Recent progress in photocatalytic NAD(P)H regeneration for photocatalytic-enzymatic-coupling system
Received date: 03 Oct 2023
Accepted date: 14 Dec 2023
Copyright
The enzymatic redox reactions in natural photosynthesis rely much on the participation of cofactors, with reduced nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate (NADH/NADPH) or their oxidized form (NAD+/NADP+) as an important redox power. The photocatalytic regeneration of expensive and unstable NADH/NADPH in vitro is an important process in enzymatic reduction and has attracted much research attention. Though different types of photocatalysts have been developed for photocatalytic NADH/NADPH regeneration, the efficiency is still relatively low. To elucidate the key factors affecting the performance of photocatalytic NADH/NADPH regeneration is helpful to rationally design the photocatalyst and improve the photocatalytic efficiency. In this paper, we overview the recent progress in photocatalytic NADH/NADPH regeneration with the focus on the strategies to improve the visible light adsorption, the charge separation and migration efficiency, as well as the surface reaction, which jointly determine the overall photocatalytic regeneration efficiency. The potential development of photocatalytic NADH/NADPH regeneration and photocatalytic-enzymatic-coupling system is prospected finally.
Wei Lan , Maodi Wang , Huicong Dai , Qihua Yang . Recent progress in photocatalytic NAD(P)H regeneration for photocatalytic-enzymatic-coupling system[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(4) : 37 . DOI: 10.1007/s11705-024-2398-0
1 |
Wu H , Tian C , Song X , Liu C , Yang D , Jiang Z . Methods for the regeneration of nicotinamide coenzymes. Green Chemistry, 2013, 15(7): 1773–1789
|
2 |
Wang X , Yiu H H P . Heterogeneous catalysis mediated cofactor NADH regeneration for enzymatic reduction. ACS Catalysis, 2016, 6(3): 1880–1886
|
3 |
Wang X , Saba T , Yiu H H P , Howe R F , Anderson J A , Shi J . Cofactor NAD(P)H regeneration inspired by heterogeneous pathways. Chem, 2017, 2(5): 621–654
|
4 |
Zhang Y , Zhao Y , Li R , Liu J . Bioinspired NADH regeneration based on conjugated photocatalytic systems. Solar RRL, 2021, 5(2): 2000339
|
5 |
Bai Y , Wang L , Ge J . Advances in photo-enzymatic-coupling catalysis system. Systems Microbiology and Biomanufacturing, 2021, 1(3): 245–256
|
6 |
Jones J B , Sneddon D W , Higgins W , Lewis A J . Preparative-scale reductions of cyclic ketones and aldehyde substrates of horse liver alcohol dehydrogenase with in situ sodium dithionite recycling of catalytic amounts of NAD. Journal of the Chemical Society Chemical Communications, 1972, (15): 856–857
|
7 |
Taylor K E , Jones J B . Nicotinamide coenzyme regeneration by dihydropyridine and pyridinium compounds. Journal of the American Chemical Society, 1976, 98(18): 5689–5694
|
8 |
Hollmann F , Arends I W C E , Holtmann D . Enzymatic reductions for the chemist. Green Chemistry, 2011, 13(9): 2285–2314
|
9 |
Roche J , Groenen-Serrano K , Reynes O , Chauvet F , Tzedakis T . NADH regenerated using immobilized FDH in a continuously supplied reactor—application to L-lactate synthesis. Chemical Engineering Journal, 2014, 239: 216–225
|
10 |
Tensi L , Macchioni A . Extremely fast NADH-regeneration using phosphonic acid as hydride source and iridium-pyridine-2-sulfonamidate catalysts. ACS Catalysis, 2020, 10(14): 7945–7949
|
11 |
Ganesan V , Kim J J , Shin J , Park K , Yoon S . Efficient nicotinamide adenine dinucleotide regeneration with a rhodium-carbene catalyst and isolation of a hydride intermediate. Inorganic Chemistry, 2022, 61(15): 5683–5690
|
12 |
Burnett J W H , Li J , McCue A J , Kechagiopoulos P N , Howe R F , Wang X . Directing the H2-driven selective regeneration of NADH via Sn-doped Pt/SiO2. Green Chemistry, 2022, 24(4): 1451–1455
|
13 |
Wang M , Ren X , Guo M , Liu J , Li H , Yang Q . Chemoselective NADH regeneration: the synergy effect of TiOx and Pt in NAD+ hydrogenation. ACS Sustainable Chemistry & Engineering, 2021, 9(18): 6499–6506
|
14 |
Li S , Cheng Y , Chen Y , Li J , Sun Y , Shi J , Jiang Z . Topologically and chemically engineered conjugated polymer with synergistically intensified electron generation, transfer and utilization for photocatalytic nicotinamide cofactor regeneration. Applied Catalysis B: Environmental, 2022, 317: 121772
|
15 |
Oppelt K T , Woss E , Stiftinger M , Schofberger W , Buchberger W , Knor G . Photocatalytic reduction of artificial and natural nucleotide co-factors with a chlorophyll-like tin-dihydroporphyrin sensitizer. Inorganic Chemistry, 2013, 52(20): 11910–11922
|
16 |
Ji X , Kang Y , Fan T , Xiong Q , Zhang S , Tao W , Zhang H . An antimonene/Cp*Rh(phen)Cl/black phosphorus hybrid nanosheet-based Z-scheme artificial photosynthesis for enhanced photo/bio-catalytic CO2 reduction. Journal of Materials Chemistry A, 2020, 8(1): 323–333
|
17 |
Zhang Y , Yu W , Cao S , Sun Z , Nie X , Liu Y , Zhao Z . Photocatalytic chemoselective transfer hydrogenation of quinolines to tetrahydroquinolines on hierarchical NiO/In2O3–CdS microspheres. ACS Catalysis, 2021, 11(21): 13408–13415
|
18 |
Goren Z , Lapidot N , Willner I . Photocatalysed regeneration of NAD(P)H by CdS and TiO2 semiconductors: applications in enzymatic synthesis. Journal of Molecular Catalysis, 1988, 47(1): 21–32
|
19 |
Immanuel S , Sivasubramanian R . Electrochemical reduction of NAD+ on graphene oxide and chemically reduced graphene oxide nanosheets. Materials Science and Engineering B, 2020, 262: 114705
|
20 |
Liu F , Ding C , Tian S , Lu S M , Feng C , Tu D , Liu Y , Wang W , Li C . Electrocatalytic NAD+ reduction via hydrogen atom-coupled electron transfer. Chemical Science, 2022, 13(45): 13361–13367
|
21 |
Lee Y S , Gerulskis R , Minteer S D . Advances in electrochemical cofactor regeneration: enzymatic and non-enzymatic approaches. Current Opinion in Biotechnology, 2022, 73: 14–21
|
22 |
Singh C , Kumar A , Yadav R K , Gole V L , Dwivedi D K . Solar light-driven photocatalyst-enzyme attached artificial photosynthetic system for regeneration and production of 1,4-NADH and L-glutamate. Vietnam Journal of Chemistry, 2021, 59(2): 198–202
|
23 |
Zhang S , Liu S , Sun Y , Li S , Shi J , Jiang Z . Enzyme-photo-coupled catalytic systems. Chemical Society Reviews, 2021, 50(24): 13449–13466
|
24 |
Bhoware S S , Kim K Y , Kim J A , Wu Q , Kim J . Photocatalytic activity of Pt nanoparticles for visible light-driven production of NADH. Journal of Physical Chemistry C, 2011, 115(5): 2553–2557
|
25 |
Huang J , Antonietti M , Liu J . Bio-inspired carbon nitride mesoporous spheres for artificial photosynthesis: photocatalytic cofactor regeneration for sustainable enzymatic synthesis. Journal of Materials Chemistry A, 2014, 2(21): 7686–7693
|
26 |
Huang X , Liu J , Yang Q , Liu Y , Zhu Y , Li T , Tsang Y H , Zhang X . Microfluidic chip-based one-step fabrication of an artificial photosystem I for photocatalytic cofactor regeneration. RSC Advances, 2016, 6(104): 101974–101980
|
27 |
Liu J , Huang J , Zhou H , Antonietti M . Uniform graphitic carbon nitride nanorod for efficient photocatalytic hydrogen evolution and sustained photoenzymatic catalysis. ACS Applied Materials & Interfaces, 2014, 6(11): 8434–8440
|
28 |
Nam D H , Lee S H , Park C B . CdTe, CdSe, and CdS nanocrystals for highly efficient regeneration of nicotinamide cofactor under visible light. Small, 2010, 6(8): 922–926
|
29 |
Ji X , Wang J , Mei L , Tao W , Barrett A , Su Z , Wang S , Ma G , Shi J , Zhang S . Porphyrin/SiO2/Cp*Rh(bpy)Cl hybrid nanoparticles mimicking chloroplast with enhanced electronic energy transfer for biocatalyzed artificial photosynthesis. Advanced Functional Materials, 2018, 28(9): 1705083
|
30 |
Pan Q , Liu H , Zhao Y , Chen S , Xue B , Kan X , Huang X , Liu J , Li Z . Preparation of N-graphdiyne nanosheets at liquid/liquid interface for photocatalytic NADH regeneration. ACS Applied Materials & Interfaces, 2019, 11(3): 2740–2744
|
31 |
Shi Q , Yang D , Jiang Z , Li J . Visible-light photocatalytic regeneration of NADH using P-doped TiO2 nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 2006, 43(1–4): 44–48
|
32 |
Liu J , Antonietti M . Bio-inspired NADH regeneration by carbon nitride photocatalysis using diatom templates. Energy & Environmental Science, 2013, 6(5): 1486–1493
|
33 |
Bavykina A , Kolobov N , Khan I S , Bau J A , Ramirez A , Gascon J . Metal-organic frameworks in heterogeneous catalysis: recent progress, new trends, and future perspectives. Chemical Reviews, 2020, 120(16): 8468–8535
|
34 |
Gan X , Lei D , Wong K Y . Two-dimensional layered nanomaterials for visible-light-driven photocatalytic water splitting. Materials Today Energy, 2018, 10: 352–367
|
35 |
Yang Y , Chen H , Lu J . Inactivation of algae by visible-light-driven modified photocatalysts: a review. Science of the Total Environment, 2023, 858: 159640
|
36 |
Kawawaki T , Kawachi M , Yazaki D , Akinaga Y , Hirayama D , Negishi Y . Development and functionalization of visible-light-driven water-splitting photocatalysts. Nanomaterials, 2022, 12(3): 344
|
37 |
Mandler D , Willner I . Photosensitized NAD(P)H regeneration systems; application in the reduction of butan-2-one, pyruvic, and acetoacetic acids and in the reductive amination of pyruvic and oxoglutaric acid to amino acid. Journal of the Chemical Society Perkin Transactions 2, 1986, (6): 805–811
|
38 |
Habisreutinger S N , Schmidt-Mende L , Stolarczyk J K . Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition, 2013, 52(29): 7372–7408
|
39 |
Kosco J , Moruzzi F , Willner B , McCulloch I . Photocatalysts based on organic semiconductors with tunable energy levels for solar fuel applications. Advanced Energy Materials, 2020, 10(39): 2001935
|
40 |
Carmo M E G , Spies L , Silva G N , Lopes O F , Bein T , Schneider J , Patrocinio A O T . From conventional inorganic semiconductors to covalent organic frameworks: advances and opportunities in heterogeneous photocatalytic CO2 reduction. Journal of Materials Chemistry A, 2023, 11(26): 13815–13843
|
41 |
Guo Y , Zhou Q , Zhu B , Tang C Y , Zhu Y . Advances in organic semiconductors for photocatalytic hydrogen evolution reaction. EES Catalysis, 2023, 1(4): 333–352
|
42 |
Lee S Y , Park S J . TiO2 photocatalyst for water treatment applications. Journal of Industrial and Engineering Chemistry, 2013, 19(6): 1761–1769
|
43 |
Nakata K , Fujishima A . TiO2 photocatalysis: design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(3): 169–189
|
44 |
Fujishima A , Zhang X , Tryk D . TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 2008, 63(12): 515–582
|
45 |
Asahi R , Morikawa T , Irie H , Ohwaki T . Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chemical Reviews, 2014, 114(19): 9824–9852
|
46 |
Asahi R , Morikawa T , Ohwaki T , Aoki K , Taga Y . Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269–271
|
47 |
Mancuso A , Blangetti N , Sacco O , Freyria F S , Bonelli B , Esposito S , Sannino D , Vaiano V . Photocatalytic degradation of crystal violet dye under visible light by Fe-doped TiO2 prepared by reverse-micelle sol-gel method. Nanomaterials, 2023, 13(2): 270
|
48 |
Chen D , Yang D , Wang Q , Jiang Z . Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles. Industrial & Engineering Chemistry Research, 2006, 45(12): 4110–4116
|
49 |
LiuFCaoHXuLFuHSunSXiaoZSunCLongXXiaYWangS. Design and preparation of highly active TiO2 photocatalysts by modulating their band structure. Journal of Colloid and Interface Science, 2022, 629(Part B): 336–344
|
50 |
Naseri A , Samadi M , Pourjavadi A , Moshfegh A Z , Ramakrishna S . Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions. Journal of Materials Chemistry A, 2017, 5(45): 23406–23433
|
51 |
Thomas A , Fischer A , Goettmann F , Antonietti M , Müller J O , Schlögl R , Carlsson J M . Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry, 2008, 18(41): 4893–4908
|
52 |
Liu J , Cazelles R , Chen Z P , Zhou H , Galarneau A , Antonietti M . The bioinspired construction of an ordered carbon nitride array for photocatalytic mediated enzymatic reduction. Physical Chemistry Chemical Physics, 2014, 16(28): 14699–14705
|
53 |
Tripathi A , Yadav R K , Singh S , Shahin R , Dwivedi D K , Gupta N K , Kim T W , Verma R K , Kumar K . A donor-acceptor self-assembled graphitic carbon nitride based EB-T photocatalytic system for generation and regeneration of C(sp3)–F bond and NADH under sunlight. Diamond and Related Materials, 2023, 136: 109998
|
54 |
Singh C , Chaubey S , Singh P , Sharma K , Shambhavi A , Kumar R K , Yadav D K , Dwivedi J O , Baeg U .
|
55 |
Xie F , Jia H , Wun C K T , Huang X , Chai Y , Tsoi C C , Pan Z , Zhu S , Ren K , Lo T W B .
|
56 |
Swarnkar N , Yadav R K , Singh S , Shahin R , Shukla R K , Tripathi S K , Dwivedi D K , Nath S , Singh C , Baeg J O . Highly selective in-situ prepared g-C3N4/P-B composite photocatalyst for direct C–H bond arylation and NADH regeneration cofactor under solar light. Journal of Chemical Sciences, 2023, 135(2): 29
|
57 |
Paul D R , Sharma R , Singh S , Singh P , Panchal P , Sharma A , Devi P , Nehra S P . Mg/Li Co-doped g-C3N4: an excellent photocatalyst for wastewater remediation and hydrogen production applications towards sustainable development. International Journal of Hydrogen Energy, 2023, 48(96): 37746–37761
|
58 |
Wen J , Xie J , Chen X , Li X . A review on g-C3N4-based photocatalysts. Applied Surface Science, 2017, 391: 72–123
|
59 |
Gupta S K , Gupta A K , Yadav R K , Singh A , Yadav B C . Highly efficient S-g-CN/Mo-368 catalyst for synergistically NADH regeneration under solar light. Photochemistry and Photobiology, 2022, 98(1): 160–168
|
60 |
Wang K , Li Q , Liu B , Cheng B , Ho W , Yu J . Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Applied Catalysis B: Environmental, 2015, 176–177: 44–52
|
61 |
Vu M H , Sakar M , Nguyen C C , Do T O . Chemically bonded Ni cocatalyst onto the S doped g-C3N4 nanosheets and their synergistic enhancement in H2 production under sunlight irradiation. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 4194–4203
|
62 |
Sun C , Zhang H , Liu H , Zheng X , Zou W , Dong L , Qi L . Enhanced activity of visible-light photocatalytic H2 evolution of sulfur-doped g-C3N4 photocatalyst via nanoparticle metal Ni as cocatalyst. Applied Catalysis B: Environmental, 2018, 235: 66–74
|
63 |
Singh P , Yadav R K , Kumar K , Lee Y , Gupta A K , Kumar K , Yadav B C , Singh S N , Dwivedi D K , Nam S H .
|
64 |
Zhang P , Hu J , Shen Y , Yang X , Qu J , Du F , Sun W , Li C M . Photoenzymatic catalytic cascade system of a pyromellitic diimide/g-C3N4 heterojunction to efficiently regenerate NADH for highly selective CO2 reduction toward formic acid. ACS Applied Materials & Interfaces, 2021, 13(39): 46650–46658
|
65 |
Mishra S , Yadav R K , Singh S , Chaubey S , Singh P , Singh C , Gupta S K , Gupta S , Tiwary D , Kim T W . Solar light responsive graphitic carbon nitride coupled porphyrin photocatalyst that uses for solar fine chemical production. Photochemistry and Photobiology, 2023, 99(4): 1080–1091
|
66 |
Cheng L , Xiang Q , Liao Y , Zhang H . CdS-based photocatalysts. Energy & Environmental Science, 2018, 11(6): 1362–1391
|
67 |
Prasad C , Madkhali N , Won J S , Lee J E , Sangaraju S , Choi H Y . CdS based heterojunction for water splitting: a review. Materials Science and Engineering B, 2023, 292: 116413
|
68 |
Li Q , Li X , Wageh S , Al-Ghamdi A A , Yu J G . CdS/graphene nanocomposite photocatalysts. Advanced Energy Materials, 2015, 5(14): 1500010
|
69 |
Chen W , Huang G B , Song H , Zhang J . Efficient and stable charge transfer channels for photocatalytic water splitting activity of CdS without sacrificial agents. Journal of Materials Chemistry A, 2020, 8(40): 20963–20969
|
70 |
Fermín D J , Ponomarev E A , Peter L M . A kinetic study of CdS photocorrosion by intensity modulated photocurrent and photoelectrochemical impedance spectroscopy. Journal of Electroanalytical Chemistry, 1999, 473(1–2): 192–203
|
71 |
Xiang X , Zhu B , Cheng B , Yu J , Lv H . Enhanced photocatalytic H2-production activity of CdS quantum dots using Sn2+ as cocatalyst under visible light irradiation. Small, 2020, 16(26): 2001024
|
72 |
Roy A M , De G C , Sasmal N , Bhattacharyya S S . Determination of the flatband potential of semiconductor particles in suspension by photovoltage measurement. International Journal of Hydrogen Energy, 1995, 20(8): 627–630
|
73 |
Wu C , Huang W , Liu H , Lv K , Li Q . Insight into synergistic effect of Ti3C2 MXene and MoS2 on anti-photocorrosion and photocatalytic of CdS for hydrogen production. Applied Catalysis B: Environmental, 2023, 330: 122653
|
74 |
Chen Y , Zhong W , Chen F , Wang P , Fan J , Yu H . Photoinduced self-stability mechanism of CdS photocatalyst: the dependence of photocorrosion and H2-evolution performance. Journal of Materials Science and Technology, 2022, 121: 19–27
|
75 |
Tang Y , Hu X , Liu C . Perfect inhibition of CdS photocorrosion by graphene sheltering engineering on TiO2 nanotube array for highly stable photocatalytic activity. Physical Chemistry Chemical Physics, 2014, 16(46): 25321–25329
|
76 |
Zhang H , Zhu Y . Significant visible photoactivity and antiphotocorrosion performance of CdS photocatalysts after monolayer polyaniline hybridization. Journal of Physical Chemistry C, 2010, 114(13): 5822–5826
|
77 |
Wang D , Bao C , Luo Q , Yin R , Li X , An J , Xu Z . Improved visible-light photocatalytic activity and anti-photocorrosion of CdS nanoparticles surface-modified by conjugated derivatives from polyvinyl chloride. Journal of Environmental Chemical Engineering, 2015, 3(3): 1578–1585
|
78 |
Ning X , Zhen W , Wu Y , Lu G . Inhibition of CdS photocorrosion by Al2O3 shell for highly stable photocatalytic overall water splitting under visible light irradiation. Applied Catalysis B: Environmental, 2018, 226: 373–383
|
79 |
Lu Z , Yan H , Li B , Song M , Hang Y , Zhou G , Xu Y , Ma C , Han S , Liu X . Imprinted modified S-scheme heterojunction with high selectivity for inhibiting CdS photocorrosion by coating with poly-o-phenylenediamine. Applied Surface Science, 2022, 605: 154694
|
80 |
Gao C , Zhang S , Feng F , Hu S , Zhao Q , Chen Y . Constructing a CdS QDs/silica gel composite with high photosensitivity and prolonged recyclable operability for enhanced visible-light-driven NADH regeneration. Journal of Colloid and Interface Science, 2023, 652: 1043–1052
|
81 |
Yang D , Zhang Y , Zou H , Zhang S , Wu Y , Cai Z , Shi J , Jiang Z . Phosphorus quantum dots-facilitated enrichment of electrons on g-C3N4 hollow tubes for visible-light-driven nicotinamide adenine dinucleotide regeneration. ACS Sustainable Chemistry & Engineering, 2018, 7(1): 285–295
|
82 |
Wu Y , Ward Bond J , Li D , Zhang S , Shi J , Jiang Z . g-C3N4@α-Fe2O3/C photocatalysts: synergistically intensified charge generation and charge transfer for NADH regeneration. ACS Catalysis, 2018, 8(7): 5664–5674
|
83 |
Chen L , Yang Y , Jiang D . CMPs as scaffolds for constructing porous catalytic frameworks: a built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers. Journal of the American Chemical Society, 2010, 132(26): 9138–9143
|
84 |
Freund R , Zaremba O , Arnauts G , Ameloot R , Skorupskii G , Dinca M , Bavykina A , Gascon J , Ejsmont A , Goscianska J .
|
85 |
Wang C , Li J , Lv X , Zhang Y , Guo G . Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy & Environmental Science, 2014, 7(9): 2831–2867
|
86 |
Xie Y , Wang T , Liu X , Zou K , Deng W . Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer. Nature Communications, 2013, 4(1): 1960
|
87 |
Lee J S M , Cooper A I . Advances in conjugated microporous polymers. Chemical Reviews, 2020, 120(4): 2171–2214
|
88 |
Jiang J X , Su F , Trewin A , Wood C D , Campbell N L , Niu H , Dickinson C , Ganin A Y , Rosseinsky M J , Khimyak Y Z .
|
89 |
Lan F , Wang Q , Chen H , Chen Y , Zhang Y , Huang B , Liu H , Liu J , Li R . Preparation of hydrophilic conjugated microporous polymers for efficient visible light-driven nicotinamide adenine dinucleotide regeneration and photobiocatalytic formaldehyde reduction. ACS Catalysis, 2020, 10(21): 12976–12986
|
90 |
Wang Y , Liu H , Pan Q , Ding N , Yang C , Zhang Z , Jia C , Li Z , Liu J , Zhao Y . Construction of thiazolo[5,4-d]thiazole-based two-dimensional network for efficient photocatalytic CO2 reduction. ACS Applied Materials & Interfaces, 2020, 12(41): 46483–46489
|
91 |
Côté A P , Benin A I , Ockwig N W , O’Keeffe M , Matzger A J , Yaghi O M . Porous, crystalline, covalent organic frameworks. Science, 2005, 310(5751): 1166–1170
|
92 |
Liang Q , Li Z , Huang Z , Kang F , Yang Q . Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Advanced Functional Materials, 2015, 25(44): 6885–6892
|
93 |
Yadav D , Kumar A , Kim J Y , Park N J , Baeg J O . Interfacially synthesized 2D COF thin film photocatalyst: efficient photocatalyst for solar formic acid production from CO2 and fine chemical synthesis. Journal of Materials Chemistry A, 2021, 9(15): 9573–9580
|
94 |
Singh N , Yadav D , Mulay S V , Kim J Y , Park N J , Baeg J O . Band gap engineering in solvochromic 2D covalent organic framework photocatalysts for visible light-driven enhanced solar fuel production from carbon dioxide. ACS Applied Materials & Interfaces, 2021, 13(12): 14122–14131
|
95 |
Wang Y , Liu H , Pan Q , Wu C , Hao W , Xu J , Chen R , Liu J , Li Z , Zhao Y . Construction of fully conjugated covalent organic frameworks via facile linkage conversion for efficient photoenzymatic catalysis. Journal of the American Chemical Society, 2020, 142(13): 5958–5963
|
96 |
Aguirre M E , Isla Naveira R , Botta P M , Altieri T A , Wolosiuk A , Churio M S . Early instability of MIL-125-NH2 in aqueous solution and mediation of the visible photogeneration of an NADH cofactor. New Journal of Chemistry, 2021, 45(23): 10277–10286
|
97 |
Mohamed R M , Ibrahim F M . Visible light photocatalytic reduction of nitrobenzene using Ag/Bi2MoO6 nanocomposite. Journal of Industrial and Engineering Chemistry, 2015, 22: 28–33
|
98 |
Li H , Liu J , Wang M , Ren X , Li C , Ren Y , Yang Q . Fabrication of nanoCOF/polyoxometallate composites for photocatalytic NADH regeneration via cascade electron relay. Solar RRL, 2021, 5(1): 2000641
|
99 |
Chen S , Zhang H , Fu X , Hu Y . Preparation, characterization, and photocatalytic performance of Ce2S3 for nitrobenzene reduction. Applied Surface Science, 2013, 275: 335–341
|
100 |
Tsutsumi K , Uchikawa F , Sakai K , Tabata K . Photoinduced reduction of nitroarenes using a transition-metal-loaded silicon semiconductor under visible light irradiation. ACS Catalysis, 2016, 6(7): 4394–4398
|
101 |
Yang B , Luo W , Liao Q , Zhu J , Gan M , Liu X , Qiu G . Photogenerated-hole scavenger for enhancing photocatalytic chalcopyrite bioleaching. Transactions of Nonferrous Metals Society of China, 2020, 30(1): 200–211
|
102 |
Wang S , Wu X , Fang J , Zhang F , Liu Y , Liu H , He Y , Luo M , Li R . Direct Z-scheme polymer/polymer double-shell hollow nanostructures for efficient NADH regeneration and biocatalytic artificial photosynthesis under visible light. ACS Catalysis, 2023, 13(7): 4433–4443
|
103 |
Tian Y , Zhou Y , Zong Y , Li J , Yang N , Zhang M , Guo Z , Song H . Construction of functionally compartmental inorganic photocatalyst-enzyme system via imitating chloroplast for efficient photoreduction of CO2 to formic acid. ACS Applied Materials & Interfaces, 2020, 12(31): 34795–34805
|
104 |
Marschall R . Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Advanced Functional Materials, 2014, 24(17): 2421–2440
|
105 |
Sun Z , Wang H , Wu Z , Wang L . g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction. Catalysis Today, 2018, 300: 160–172
|
106 |
Zheng Y , Chen Y , Gao B , Lin B , Wang X . Phosphorene-based heterostructured photocatalysts. Engineering, 2021, 7(7): 991–1001
|
107 |
Niu X , Bai X , Zhou Z , Wang J . Rational design and characterization of direct Z-scheme photocatalyst for overall water splitting from excited state dynamics simulations. ACS Catalysis, 2020, 10(3): 1976–1983
|
108 |
Tu J , Wu W , Lei X , Li P . The SWSe-BP vdW heterostructure as a promising photocatalyst for water splitting with power conversion efficiency of 19.4%. ACS Omega, 2022, 7(42): 37061–37069
|
109 |
Xiao M , Wang Z , Lyu M , Luo B , Wang S , Liu G , Cheng H M , Wang L . Hollow nanostructures for photocatalysis: advantages and challenges. Advanced Materials, 2019, 31(38): 1801369
|
110 |
Wang H , Lin Q , Yin L , Yang Y , Qiu Y , Lu C , Yang H . Biomimetic design of hollow flower-like g-C3N4@PDA organic framework nanospheres for realizing an efficient photoreactivity. Small, 2019, 15(16): 1900011
|
111 |
Zeng P , Ji X , Su Z , Zhang S . WS2/g-C3N4 composite as an efficient heterojunction photocatalyst for biocatalyzed artificial photosynthesis. RSC Advances, 2018, 8(37): 20557–20567
|
112 |
Low J , Yu J , Jaroniec M , Wageh S , Al-Ghamdi A A . Heterojunction photocatalysts. Advanced Materials, 2017, 29(20): 1601694
|
113 |
Ng B J , Putri L K , Kong X Y , Teh Y W , Pasbakhsh P , Chai S P . Z-scheme photocatalytic systems for solar water splitting. Advanced Materials, 2020, 7(7): 1903171
|
114 |
Xu Q , Zhang L , Yu J , Wageh S , Al Ghamdi A A , Jaroniec M . Direct Z-scheme photocatalysts: principles, synthesis, and applications. Materials Today, 2018, 21(10): 1042–1063
|
115 |
Singh R , Bhateria R . Core-shell nanostructures: a simplest two-component system with enhanced properties and multiple applications. Environmental Geochemistry and Health, 2021, 43(7): 2459–2482
|
116 |
Ghosh Chaudhuri R , Paria S . Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chemical Reviews, 2012, 112(4): 2373–2433
|
117 |
Das S , Pérez Ramírez J , Gong J , Dewangan N , Hidajat K , Gates B C , Kawi S . Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chemical Society Reviews, 2020, 49(10): 2937–3004
|
118 |
Yang D , Zhang Y , Zhang S , Cheng Y , Wu Y , Cai Z , Wang X , Shi J , Jiang Z . Coordination between electrontransfer and molecule diffusion through a bioinspired amorphous titania nanoshell for photocatalytic nicotinamide cofactor regeneration. ACS Catalysis, 2019, 9(12): 11492–11501
|
119 |
Zhou L , Su Z , Wang J , Cai Y , Ding N , Wang L , Zhang J , Liu Y , Lei J . Highly selective regeneration of 1,4-NADH enabled by a metal-free core-shell photocatalyst of resorcinol-formaldehyde resins@polyaniline under visible light. Applied Catalysis B: Environmental, 2024, 341: 123290
|
120 |
Zhao H , Wang L , Liu G , Liu Y , Zhang S , Wang L , Zheng X , Zhou L , Gao J , Shi J .
|
121 |
Yang J , Wang D , Han H , Li C . Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Accounts of Chemical Research, 2013, 46(8): 1900–1909
|
122 |
Qi Y , Zhang J , Kong Y , Zhao Y , Chen S , Li D , Liu W , Chen Y , Xie T , Cui J .
|
123 |
Xiao N , Li S , Li X , Ge L , Gao Y , Li N . The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen. Chinese Journal of Catalysis, 2020, 41(4): 642–671
|
124 |
ZhouYHeYGaoMDingNLeiJZhouY. Efficient photocatalytic NADH regeneration with Rh-loaded Z-scheme mediator-free system. Chinese Chemical Letters, 2024(2), 35: 108690
|
125 |
Jain P K , Huang X , El Sayed I H , El Sayed M A . Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics, 2007, 2(3): 107–118
|
126 |
Fang M , Tan X , Liu Z , Hu B , Wang X . Recent progress on metal-enhanced photocatalysis: a review on the mechanism. Research, 2021, 2021: 9794329
|
127 |
Jiang J , Wang X , Guo H . Enhanced interfacial charge transfer/separation by LSPR-induced defective semiconductor toward high CO2RR performance. Small, 2023, 19(33): 2301280
|
128 |
Zhou S , Cai Y , Zhang J , Liu Y , Zhou L , Lei J . Au-loaded resorcinol-formaldehyde resin photocatalysts: hollow sphere structure design and localized surface plasmon resonance effect synergistically promote efficient nicotinamide adenine dinucleotide (NADH) regeneration. ACS Sustainable Chemistry & Engineering, 2022, 10(44): 14464–14473
|
129 |
Dhankhar A , Jain V , Chakraborty I N , Pillai P P . Enhancing the photocatalytic regeneration of nicotinamide cofactors with surface engineered plasmonic antenna-reactor system. Journal of Photochemistry and Photobiology A Chemistry, 2023, 437: 114472
|
130 |
Wang S , Gao Y , Miao S , Liu T , Mu L , Li R , Fan F , Li C . Positioning the water oxidation reaction sites in plasmonic photocatalysts. Journal of the American Chemical Society, 2017, 139(34): 11771–11778
|
131 |
Zhao S , Zhang Y , Zhou Y , Fang J , Wang Y , Zhang C , Chen W . Fabrication of sandwich-structured g-C3N4/Au/BiOCl Z-scheme photocatalyst with enhanced photocatalytic performance under visible light irradiation. Journal of Materials Science, 2018, 53(8): 6008–6020
|
132 |
Pachfule P , Acharjya A , Roeser J , Langenhahn T , Schwarze M , Schomacker R , Thomas A , Schmidt J . Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. Journal of the American Chemical Society, 2018, 140(4): 1423–1427
|
133 |
Zhang L , Zhao Q , Shen L , Li Q , Liu T , Hou L , Yang J . Enhancing the photocatalytic activity of defective titania for carbon dioxide photoreduction via surface functionalization. Catalysis Science & Technology, 2022, 12(2): 509–518
|
134 |
Feng C , Wu Z , Huang K , Ye J , Zhang H . Surface modification of 2D photocatalysts for solar energy conversion. Advanced Materials, 2022, 34(23): 2200180
|
135 |
Ma B , Sun S , He H , Lv R , Deng J , Huo T , Zhao Y , Yu H , Zhou L . An efficient metal-free photocatalytic system with enhanced activity for NADH regeneration. Industrial & Engineering Chemistry Research, 2019, 58(51): 23567–23573
|
136 |
Li C , Liu J , Li H , Wu K , Wang J , Yang Q . Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution. Nature Communications, 2022, 13(1): 2357
|
137 |
Dai C , Liu B . Conjugated polymers for visible-light-driven photocatalysis. Energy & Environmental Science, 2020, 13(1): 24–52
|
138 |
Lan Z , Ren W , Chen X , Zhang Y , Wang X . Conjugated donor-acceptor polymer photocatalysts with electron-output “tentacles” for efficient hydrogen evolution. Applied Catalysis B: Environmental, 2019, 245: 596–603
|
139 |
Meng J , Tian Y , Li C , Lin X , Wang Z , Sun L , Zhou Y , Li J , Yang N , Zong Y .
|
140 |
Son E J , Lee Y W , Ko J W , Park C B . Amorphous carbon nitride as a robust photocatalyst for biocatalytic solar-to-chemical conversion. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 2545–2552
|
141 |
Linsebigler A , Lu G , Yates J T . Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews, 1995, 95(3): 735–758
|
142 |
Ning X , Meng S , Fu X , Ye X , Chen S . Efficient utilization of photogenerated electrons and holes for photocatalytic selective organic syntheses in one reaction system using a narrow band gap CdS photocatalyst. Green Chemistry, 2016, 18(12): 3628–3639
|
143 |
Emmanuel M A , Bender S G , Bilodeau C , Carceller J M , DeHovitz J S , Fu H , Liu Y , Nicholls B T , Ouyang Y , Page C G .
|
144 |
Concepcion J J , Jurss J W , Brennaman M K , Hoertz P G , Patrocinio A O T , Murakami Iha N Y , Templeton J L , Meyer T J . Making oxygen with ruthenium complexes. Accounts of Chemical Research, 2009, 42(12): 1954–1965
|
145 |
Sharma V K , Hutchison J M , Allgeier A M . Redox biocatalysis: quantitative comparisons of nicotinamide cofactor regeneration methods. ChemSusChem, 2022, 15(22): e202200888
|
146 |
Zhang Y , Liu J . Bioinspired photocatalytic NADH regeneration by covalently metalated carbon nitride for enhanced CO2 reduction. Chemistry A European Journal, 2022, 28(55): e202201430
|
147 |
Cheng Y , Shi J , Wu Y , Wang X , Sun Y , Cai Z , Chen Y , Jiang Z . Intensifying electron utilization by surface-anchored Rh complex for enhanced nicotinamide cofactor regeneration and photoenzymatic CO2 reduction. Research, 2021, 2021: 8175709
|
148 |
Xing X , Liu Y , Shi M , Li K , Fan X , Wu Z , Wang N , Yu X . Preparation of chiral aryl alcohols: a controllable enzymatic strategy via light-driven NAD(P)H regeneration. New Journal of Chemistry, 2022, 46(13): 6274–6282
|
149 |
Lin G , Zhang Y , Hua Y , Zhang C , Jia C , Ju D , Yu C , Li P , Liu J . Bioinspired metalation of the metal-organic framework MIL-125-NH2 for photocatalytic NADH regeneration and gas-liquid-solid three-phase enzymatic CO2 reduction. Angewandte Chemie International Edition, 2022, 61(31): e202206283
|
150 |
Wu Y , Shi J , Li D , Zhang S , Gu B , Qiu Q , Sun Y , Zhang Y , Cai Z , Jiang Z . Synergy of electron transfer and electron utilization via metal-organic frameworks as an electron buffer tank for nicotinamide regeneration. ACS Catalysis, 2020, 10(5): 2894–2905
|
151 |
Wu X , Wang S , Fang J , Chen H , Liu H , Li R . Enhanced photocatalytic efficiency in visible-light-induced NADH regeneration by intramolecular electron transfer. ACS Applied Materials & Interfaces, 2022, 14(34): 38895–38904
|
152 |
Zhao Z , Zheng D , Guo M , Yu J , Zhang S , Zhang Z , Chen Y . Engineering olefin-linked covalent organic frameworks for photoenzymatic reduction of CO2. Angewandte Chemie International Edition, 2022, 61(12): e202200261
|
153 |
Liu J , Ren X , Li C , Wang M , Li H , Yang Q . Assembly of COFs layer and electron mediator on silica for visible light driven photocatalytic NADH regeneration. Applied Catalysis B: Environmental, 2022, 310: 121314
|
154 |
Zhao Y , Liu H , Wu C , Zhang Z , Pan Q , Hu F , Wang R , Li P , Huang X , Li Z . Fully conjugated two-dimensional sp2-carbon covalent organic frameworks as artificial photosystem I with high efficiency. Angewandte Chemie International Edition, 2019, 58(16): 5376–5381
|
155 |
Roy S , Jain V , Kashyap R K , Rao A , Pillai P P . Electrostatically driven multielectron transfer for the photocatalytic regeneration of nicotinamide cofactor. ACS Catalysis, 2020, 10(10): 5522–5528
|
156 |
Zhang Z , Tong J , Meng X , Cai Y , Ma S , Huo F , Luo J , Xu B , Zhang S , Pinelo M . Development of an ionic porphyrin-based platform as a biomimetic light-harvesting agent for high-performance photoenzymatic synthesis of methanol from CO2. ACS Sustainable Chemistry & Engineering, 2021, 9(34): 11503–11511
|
157 |
Kim J H , Lee S H , Lee J S , Lee M , Park C B . Zn-containing porphyrin as a biomimetic light-harvesting molecule for biocatalyzed artificial photosynthesis. Chemical Communications, 2011, 47(37): 10227–10229
|
158 |
Wang Y , Sun J , Zhang H , Zhao Z , Liu W . Tetra(4-carboxyphenyl)porphyrin for efficient cofactor regeneration under visible light and its immobilization. Catalysis Science & Technology, 2018, 8(10): 2578–2587
|
159 |
Kita Y , Amao Y . Visible-light-driven 3-hydroxybutyrate production from acetone and low concentrations of CO2 with a system of hybridized photocatalytic NADH regeneration and multi-biocatalysts. Green Chemistry, 2023, 25(7): 2699–2710
|
160 |
Huang D , Ju Z P , Li C S , Yao C M , Guo J . First-principles study of Ag2ZnSnS4 as a photocatalyst. Acta Physica Sinica, 2014, 63(24): 247101
|
161 |
Ye Y , Zang Z , Zhou T , Dong F , Lu S , Tang X , Wei W , Zhang Y . Theoretical and experimental investigation of highly photocatalytic performance of CuInZnS nanoporous structure for removing the NO gas. Journal of Catalysis, 2018, 357: 100–107
|
162 |
Ge L , Ke Y , Li X . Machine learning integrated photocatalysis: progress and challenges. Chemical Communications, 2023, 59(39): 5795–5806
|
163 |
Mai H , Le T C , Chen D , Winkler D A , Caruso R A . Machine learning for electrocatalyst and photocatalyst design and discovery. Chemical Reviews, 2022, 122(16): 13478–13515
|
164 |
Mor G K , Shankar K , Paulose M , Varghese O K , Grimes C A . Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Letters, 2006, 6(2): 215–218
|
165 |
Chen C , Ma W , Zhao J . Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chemical Society Reviews, 2010, 39(11): 4206–4219
|
166 |
Hargenrader G N , Weerasooriya R B , Ilic S , Niklas J , Poluektov O G , Glusac K D . Photoregeneration of biomimetic nicotinamide adenine dinucleotide analogues via a dye-sensitized approach. ACS Applied Energy Materials, 2019, 2(1): 80–91
|
167 |
Mishra A , Fischer M K , Bauerle P . Metal-free organic dyes for dye-sensitized solar cells: from structure property relationships to design rules. Angewandte Chemie International Edition, 2009, 48(14): 2474–2499
|
168 |
Mojiri-Foroushani M , Dehghani H , Salehi-Vanani N . Enhancement of dye-sensitized solar cells performances by improving electron density in conduction band of nanostructure TiO2 electrode with using a metalloporphyrin as additional dye. Electrochimica Acta, 2013, 92: 315–322
|
169 |
Mendizabal F , Mera Adasme R , Xu W H , Sundholm D . Electronic and optical properties of metalloporphyrins of zinc on TiO2 cluster in dye-sensitized solar-cells (DSSC). A quantum chemistry study. RSC Advances, 2017, 7(68): 42677–42684
|
170 |
Ludin N A , Al Alwani Mahmoud A M , Bakar Mohamad A , Kadhum A A H , Sopian K , Abdul Karim N S . Review on the development of natural dye photosensitizer for dye-sensitized solar cells. Renewable & Sustainable Energy Reviews, 2014, 31: 386–396
|
171 |
Wu K L , Li C H , Chi Y , Clifford J N , Cabau L , Palomares E , Cheng Y M , Pan H A , Chou P T . Dye molecular structure device open-circuit voltage correlation in Ru(II) sensitizers with heteroleptic tridentate chelates for dye-sensitized solar cells. Journal of the American Chemical Society, 2012, 134(17): 7488–7496
|
172 |
LeT TAkhtarM SParkD MLeeJ CYangO B. Water splitting on Rhodamine-B dye sensitized Co-doped TiO2 catalyst under visible light. Applied Catalysis B: Environmental, 2012, 111–112: 397–401
|
173 |
Li Y , Xie C , Peng S , Lu G , Li S . Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution. Journal of Molecular Catalysis A: Chemical, 2008, 282(1–2): 117–123
|
174 |
Ge M , Li Q , Cao C , Huang J , Li S , Zhang S , Chen Z , Zhang K , Al-Deyab S S , Lai Y . One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Advanced Science, 2017, 4(1): 1600152
|
175 |
Perera S D , Mariano R G , Vu K , Nour N , Seitz O , Chabal Y , Balkus K J Jr . Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catalysis, 2012, 2(6): 949–956
|
176 |
Jo Y K , Lee J M , Son S , Hwang S J . 2D inorganic nanosheet-based hybrid photocatalysts: design, applications, and perspectives. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 40: 150–190
|
177 |
Liang S , Liang R , Wen L , Yuan R , Wu L , Fu X . Molecular recognitive photocatalytic degradation of various cationic pollutants by the selective adsorption on visible light-driven SnNb2O6 nanosheet photocatalyst. Applied Catalysis B: Environmental, 2012, 125: 103–110
|
178 |
Dong K , Le T A , Nakibli Y , Schleusener A , Wächtler M , Amirav L . Molecular metallocorrole-nanorod photocatalytic system for sustainable hydrogen production. ChemSusChem, 2022, 15(17): e202200804
|
179 |
Tongying P , Vietmeyer F , Aleksiuk D , Ferraudi G J , Krylova G , Kuno M . Double heterojunction nanowire photocatalysts for hydrogen generation. Nanoscale, 2014, 6(8): 4117–4124
|
180 |
Xu J , Qin T , Chen W , Lv J , Zeng X , Sun J , Li Y , Zhou J . Synergizing piezoelectric and plasmonic modulation of Ag/BiFeO3 fibrous heterostructure toward boosted photoelectrochemical energy conversion. Nano Energy, 2021, 89: 106317
|
181 |
Xu S , Guo L , Sun Q , Wang Z . Piezotronic effect enhanced plasmonic photocatalysis by AuNPs/BaTiO3 heterostructures. Advanced Functional Materials, 2019, 29(13): 1808737
|
182 |
Jiang Z , Tan X , Huang Y . Piezoelectric effect enhanced photocatalysis in environmental remediation: state-of-the-art techniques and future scenarios. Science of the Total Environment, 2022, 806: 150924
|
183 |
Li R , Zhang F , Wang D , Yang J , Li M , Zhu J , Zhou X , Han H , Li C . Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nature Communications, 2013, 4(1): 1432
|
184 |
Huang M , Lian J , Si R , Wang L , Pan X , Liu P . Spatial separation of electrons and holes among ZnO polar {0001} and {101̅0} facets for enhanced photocatalytic performance. ACS Omega, 2022, 7(30): 26844–26852
|
185 |
Wang W , Zhou Y , Wen Y , Ni Y , Lu C , Xu Z . Effect of destructive {001}–{101} heterojunction on separating photo-generated electrons and holes of anatase TiO2. Materials Letters, 2015, 158: 29–31
|
186 |
Hu C , Tu S , Tian N , Ma T , Zhang Y , Huang H . Photocatalysis enhanced by external fields. Angewandte Chemie International Edition, 2021, 60(30): 16309–16328
|
187 |
Jiang Z , Wang H , Huang H , Cao C . Photocatalysis enhancement by electric field: TiO2 thin film for degradation of dye X-3B. Chemosphere, 2004, 56(5): 503–508
|
188 |
Yang H G , Sun C H , Qiao S Z , Zou J , Liu G , Smith S C , Cheng H M , Lu G Q . Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008, 453(7195): 638–641
|
189 |
Xiong J , Di J , Xia J , Zhu W , Li H . Surface defect engineering in 2D nanomaterials for photocatalysis. Advanced Functional Materials, 2018, 28(39): 1801983
|
190 |
Di J , Zhu C , Ji M , Duan M , Long R , Yan C , Gu K , Xiong J , She Y , Xia J .
|
191 |
Maarisetty D , Mary R , Hang D R , Mohapatra P , Baral S S . The role of material defects in the photocatalytic CO2 reduction: interfacial properties, thermodynamics, kinetics and mechanism. Journal of CO2 Utilization, 2022, 64: 102175
|
192 |
Yan X , Zhuang L , Zhu Z , Yao X . Defect engineering and characterization of active sites for efficient electrocatalysis. Nanoscale, 2021, 13(6): 3327–3345
|
193 |
Niu P , Liu G , Cheng H . Nitrogen vacancy-promoted photocatalytic activity of graphitic carbon nitride. Journal of Physical Chemistry C, 2012, 116(20): 11013–11018
|
194 |
Li H , Li J , Ai Z , Jia F , Zhang L . Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives. Angewandte Chemie International Edition, 2018, 57(1): 122–138
|
195 |
Xue X , Chen R , Chen H , Hu Y , Ding Q , Liu Z , Ma L , Zhu G , Zhang W , Yu Q .
|
196 |
Zafar Z , Yi S , Li J , Li C , Zhu Y , Zada A , Yao W , Liu Z , Yue X . Recent development in defects engineered photocatalysts: an overview of the experimental and theoretical strategies. Energy & Environmental Science, 2022, 5(1): 68–114
|
197 |
Jiang Z , Lü C , Wu H . Photoregeneration of NADH using carbon-containing TiO2. Industrial & Engineering Chemistry Research, 2005, 44(12): 4165–4170
|
198 |
Suzuki T M , Yoshino S , Takayama T , Iwase A , Kudo A , Morikawa T . Z-schematic and visible-light-driven CO2 reduction using H2O as an electron donor by a particulate mixture of a Ru-complex/(CuGa)1–xZn2xS2 hybrid catalyst, BiVO4 and an electron mediator. Chemical Communications, 2018, 54(72): 10199–10202
|
199 |
Mifsud M , Gargiulo S , Iborra S , Arends I W C E , Hollmann F , Corma A . Photobiocatalytic chemistry of oxidoreductases using water as the electron donor. Nature Communications, 2014, 5(1): 3145
|
200 |
Ruckebusch C , Sliwa M , Pernot P , de Juan A , Tauler R . Comprehensive data analysis of femtosecond transient absorption spectra: a review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(1): 1–27
|
201 |
Jiang Y , Long R , Xiong Y . Regulating C–C coupling in thermocatalytic and electrocatalytic COx conversion based on surface science. Chemical Science, 2019, 10(31): 7310–7326
|
202 |
Ma W , Chen Z , Bu J , Liu Z , Li J , Yan C , Cheng L , Zhang L , Zhang H , Zhang J .
|
203 |
Wang L , Bao H , Lin H , Yang C , Song J , Huang X . An easy fabricated biomimetic leaf microreactor for photocatalytic nicotinamide adenine dinucleotide (NADH) regeneration. Applied Catalysis A: General, 2022, 641: 118685
|
204 |
Huang Z , Wang L , Yang C , Chen J , Zhao G , Huang X . A versatile optofluidic microreactor for artificial photosynthesis induced coenzyme regeneration and L-glutamate synthesis. Lab on a Chip, 2022, 22(15): 2878–2885
|
205 |
Ren S , Wang Z , Bilal M , Feng Y , Jiang Y , Jia S , Cui J . Co-immobilization multienzyme nanoreactor with co-factor regeneration for conversion of CO2. International Journal of Biological Macromolecules, 2020, 155: 110–118
|
/
〈 | 〉 |