas separations with high-flux cellulose acetate membranes. Industrial & Engineering Chemistry Process Design and Development, 1970, 9(2): 331–332
CrossRef Google scholar
[7]
Aitken C L , Koros W J , Paul D R . Effect of structural symmetry on gas transport properties of polysulfones. Macromolecules, 1992, 25(13): 3424–3434
CrossRef Google scholar
[8]
Sanders D F , Smith Z P , Guo R , Robeson L M , McGrath J E , Paul D R , Freeman B D . Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer, 2013, 54(18): 4729–4761
CrossRef Google scholar
[9]
Esposito E , Mazzei I , Monteleone M , Fuoco A , Carta M , McKeown N B , Malpass-Evans R , Jansen J C . Highly permeable matrimid®/PIM-EA(H2)-TB blend membrane for gas separation. Polymers, 2018, 11(1): 46
CrossRef Google scholar
[10]
Yavari M , Fang M , Nguyen H , Merkel T C , Lin H , Okamoto Y . Dioxolane-based perfluoropolymers with superior membrane gas separation properties. Macromolecules, 2018, 51(7): 2489–2497
CrossRef Google scholar
[11]
Yampolskii Y , Belov N , Alentiev A . Perfluorinated polymers as materials of membranes for gas and vapor separation. Journal of Membrane Science, 2020, 598: 117779
CrossRef Google scholar
[12]
Fang M , He Z , Merkel T C , Okamoto Y . High-performance perfluorodioxolane copolymer membranes for gas separation with tailored selectivity enhancement. Journal of Materials Chemistry A, 2018, 6(2): 652–658
CrossRef Google scholar
[13]
Li K , Li Q , Cai Z , Weng Y , Ye C , Ji W , Li J , Cheng B , Ma X . Microporosity effect of intrinsic microporous polyimide membranes on their helium enrichment performance after direct fluorination. Journal of Membrane Science, 2022, 660: 120868
CrossRef Google scholar
[14]
Jiang X , Xiao X , Dong J , Xu X , Zhao X , Zhang Q . Effects of non-TR-able codiamines and rearrangement conditions on the chain packing and gas separation performance of thermally rearranged poly(benzoxazole-co-imide) membranes. Journal of Membrane Science, 2018, 564: 605–616
CrossRef Google scholar
[15]
Wang L , Li Y , Pu L , Yang M , Lu H , Gu X , Wang X . Copolyimide membranes fabricated by nonsolvent-induced phase separation for helium extraction from natural gas. Separation and Purification Technology, 2023, 313: 123455
CrossRef Google scholar
[16]
Wang L , Li Y , Zhang P , Chen X , Nian P , Wei Y , Lu H , Gu X , Wang X . Thermally rearranged poly(benzoxazole-co-imide) composite membranes on α-Al2O3 support for helium extraction from natural gas. Journal of Membrane Science, 2022, 657: 120614
CrossRef Google scholar
[17]
Jiao Y , Liu M , Wu Q , Zheng P , Xu W , Ye B , Zhang H , Guo R , Luo S . Finely tuning the microporosity in phosphoric acid doped triptycene-containing polybenzimidazole membranes for highly permselective helium and hydrogen recovery. Journal of Membrane Science, 2023, 672: 121474
CrossRef Google scholar
[18]
Zhuang Y , Seong J , Lee W H , Do Y , Lee M J , Wang G , Guiver M , Lee Y M . Mechanically tough, thermally rearranged (TR) random/block poly(benzoxazole-co-imide) gas separation membranes. Macromolecules, 2015, 48(15): 5286–5299
CrossRef Google scholar
[19]
Gan F , Dong J , Zheng S , Zhao X , Zhang Q . Constructing gas molecule transport channels in thermally rearranged multiblock poly(benzoxazole-co-imide) membranes for effective CO2/CH4 separation. ACS Sustainable Chemistry & Engineering, 2020, 8(26): 9669–9679
CrossRef Google scholar
[20]
Pan J , Zhang L , Wang Z , Sun S P , Cui Z , Tavajohi N . Poly(vinylidene fluoride-co-hexafluoro propylene) membranes prepared via thermally induced phase separation and application in direct contact membrane distillation. Frontiers of Chemical Science and Engineering, 2022, 16(5): 720–730
CrossRef Google scholar
[21]
Ge C , Sheng M , Yuan Y , Shi F , Yang Y , Zhao S , Wang J , Wang Z . Recent advances of the interfacial polymerization process in gas separation membranes fabrication. Journal of Membrane Science, 2023, 683: 121854
CrossRef Google scholar
[22]
Li Y , Shen J , Guan K , Liu G , Zhou H , Jin W . PEBA/ceramic hollow fiber composite membrane for high-efficiency recovery of bio-butanol via pervaporation. Journal of Membrane Science, 2016, 510: 338–347
CrossRef Google scholar
[23]
Wang X , Shan M , Liu X , Wang M , Doherty C M , Osadchii D , Kapteijn F . High-performance polybenzimidazole membranes for helium extraction from natural gas. ACS Applied Materials & Interfaces, 2019, 11(22): 20098–20103
CrossRef Google scholar
[24]
Choi S H , Sultan M M B , Alsuwailem A A , Zuabi S M . Preparation and characterization of multilayer thin-film composite hollow fiber membranes for helium extraction from its mixtures. Separation and Purification Technology, 2019, 222: 152–161
CrossRef Google scholar
[25]
Pinnau I , Koros W J . A qualitative skin layer formation mechanism for membranes made by dry/wet phase inversion. Journal of Polymer Science Part B: Polymer Physics, 1993, 31(4): 419–427
CrossRef Google scholar
[26]
Kosuri M R , Koros W J . Defect-free asymmetric hollow fiber membranes from Torlon®, a polyamide-imide polymer, for high-pressure CO2 separations. Journal of Membrane Science, 2008, 320(1–2): 65–72
CrossRef Google scholar
[27]
Pak S H , Jeon Y W , Shin M S , Koh H C . Preparation of cellulose acetate hollow-fiber membranes for CO2/CH4 separation. Environmental Engineering Science, 2016, 33(1): 17–24
CrossRef Google scholar
[28]
Dibrov G , Ivanov M , Semyashkin M , Sudin V , Kagramanov G . High-pressure aging of asymmetric Torlon® hollow fibers for helium separation from natural gas. Fibers, 2018, 6(4): 83
CrossRef Google scholar
[29]
Bridge A T , Pedretti B J , Brennecke J F , Freeman B D . Preparation of defect-free asymmetric gas separation membranes with dihydrolevoglucosenone (CyreneTM) as a greener polar aprotic solvent. Journal of Membrane Science, 2022, 644: 120173
CrossRef Google scholar
[30]
Zhou T , Shi M , Chen L , Gong C , Zhang P , Xie J , Wang X , Gu X . Fluorine-free synthesis of all-silica STT zeolite membranes for H2/CH4 separation. Chemical Engineering Journal, 2022, 433: 133567
CrossRef Google scholar
[31]
Chung T S , Teoh S K , Hu X . Formation of ultrathin high-performance polyethersulfone hollow-fiber membranes. Journal of Membrane Science, 1997, 133(2): 161–175
CrossRef Google scholar
[32]
Kim S , Han S H , Lee Y M . Thermally rearranged (TR) polybenzoxazole hollow fiber membranes for CO2 capture. Journal of Membrane Science, 2012, 403–404: 169–178
CrossRef Google scholar
[33]
Woo K T , Lee J , Dong G , Kim J S , Do Y S , Hung W S , Lee K R , Barbieri G , Drioli E , Lee Y M . Fabrication of thermally rearranged (TR) polybenzoxazole hollow fiber membranes with superior CO2/N2 separation performance. Journal of Membrane Science, 2015, 490: 129–138
CrossRef Google scholar
[34]
Clausi D T , Koros W J . Formation of defect-free polyimide hollow fiber membranes for gas separations. Journal of Membrane Science, 2000, 167(1): 79–89
CrossRef Google scholar
[35]
Gan F , Dong J , Xu X , Li M , Zhao X , Zhang Q . Preparation of thermally rearranged poly(benzoxazole-co-imide) membranes containing heteroaromatic moieties for CO2/CH4 separation. Polymer, 2019, 185: 121945
CrossRef Google scholar
[36]
McHattie J S , Koros W J , Paul D R . Gas transport properties of polysulphones: 2. Effect of bisphenol connector groups. Polymer, 1991, 32(14): 2618–2625
CrossRef Google scholar
[37]
Choi S H , Qahtani M S , Qasem E A . Multilayer thin-film composite membranes for helium enrichment. Journal of Membrane Science, 2018, 553: 180–188
CrossRef Google scholar
[38]
Kostina J , Rusakova O , Bondarenko G , Alentiev A , Meleshko T , Kukarkina N , Yakimanskii A , Yampolskii Y . Thermal rearrangement of functionalized polyimides: IR-spectral, quantum chemical studies, and gas permeability of TR polymers. Industrial & Engineering Chemistry Research, 2013, 52(31): 10476–10483
CrossRef Google scholar
[39]
Abdulhamid M A , Genduso G , Wang Y , Ma X , Pinnau I . Plasticization-resistant carboxyl-functionalized 6FDA-polyimide of intrinsic microporosity (PIM-PI) for membrane-based gas separation. Industrial & Engineering Chemistry Research, 2020, 59(12): 5247–5256
CrossRef Google scholar
[40]
Gong C , Peng X , Zhu M , Zhou T , You L , Ren S , Wang X , Gu X . Synthesis and performance of STT zeolite membranes for He/N2 and He/CH4 separation. Separation and Purification Technology, 2022, 301: 121927
CrossRef Google scholar
[41]
Zhang P , Gong C , Zhou T , Du P , Song J , Shi M , Wang X , Gu X . Helium extraction from natural gas using DD3R zeolite membranes. Chinese Journal of Chemical Engineering, 2022, 49: 122–129
CrossRef Google scholar
[42]
Scholes C A , Ghosh U . Helium separation through polymeric membranes: selectivity targets. Journal of Membrane Science, 2016, 520: 221–230
CrossRef Google scholar
[43]
Scholes C A , Stevens G W , Kentish S E . Membrane gas separation applications in natural gas processing. Fuel, 2012, 96: 15–28
CrossRef Google scholar
[44]
Scholes C A , Ghosh U K . Review of membranes for helium separation and purification. Membranes, 2017, 7(1): 9
CrossRef Google scholar
[45]
Babkina N V , Kosyanchuk L F , Todosiichuk T T , Kozak N V , Menzheres G Y , Nesterenko G M . Structural changes in blends of linear polymers during their physical aging. Polymer Science Series A, 2012, 54(2): 125–134
CrossRef Google scholar
[46]
Staiger C L , Pas S J , Hill A J , Cornelius C J . Gas separation, free volume distribution, and physical aging of a highly microporous spirobisindane polymer. Chemistry of Materials, 2008, 20(8): 2606–2608
CrossRef Google scholar
[47]
Kim J H , Koros W J , Paul D R . Effects of CO2 exposure and physical aging on the gas permeability of thin 6FDA-based polyimide membranes: Part 2. With crosslinking. Journal of Membrane Science, 2006, 282(1–2): 32–43
CrossRef Google scholar
[48]
Wang H , Chung T S , Paul D R . Physical aging and plasticization of thick and thin films of the thermally rearranged ortho-functional polyimide 6FDA-HAB. Journal of Membrane Science, 2014, 458: 27–35
CrossRef Google scholar
[49]
Rufford T E , Chan K I , Huang S H , May E F . A review of conventional and emerging process technologies for the recovery of helium from natural gas. Adsorption Science and Technology, 2014, 32(1): 49–72
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was sponsored by the National Key Research and Development Program of China (Grant No. 2021YFC2101203), the National Natural Science Foundation of China (Grant Nos. 22178164 and U22B20148), the Jiangsu Provincial Carbon Peak Carbon Neutral Science and Technology Innovation Special Fund (Grant No. BE2022033), the Jiangsu Specially-Appointed Professors Program, and the State Key Laboratory of Materials-Oriented Chemical Engineering (Grant No. ZK202002). We thank the support given by Liming Pu and Miao Yang from China Petroleum Engineering Construction Co., Ltd.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2405-5 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(5776 KB)

Accesses

Citations

Detail

Sections
Recommended

/