Recent progress in photocatalytic NAD(P)H regeneration for photocatalytic-enzymatic-coupling system

  • Wei Lan ,
  • Maodi Wang ,
  • Huicong Dai ,
  • Qihua Yang
Expand
  • Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
qhyang@zjnu.cn

Received date: 03 Oct 2023

Accepted date: 14 Dec 2023

Copyright

2024 Higher Education Press

Abstract

The enzymatic redox reactions in natural photosynthesis rely much on the participation of cofactors, with reduced nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate (NADH/NADPH) or their oxidized form (NAD+/NADP+) as an important redox power. The photocatalytic regeneration of expensive and unstable NADH/NADPH in vitro is an important process in enzymatic reduction and has attracted much research attention. Though different types of photocatalysts have been developed for photocatalytic NADH/NADPH regeneration, the efficiency is still relatively low. To elucidate the key factors affecting the performance of photocatalytic NADH/NADPH regeneration is helpful to rationally design the photocatalyst and improve the photocatalytic efficiency. In this paper, we overview the recent progress in photocatalytic NADH/NADPH regeneration with the focus on the strategies to improve the visible light adsorption, the charge separation and migration efficiency, as well as the surface reaction, which jointly determine the overall photocatalytic regeneration efficiency. The potential development of photocatalytic NADH/NADPH regeneration and photocatalytic-enzymatic-coupling system is prospected finally.

Cite this article

Wei Lan , Maodi Wang , Huicong Dai , Qihua Yang . Recent progress in photocatalytic NAD(P)H regeneration for photocatalytic-enzymatic-coupling system[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(4) : 37 . DOI: 10.1007/s11705-024-2398-0

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 22272164 and 22332002) and the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (Grant No. 2022R01007).
1
Wu H , Tian C , Song X , Liu C , Yang D , Jiang Z . Methods for the regeneration of nicotinamide coenzymes. Green Chemistry, 2013, 15(7): 1773–1789

DOI

2
Wang X , Yiu H H P . Heterogeneous catalysis mediated cofactor NADH regeneration for enzymatic reduction. ACS Catalysis, 2016, 6(3): 1880–1886

DOI

3
Wang X , Saba T , Yiu H H P , Howe R F , Anderson J A , Shi J . Cofactor NAD(P)H regeneration inspired by heterogeneous pathways. Chem, 2017, 2(5): 621–654

DOI

4
Zhang Y , Zhao Y , Li R , Liu J . Bioinspired NADH regeneration based on conjugated photocatalytic systems. Solar RRL, 2021, 5(2): 2000339

DOI

5
Bai Y , Wang L , Ge J . Advances in photo-enzymatic-coupling catalysis system. Systems Microbiology and Biomanufacturing, 2021, 1(3): 245–256

DOI

6
Jones J B , Sneddon D W , Higgins W , Lewis A J . Preparative-scale reductions of cyclic ketones and aldehyde substrates of horse liver alcohol dehydrogenase with in situ sodium dithionite recycling of catalytic amounts of NAD. Journal of the Chemical Society Chemical Communications, 1972, (15): 856–857

DOI

7
Taylor K E , Jones J B . Nicotinamide coenzyme regeneration by dihydropyridine and pyridinium compounds. Journal of the American Chemical Society, 1976, 98(18): 5689–5694

DOI

8
Hollmann F , Arends I W C E , Holtmann D . Enzymatic reductions for the chemist. Green Chemistry, 2011, 13(9): 2285–2314

DOI

9
Roche J , Groenen-Serrano K , Reynes O , Chauvet F , Tzedakis T . NADH regenerated using immobilized FDH in a continuously supplied reactor—application to L-lactate synthesis. Chemical Engineering Journal, 2014, 239: 216–225

DOI

10
Tensi L , Macchioni A . Extremely fast NADH-regeneration using phosphonic acid as hydride source and iridium-pyridine-2-sulfonamidate catalysts. ACS Catalysis, 2020, 10(14): 7945–7949

DOI

11
Ganesan V , Kim J J , Shin J , Park K , Yoon S . Efficient nicotinamide adenine dinucleotide regeneration with a rhodium-carbene catalyst and isolation of a hydride intermediate. Inorganic Chemistry, 2022, 61(15): 5683–5690

DOI

12
Burnett J W H , Li J , McCue A J , Kechagiopoulos P N , Howe R F , Wang X . Directing the H2-driven selective regeneration of NADH via Sn-doped Pt/SiO2. Green Chemistry, 2022, 24(4): 1451–1455

DOI

13
Wang M , Ren X , Guo M , Liu J , Li H , Yang Q . Chemoselective NADH regeneration: the synergy effect of TiOx and Pt in NAD+ hydrogenation. ACS Sustainable Chemistry & Engineering, 2021, 9(18): 6499–6506

DOI

14
Li S , Cheng Y , Chen Y , Li J , Sun Y , Shi J , Jiang Z . Topologically and chemically engineered conjugated polymer with synergistically intensified electron generation, transfer and utilization for photocatalytic nicotinamide cofactor regeneration. Applied Catalysis B: Environmental, 2022, 317: 121772

DOI

15
Oppelt K T , Woss E , Stiftinger M , Schofberger W , Buchberger W , Knor G . Photocatalytic reduction of artificial and natural nucleotide co-factors with a chlorophyll-like tin-dihydroporphyrin sensitizer. Inorganic Chemistry, 2013, 52(20): 11910–11922

DOI

16
Ji X , Kang Y , Fan T , Xiong Q , Zhang S , Tao W , Zhang H . An antimonene/Cp*Rh(phen)Cl/black phosphorus hybrid nanosheet-based Z-scheme artificial photosynthesis for enhanced photo/bio-catalytic CO2 reduction. Journal of Materials Chemistry A, 2020, 8(1): 323–333

DOI

17
Zhang Y , Yu W , Cao S , Sun Z , Nie X , Liu Y , Zhao Z . Photocatalytic chemoselective transfer hydrogenation of quinolines to tetrahydroquinolines on hierarchical NiO/In2O3–CdS microspheres. ACS Catalysis, 2021, 11(21): 13408–13415

DOI

18
Goren Z , Lapidot N , Willner I . Photocatalysed regeneration of NAD(P)H by CdS and TiO2 semiconductors: applications in enzymatic synthesis. Journal of Molecular Catalysis, 1988, 47(1): 21–32

DOI

19
Immanuel S , Sivasubramanian R . Electrochemical reduction of NAD+ on graphene oxide and chemically reduced graphene oxide nanosheets. Materials Science and Engineering B, 2020, 262: 114705

DOI

20
Liu F , Ding C , Tian S , Lu S M , Feng C , Tu D , Liu Y , Wang W , Li C . Electrocatalytic NAD+ reduction via hydrogen atom-coupled electron transfer. Chemical Science, 2022, 13(45): 13361–13367

DOI

21
Lee Y S , Gerulskis R , Minteer S D . Advances in electrochemical cofactor regeneration: enzymatic and non-enzymatic approaches. Current Opinion in Biotechnology, 2022, 73: 14–21

DOI

22
Singh C , Kumar A , Yadav R K , Gole V L , Dwivedi D K . Solar light-driven photocatalyst-enzyme attached artificial photosynthetic system for regeneration and production of 1,4-NADH and L-glutamate. Vietnam Journal of Chemistry, 2021, 59(2): 198–202

23
Zhang S , Liu S , Sun Y , Li S , Shi J , Jiang Z . Enzyme-photo-coupled catalytic systems. Chemical Society Reviews, 2021, 50(24): 13449–13466

DOI

24
Bhoware S S , Kim K Y , Kim J A , Wu Q , Kim J . Photocatalytic activity of Pt nanoparticles for visible light-driven production of NADH. Journal of Physical Chemistry C, 2011, 115(5): 2553–2557

DOI

25
Huang J , Antonietti M , Liu J . Bio-inspired carbon nitride mesoporous spheres for artificial photosynthesis: photocatalytic cofactor regeneration for sustainable enzymatic synthesis. Journal of Materials Chemistry A, 2014, 2(21): 7686–7693

DOI

26
Huang X , Liu J , Yang Q , Liu Y , Zhu Y , Li T , Tsang Y H , Zhang X . Microfluidic chip-based one-step fabrication of an artificial photosystem I for photocatalytic cofactor regeneration. RSC Advances, 2016, 6(104): 101974–101980

DOI

27
Liu J , Huang J , Zhou H , Antonietti M . Uniform graphitic carbon nitride nanorod for efficient photocatalytic hydrogen evolution and sustained photoenzymatic catalysis. ACS Applied Materials & Interfaces, 2014, 6(11): 8434–8440

DOI

28
Nam D H , Lee S H , Park C B . CdTe, CdSe, and CdS nanocrystals for highly efficient regeneration of nicotinamide cofactor under visible light. Small, 2010, 6(8): 922–926

DOI

29
Ji X , Wang J , Mei L , Tao W , Barrett A , Su Z , Wang S , Ma G , Shi J , Zhang S . Porphyrin/SiO2/Cp*Rh(bpy)Cl hybrid nanoparticles mimicking chloroplast with enhanced electronic energy transfer for biocatalyzed artificial photosynthesis. Advanced Functional Materials, 2018, 28(9): 1705083

DOI

30
Pan Q , Liu H , Zhao Y , Chen S , Xue B , Kan X , Huang X , Liu J , Li Z . Preparation of N-graphdiyne nanosheets at liquid/liquid interface for photocatalytic NADH regeneration. ACS Applied Materials & Interfaces, 2019, 11(3): 2740–2744

DOI

31
Shi Q , Yang D , Jiang Z , Li J . Visible-light photocatalytic regeneration of NADH using P-doped TiO2 nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 2006, 43(1–4): 44–48

DOI

32
Liu J , Antonietti M . Bio-inspired NADH regeneration by carbon nitride photocatalysis using diatom templates. Energy & Environmental Science, 2013, 6(5): 1486–1493

DOI

33
Bavykina A , Kolobov N , Khan I S , Bau J A , Ramirez A , Gascon J . Metal-organic frameworks in heterogeneous catalysis: recent progress, new trends, and future perspectives. Chemical Reviews, 2020, 120(16): 8468–8535

DOI

34
Gan X , Lei D , Wong K Y . Two-dimensional layered nanomaterials for visible-light-driven photocatalytic water splitting. Materials Today Energy, 2018, 10: 352–367

DOI

35
Yang Y , Chen H , Lu J . Inactivation of algae by visible-light-driven modified photocatalysts: a review. Science of the Total Environment, 2023, 858: 159640

DOI

36
Kawawaki T , Kawachi M , Yazaki D , Akinaga Y , Hirayama D , Negishi Y . Development and functionalization of visible-light-driven water-splitting photocatalysts. Nanomaterials, 2022, 12(3): 344

DOI

37
Mandler D , Willner I . Photosensitized NAD(P)H regeneration systems; application in the reduction of butan-2-one, pyruvic, and acetoacetic acids and in the reductive amination of pyruvic and oxoglutaric acid to amino acid. Journal of the Chemical Society Perkin Transactions 2, 1986, (6): 805–811

DOI

38
Habisreutinger S N , Schmidt-Mende L , Stolarczyk J K . Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition, 2013, 52(29): 7372–7408

DOI

39
Kosco J , Moruzzi F , Willner B , McCulloch I . Photocatalysts based on organic semiconductors with tunable energy levels for solar fuel applications. Advanced Energy Materials, 2020, 10(39): 2001935

DOI

40
Carmo M E G , Spies L , Silva G N , Lopes O F , Bein T , Schneider J , Patrocinio A O T . From conventional inorganic semiconductors to covalent organic frameworks: advances and opportunities in heterogeneous photocatalytic CO2 reduction. Journal of Materials Chemistry A, 2023, 11(26): 13815–13843

DOI

41
Guo Y , Zhou Q , Zhu B , Tang C Y , Zhu Y . Advances in organic semiconductors for photocatalytic hydrogen evolution reaction. EES Catalysis, 2023, 1(4): 333–352

DOI

42
Lee S Y , Park S J . TiO2 photocatalyst for water treatment applications. Journal of Industrial and Engineering Chemistry, 2013, 19(6): 1761–1769

DOI

43
Nakata K , Fujishima A . TiO2 photocatalysis: design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(3): 169–189

DOI

44
Fujishima A , Zhang X , Tryk D . TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 2008, 63(12): 515–582

DOI

45
Asahi R , Morikawa T , Irie H , Ohwaki T . Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chemical Reviews, 2014, 114(19): 9824–9852

DOI

46
Asahi R , Morikawa T , Ohwaki T , Aoki K , Taga Y . Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269–271

DOI

47
Mancuso A , Blangetti N , Sacco O , Freyria F S , Bonelli B , Esposito S , Sannino D , Vaiano V . Photocatalytic degradation of crystal violet dye under visible light by Fe-doped TiO2 prepared by reverse-micelle sol-gel method. Nanomaterials, 2023, 13(2): 270

DOI

48
Chen D , Yang D , Wang Q , Jiang Z . Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles. Industrial & Engineering Chemistry Research, 2006, 45(12): 4110–4116

DOI

49
LiuFCaoHXuLFuHSunSXiaoZSunCLongXXiaYWangS. Design and preparation of highly active TiO2 photocatalysts by modulating their band structure. Journal of Colloid and Interface Science, 2022, 629(Part B): 336–344

50
Naseri A , Samadi M , Pourjavadi A , Moshfegh A Z , Ramakrishna S . Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions. Journal of Materials Chemistry A, 2017, 5(45): 23406–23433

DOI

51
Thomas A , Fischer A , Goettmann F , Antonietti M , Müller J O , Schlögl R , Carlsson J M . Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry, 2008, 18(41): 4893–4908

DOI

52
Liu J , Cazelles R , Chen Z P , Zhou H , Galarneau A , Antonietti M . The bioinspired construction of an ordered carbon nitride array for photocatalytic mediated enzymatic reduction. Physical Chemistry Chemical Physics, 2014, 16(28): 14699–14705

DOI

53
Tripathi A , Yadav R K , Singh S , Shahin R , Dwivedi D K , Gupta N K , Kim T W , Verma R K , Kumar K . A donor-acceptor self-assembled graphitic carbon nitride based EB-T photocatalytic system for generation and regeneration of C(sp3)–F bond and NADH under sunlight. Diamond and Related Materials, 2023, 136: 109998

DOI

54
Singh C , Chaubey S , Singh P , Sharma K , Shambhavi A , Kumar R K , Yadav D K , Dwivedi J O , Baeg U . . Self-assembled carbon nitride/cobalt(III) porphyrin photocatalyst for mimicking natural photosynthesis. Diamond and Related Materials, 2020, 101: 107648

DOI

55
Xie F , Jia H , Wun C K T , Huang X , Chai Y , Tsoi C C , Pan Z , Zhu S , Ren K , Lo T W B . . Dual-defect abundant graphitic carbon nitride for efficient photocatalytic nicotinamide cofactor regeneration. ACS Sustainable Chemistry & Engineering, 2023, 11(30): 11002–11011

DOI

56
Swarnkar N , Yadav R K , Singh S , Shahin R , Shukla R K , Tripathi S K , Dwivedi D K , Nath S , Singh C , Baeg J O . Highly selective in-situ prepared g-C3N4/P-B composite photocatalyst for direct C–H bond arylation and NADH regeneration cofactor under solar light. Journal of Chemical Sciences, 2023, 135(2): 29

DOI

57
Paul D R , Sharma R , Singh S , Singh P , Panchal P , Sharma A , Devi P , Nehra S P . Mg/Li Co-doped g-C3N4: an excellent photocatalyst for wastewater remediation and hydrogen production applications towards sustainable development. International Journal of Hydrogen Energy, 2023, 48(96): 37746–37761

DOI

58
Wen J , Xie J , Chen X , Li X . A review on g-C3N4-based photocatalysts. Applied Surface Science, 2017, 391: 72–123

DOI

59
Gupta S K , Gupta A K , Yadav R K , Singh A , Yadav B C . Highly efficient S-g-CN/Mo-368 catalyst for synergistically NADH regeneration under solar light. Photochemistry and Photobiology, 2022, 98(1): 160–168

DOI

60
Wang K , Li Q , Liu B , Cheng B , Ho W , Yu J . Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Applied Catalysis B: Environmental, 2015, 176–177: 44–52

DOI

61
Vu M H , Sakar M , Nguyen C C , Do T O . Chemically bonded Ni cocatalyst onto the S doped g-C3N4 nanosheets and their synergistic enhancement in H2 production under sunlight irradiation. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 4194–4203

DOI

62
Sun C , Zhang H , Liu H , Zheng X , Zou W , Dong L , Qi L . Enhanced activity of visible-light photocatalytic H2 evolution of sulfur-doped g-C3N4 photocatalyst via nanoparticle metal Ni as cocatalyst. Applied Catalysis B: Environmental, 2018, 235: 66–74

DOI

63
Singh P , Yadav R K , Kumar K , Lee Y , Gupta A K , Kumar K , Yadav B C , Singh S N , Dwivedi D K , Nam S H . . Eosin-Y and sulfur-codoped g-C3N4 composite for photocatalytic applications: the regeneration of NADH/NADPH and the oxidation of sulfide to sulfoxide. Catalysis Science & Technology, 2021, 11(19): 6401–6410

DOI

64
Zhang P , Hu J , Shen Y , Yang X , Qu J , Du F , Sun W , Li C M . Photoenzymatic catalytic cascade system of a pyromellitic diimide/g-C3N4 heterojunction to efficiently regenerate NADH for highly selective CO2 reduction toward formic acid. ACS Applied Materials & Interfaces, 2021, 13(39): 46650–46658

DOI

65
Mishra S , Yadav R K , Singh S , Chaubey S , Singh P , Singh C , Gupta S K , Gupta S , Tiwary D , Kim T W . Solar light responsive graphitic carbon nitride coupled porphyrin photocatalyst that uses for solar fine chemical production. Photochemistry and Photobiology, 2023, 99(4): 1080–1091

DOI

66
Cheng L , Xiang Q , Liao Y , Zhang H . CdS-based photocatalysts. Energy & Environmental Science, 2018, 11(6): 1362–1391

DOI

67
Prasad C , Madkhali N , Won J S , Lee J E , Sangaraju S , Choi H Y . CdS based heterojunction for water splitting: a review. Materials Science and Engineering B, 2023, 292: 116413

DOI

68
Li Q , Li X , Wageh S , Al-Ghamdi A A , Yu J G . CdS/graphene nanocomposite photocatalysts. Advanced Energy Materials, 2015, 5(14): 1500010

DOI

69
Chen W , Huang G B , Song H , Zhang J . Efficient and stable charge transfer channels for photocatalytic water splitting activity of CdS without sacrificial agents. Journal of Materials Chemistry A, 2020, 8(40): 20963–20969

DOI

70
Fermín D J , Ponomarev E A , Peter L M . A kinetic study of CdS photocorrosion by intensity modulated photocurrent and photoelectrochemical impedance spectroscopy. Journal of Electroanalytical Chemistry, 1999, 473(1–2): 192–203

DOI

71
Xiang X , Zhu B , Cheng B , Yu J , Lv H . Enhanced photocatalytic H2-production activity of CdS quantum dots using Sn2+ as cocatalyst under visible light irradiation. Small, 2020, 16(26): 2001024

DOI

72
Roy A M , De G C , Sasmal N , Bhattacharyya S S . Determination of the flatband potential of semiconductor particles in suspension by photovoltage measurement. International Journal of Hydrogen Energy, 1995, 20(8): 627–630

DOI

73
Wu C , Huang W , Liu H , Lv K , Li Q . Insight into synergistic effect of Ti3C2 MXene and MoS2 on anti-photocorrosion and photocatalytic of CdS for hydrogen production. Applied Catalysis B: Environmental, 2023, 330: 122653

DOI

74
Chen Y , Zhong W , Chen F , Wang P , Fan J , Yu H . Photoinduced self-stability mechanism of CdS photocatalyst: the dependence of photocorrosion and H2-evolution performance. Journal of Materials Science and Technology, 2022, 121: 19–27

DOI

75
Tang Y , Hu X , Liu C . Perfect inhibition of CdS photocorrosion by graphene sheltering engineering on TiO2 nanotube array for highly stable photocatalytic activity. Physical Chemistry Chemical Physics, 2014, 16(46): 25321–25329

DOI

76
Zhang H , Zhu Y . Significant visible photoactivity and antiphotocorrosion performance of CdS photocatalysts after monolayer polyaniline hybridization. Journal of Physical Chemistry C, 2010, 114(13): 5822–5826

DOI

77
Wang D , Bao C , Luo Q , Yin R , Li X , An J , Xu Z . Improved visible-light photocatalytic activity and anti-photocorrosion of CdS nanoparticles surface-modified by conjugated derivatives from polyvinyl chloride. Journal of Environmental Chemical Engineering, 2015, 3(3): 1578–1585

DOI

78
Ning X , Zhen W , Wu Y , Lu G . Inhibition of CdS photocorrosion by Al2O3 shell for highly stable photocatalytic overall water splitting under visible light irradiation. Applied Catalysis B: Environmental, 2018, 226: 373–383

DOI

79
Lu Z , Yan H , Li B , Song M , Hang Y , Zhou G , Xu Y , Ma C , Han S , Liu X . Imprinted modified S-scheme heterojunction with high selectivity for inhibiting CdS photocorrosion by coating with poly-o-phenylenediamine. Applied Surface Science, 2022, 605: 154694

DOI

80
Gao C , Zhang S , Feng F , Hu S , Zhao Q , Chen Y . Constructing a CdS QDs/silica gel composite with high photosensitivity and prolonged recyclable operability for enhanced visible-light-driven NADH regeneration. Journal of Colloid and Interface Science, 2023, 652: 1043–1052

DOI

81
Yang D , Zhang Y , Zou H , Zhang S , Wu Y , Cai Z , Shi J , Jiang Z . Phosphorus quantum dots-facilitated enrichment of electrons on g-C3N4 hollow tubes for visible-light-driven nicotinamide adenine dinucleotide regeneration. ACS Sustainable Chemistry & Engineering, 2018, 7(1): 285–295

DOI

82
Wu Y , Ward Bond J , Li D , Zhang S , Shi J , Jiang Z . g-C3N4@α-Fe2O3/C photocatalysts: synergistically intensified charge generation and charge transfer for NADH regeneration. ACS Catalysis, 2018, 8(7): 5664–5674

DOI

83
Chen L , Yang Y , Jiang D . CMPs as scaffolds for constructing porous catalytic frameworks: a built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers. Journal of the American Chemical Society, 2010, 132(26): 9138–9143

DOI

84
Freund R , Zaremba O , Arnauts G , Ameloot R , Skorupskii G , Dinca M , Bavykina A , Gascon J , Ejsmont A , Goscianska J . . The current status of MOF and COF applications. Angewandte Chemie International Edition, 2021, 60(45): 23975–24001

DOI

85
Wang C , Li J , Lv X , Zhang Y , Guo G . Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy & Environmental Science, 2014, 7(9): 2831–2867

DOI

86
Xie Y , Wang T , Liu X , Zou K , Deng W . Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer. Nature Communications, 2013, 4(1): 1960

DOI

87
Lee J S M , Cooper A I . Advances in conjugated microporous polymers. Chemical Reviews, 2020, 120(4): 2171–2214

DOI

88
Jiang J X , Su F , Trewin A , Wood C D , Campbell N L , Niu H , Dickinson C , Ganin A Y , Rosseinsky M J , Khimyak Y Z . . Conjugated microporous poly(aryleneethynylene) networks. Angewandte Chemie International Edition, 2007, 46(45): 8574–8578

DOI

89
Lan F , Wang Q , Chen H , Chen Y , Zhang Y , Huang B , Liu H , Liu J , Li R . Preparation of hydrophilic conjugated microporous polymers for efficient visible light-driven nicotinamide adenine dinucleotide regeneration and photobiocatalytic formaldehyde reduction. ACS Catalysis, 2020, 10(21): 12976–12986

DOI

90
Wang Y , Liu H , Pan Q , Ding N , Yang C , Zhang Z , Jia C , Li Z , Liu J , Zhao Y . Construction of thiazolo[5,4-d]thiazole-based two-dimensional network for efficient photocatalytic CO2 reduction. ACS Applied Materials & Interfaces, 2020, 12(41): 46483–46489

DOI

91
Côté A P , Benin A I , Ockwig N W , O’Keeffe M , Matzger A J , Yaghi O M . Porous, crystalline, covalent organic frameworks. Science, 2005, 310(5751): 1166–1170

DOI

92
Liang Q , Li Z , Huang Z , Kang F , Yang Q . Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Advanced Functional Materials, 2015, 25(44): 6885–6892

DOI

93
Yadav D , Kumar A , Kim J Y , Park N J , Baeg J O . Interfacially synthesized 2D COF thin film photocatalyst: efficient photocatalyst for solar formic acid production from CO2 and fine chemical synthesis. Journal of Materials Chemistry A, 2021, 9(15): 9573–9580

DOI

94
Singh N , Yadav D , Mulay S V , Kim J Y , Park N J , Baeg J O . Band gap engineering in solvochromic 2D covalent organic framework photocatalysts for visible light-driven enhanced solar fuel production from carbon dioxide. ACS Applied Materials & Interfaces, 2021, 13(12): 14122–14131

DOI

95
Wang Y , Liu H , Pan Q , Wu C , Hao W , Xu J , Chen R , Liu J , Li Z , Zhao Y . Construction of fully conjugated covalent organic frameworks via facile linkage conversion for efficient photoenzymatic catalysis. Journal of the American Chemical Society, 2020, 142(13): 5958–5963

DOI

96
Aguirre M E , Isla Naveira R , Botta P M , Altieri T A , Wolosiuk A , Churio M S . Early instability of MIL-125-NH2 in aqueous solution and mediation of the visible photogeneration of an NADH cofactor. New Journal of Chemistry, 2021, 45(23): 10277–10286

DOI

97
Mohamed R M , Ibrahim F M . Visible light photocatalytic reduction of nitrobenzene using Ag/Bi2MoO6 nanocomposite. Journal of Industrial and Engineering Chemistry, 2015, 22: 28–33

DOI

98
Li H , Liu J , Wang M , Ren X , Li C , Ren Y , Yang Q . Fabrication of nanoCOF/polyoxometallate composites for photocatalytic NADH regeneration via cascade electron relay. Solar RRL, 2021, 5(1): 2000641

DOI

99
Chen S , Zhang H , Fu X , Hu Y . Preparation, characterization, and photocatalytic performance of Ce2S3 for nitrobenzene reduction. Applied Surface Science, 2013, 275: 335–341

DOI

100
Tsutsumi K , Uchikawa F , Sakai K , Tabata K . Photoinduced reduction of nitroarenes using a transition-metal-loaded silicon semiconductor under visible light irradiation. ACS Catalysis, 2016, 6(7): 4394–4398

DOI

101
Yang B , Luo W , Liao Q , Zhu J , Gan M , Liu X , Qiu G . Photogenerated-hole scavenger for enhancing photocatalytic chalcopyrite bioleaching. Transactions of Nonferrous Metals Society of China, 2020, 30(1): 200–211

DOI

102
Wang S , Wu X , Fang J , Zhang F , Liu Y , Liu H , He Y , Luo M , Li R . Direct Z-scheme polymer/polymer double-shell hollow nanostructures for efficient NADH regeneration and biocatalytic artificial photosynthesis under visible light. ACS Catalysis, 2023, 13(7): 4433–4443

DOI

103
Tian Y , Zhou Y , Zong Y , Li J , Yang N , Zhang M , Guo Z , Song H . Construction of functionally compartmental inorganic photocatalyst-enzyme system via imitating chloroplast for efficient photoreduction of CO2 to formic acid. ACS Applied Materials & Interfaces, 2020, 12(31): 34795–34805

DOI

104
Marschall R . Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Advanced Functional Materials, 2014, 24(17): 2421–2440

DOI

105
Sun Z , Wang H , Wu Z , Wang L . g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction. Catalysis Today, 2018, 300: 160–172

DOI

106
Zheng Y , Chen Y , Gao B , Lin B , Wang X . Phosphorene-based heterostructured photocatalysts. Engineering, 2021, 7(7): 991–1001

DOI

107
Niu X , Bai X , Zhou Z , Wang J . Rational design and characterization of direct Z-scheme photocatalyst for overall water splitting from excited state dynamics simulations. ACS Catalysis, 2020, 10(3): 1976–1983

DOI

108
Tu J , Wu W , Lei X , Li P . The SWSe-BP vdW heterostructure as a promising photocatalyst for water splitting with power conversion efficiency of 19.4%. ACS Omega, 2022, 7(42): 37061–37069

DOI

109
Xiao M , Wang Z , Lyu M , Luo B , Wang S , Liu G , Cheng H M , Wang L . Hollow nanostructures for photocatalysis: advantages and challenges. Advanced Materials, 2019, 31(38): 1801369

DOI

110
Wang H , Lin Q , Yin L , Yang Y , Qiu Y , Lu C , Yang H . Biomimetic design of hollow flower-like g-C3N4@PDA organic framework nanospheres for realizing an efficient photoreactivity. Small, 2019, 15(16): 1900011

DOI

111
Zeng P , Ji X , Su Z , Zhang S . WS2/g-C3N4 composite as an efficient heterojunction photocatalyst for biocatalyzed artificial photosynthesis. RSC Advances, 2018, 8(37): 20557–20567

DOI

112
Low J , Yu J , Jaroniec M , Wageh S , Al-Ghamdi A A . Heterojunction photocatalysts. Advanced Materials, 2017, 29(20): 1601694

DOI

113
Ng B J , Putri L K , Kong X Y , Teh Y W , Pasbakhsh P , Chai S P . Z-scheme photocatalytic systems for solar water splitting. Advanced Materials, 2020, 7(7): 1903171

114
Xu Q , Zhang L , Yu J , Wageh S , Al Ghamdi A A , Jaroniec M . Direct Z-scheme photocatalysts: principles, synthesis, and applications. Materials Today, 2018, 21(10): 1042–1063

DOI

115
Singh R , Bhateria R . Core-shell nanostructures: a simplest two-component system with enhanced properties and multiple applications. Environmental Geochemistry and Health, 2021, 43(7): 2459–2482

DOI

116
Ghosh Chaudhuri R , Paria S . Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chemical Reviews, 2012, 112(4): 2373–2433

DOI

117
Das S , Pérez Ramírez J , Gong J , Dewangan N , Hidajat K , Gates B C , Kawi S . Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chemical Society Reviews, 2020, 49(10): 2937–3004

DOI

118
Yang D , Zhang Y , Zhang S , Cheng Y , Wu Y , Cai Z , Wang X , Shi J , Jiang Z . Coordination between electrontransfer and molecule diffusion through a bioinspired amorphous titania nanoshell for photocatalytic nicotinamide cofactor regeneration. ACS Catalysis, 2019, 9(12): 11492–11501

DOI

119
Zhou L , Su Z , Wang J , Cai Y , Ding N , Wang L , Zhang J , Liu Y , Lei J . Highly selective regeneration of 1,4-NADH enabled by a metal-free core-shell photocatalyst of resorcinol-formaldehyde resins@polyaniline under visible light. Applied Catalysis B: Environmental, 2024, 341: 123290

DOI

120
Zhao H , Wang L , Liu G , Liu Y , Zhang S , Wang L , Zheng X , Zhou L , Gao J , Shi J . . Hollow Rh-COF@COF S-scheme heterojunction for photocatalytic nicotinamide cofactor regeneration. ACS Catalysis, 2023, 13(10): 6619–6629

DOI

121
Yang J , Wang D , Han H , Li C . Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Accounts of Chemical Research, 2013, 46(8): 1900–1909

DOI

122
Qi Y , Zhang J , Kong Y , Zhao Y , Chen S , Li D , Liu W , Chen Y , Xie T , Cui J . . Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting. Nature Communications, 2022, 13(1): 484

DOI

123
Xiao N , Li S , Li X , Ge L , Gao Y , Li N . The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen. Chinese Journal of Catalysis, 2020, 41(4): 642–671

DOI

124
ZhouYHeYGaoMDingNLeiJZhouY. Efficient photocatalytic NADH regeneration with Rh-loaded Z-scheme mediator-free system. Chinese Chemical Letters, 2024(2), 35: 108690

125
Jain P K , Huang X , El Sayed I H , El Sayed M A . Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics, 2007, 2(3): 107–118

DOI

126
Fang M , Tan X , Liu Z , Hu B , Wang X . Recent progress on metal-enhanced photocatalysis: a review on the mechanism. Research, 2021, 2021: 9794329

DOI

127
Jiang J , Wang X , Guo H . Enhanced interfacial charge transfer/separation by LSPR-induced defective semiconductor toward high CO2RR performance. Small, 2023, 19(33): 2301280

DOI

128
Zhou S , Cai Y , Zhang J , Liu Y , Zhou L , Lei J . Au-loaded resorcinol-formaldehyde resin photocatalysts: hollow sphere structure design and localized surface plasmon resonance effect synergistically promote efficient nicotinamide adenine dinucleotide (NADH) regeneration. ACS Sustainable Chemistry & Engineering, 2022, 10(44): 14464–14473

DOI

129
Dhankhar A , Jain V , Chakraborty I N , Pillai P P . Enhancing the photocatalytic regeneration of nicotinamide cofactors with surface engineered plasmonic antenna-reactor system. Journal of Photochemistry and Photobiology A Chemistry, 2023, 437: 114472

DOI

130
Wang S , Gao Y , Miao S , Liu T , Mu L , Li R , Fan F , Li C . Positioning the water oxidation reaction sites in plasmonic photocatalysts. Journal of the American Chemical Society, 2017, 139(34): 11771–11778

DOI

131
Zhao S , Zhang Y , Zhou Y , Fang J , Wang Y , Zhang C , Chen W . Fabrication of sandwich-structured g-C3N4/Au/BiOCl Z-scheme photocatalyst with enhanced photocatalytic performance under visible light irradiation. Journal of Materials Science, 2018, 53(8): 6008–6020

DOI

132
Pachfule P , Acharjya A , Roeser J , Langenhahn T , Schwarze M , Schomacker R , Thomas A , Schmidt J . Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. Journal of the American Chemical Society, 2018, 140(4): 1423–1427

DOI

133
Zhang L , Zhao Q , Shen L , Li Q , Liu T , Hou L , Yang J . Enhancing the photocatalytic activity of defective titania for carbon dioxide photoreduction via surface functionalization. Catalysis Science & Technology, 2022, 12(2): 509–518

DOI

134
Feng C , Wu Z , Huang K , Ye J , Zhang H . Surface modification of 2D photocatalysts for solar energy conversion. Advanced Materials, 2022, 34(23): 2200180

DOI

135
Ma B , Sun S , He H , Lv R , Deng J , Huo T , Zhao Y , Yu H , Zhou L . An efficient metal-free photocatalytic system with enhanced activity for NADH regeneration. Industrial & Engineering Chemistry Research, 2019, 58(51): 23567–23573

DOI

136
Li C , Liu J , Li H , Wu K , Wang J , Yang Q . Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution. Nature Communications, 2022, 13(1): 2357

DOI

137
Dai C , Liu B . Conjugated polymers for visible-light-driven photocatalysis. Energy & Environmental Science, 2020, 13(1): 24–52

DOI

138
Lan Z , Ren W , Chen X , Zhang Y , Wang X . Conjugated donor-acceptor polymer photocatalysts with electron-output “tentacles” for efficient hydrogen evolution. Applied Catalysis B: Environmental, 2019, 245: 596–603

DOI

139
Meng J , Tian Y , Li C , Lin X , Wang Z , Sun L , Zhou Y , Li J , Yang N , Zong Y . . A thiophene-modified doubleshell hollow g-C3N4 nanosphere boosts NADH regeneration via synergistic enhancement of charge excitation and separation. Catalysis Science & Technology, 2019, 9(8): 1911–1921

DOI

140
Son E J , Lee Y W , Ko J W , Park C B . Amorphous carbon nitride as a robust photocatalyst for biocatalytic solar-to-chemical conversion. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 2545–2552

DOI

141
Linsebigler A , Lu G , Yates J T . Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews, 1995, 95(3): 735–758

DOI

142
Ning X , Meng S , Fu X , Ye X , Chen S . Efficient utilization of photogenerated electrons and holes for photocatalytic selective organic syntheses in one reaction system using a narrow band gap CdS photocatalyst. Green Chemistry, 2016, 18(12): 3628–3639

DOI

143
Emmanuel M A , Bender S G , Bilodeau C , Carceller J M , DeHovitz J S , Fu H , Liu Y , Nicholls B T , Ouyang Y , Page C G . . Photobiocatalytic strategies for organic synthesis. Chemical Reviews, 2023, 123(9): 5459–5520

DOI

144
Concepcion J J , Jurss J W , Brennaman M K , Hoertz P G , Patrocinio A O T , Murakami Iha N Y , Templeton J L , Meyer T J . Making oxygen with ruthenium complexes. Accounts of Chemical Research, 2009, 42(12): 1954–1965

DOI

145
Sharma V K , Hutchison J M , Allgeier A M . Redox biocatalysis: quantitative comparisons of nicotinamide cofactor regeneration methods. ChemSusChem, 2022, 15(22): e202200888

DOI

146
Zhang Y , Liu J . Bioinspired photocatalytic NADH regeneration by covalently metalated carbon nitride for enhanced CO2 reduction. Chemistry A European Journal, 2022, 28(55): e202201430

DOI

147
Cheng Y , Shi J , Wu Y , Wang X , Sun Y , Cai Z , Chen Y , Jiang Z . Intensifying electron utilization by surface-anchored Rh complex for enhanced nicotinamide cofactor regeneration and photoenzymatic CO2 reduction. Research, 2021, 2021: 8175709

DOI

148
Xing X , Liu Y , Shi M , Li K , Fan X , Wu Z , Wang N , Yu X . Preparation of chiral aryl alcohols: a controllable enzymatic strategy via light-driven NAD(P)H regeneration. New Journal of Chemistry, 2022, 46(13): 6274–6282

DOI

149
Lin G , Zhang Y , Hua Y , Zhang C , Jia C , Ju D , Yu C , Li P , Liu J . Bioinspired metalation of the metal-organic framework MIL-125-NH2 for photocatalytic NADH regeneration and gas-liquid-solid three-phase enzymatic CO2 reduction. Angewandte Chemie International Edition, 2022, 61(31): e202206283

DOI

150
Wu Y , Shi J , Li D , Zhang S , Gu B , Qiu Q , Sun Y , Zhang Y , Cai Z , Jiang Z . Synergy of electron transfer and electron utilization via metal-organic frameworks as an electron buffer tank for nicotinamide regeneration. ACS Catalysis, 2020, 10(5): 2894–2905

DOI

151
Wu X , Wang S , Fang J , Chen H , Liu H , Li R . Enhanced photocatalytic efficiency in visible-light-induced NADH regeneration by intramolecular electron transfer. ACS Applied Materials & Interfaces, 2022, 14(34): 38895–38904

DOI

152
Zhao Z , Zheng D , Guo M , Yu J , Zhang S , Zhang Z , Chen Y . Engineering olefin-linked covalent organic frameworks for photoenzymatic reduction of CO2. Angewandte Chemie International Edition, 2022, 61(12): e202200261

DOI

153
Liu J , Ren X , Li C , Wang M , Li H , Yang Q . Assembly of COFs layer and electron mediator on silica for visible light driven photocatalytic NADH regeneration. Applied Catalysis B: Environmental, 2022, 310: 121314

DOI

154
Zhao Y , Liu H , Wu C , Zhang Z , Pan Q , Hu F , Wang R , Li P , Huang X , Li Z . Fully conjugated two-dimensional sp2-carbon covalent organic frameworks as artificial photosystem I with high efficiency. Angewandte Chemie International Edition, 2019, 58(16): 5376–5381

DOI

155
Roy S , Jain V , Kashyap R K , Rao A , Pillai P P . Electrostatically driven multielectron transfer for the photocatalytic regeneration of nicotinamide cofactor. ACS Catalysis, 2020, 10(10): 5522–5528

DOI

156
Zhang Z , Tong J , Meng X , Cai Y , Ma S , Huo F , Luo J , Xu B , Zhang S , Pinelo M . Development of an ionic porphyrin-based platform as a biomimetic light-harvesting agent for high-performance photoenzymatic synthesis of methanol from CO2. ACS Sustainable Chemistry & Engineering, 2021, 9(34): 11503–11511

DOI

157
Kim J H , Lee S H , Lee J S , Lee M , Park C B . Zn-containing porphyrin as a biomimetic light-harvesting molecule for biocatalyzed artificial photosynthesis. Chemical Communications, 2011, 47(37): 10227–10229

DOI

158
Wang Y , Sun J , Zhang H , Zhao Z , Liu W . Tetra(4-carboxyphenyl)porphyrin for efficient cofactor regeneration under visible light and its immobilization. Catalysis Science & Technology, 2018, 8(10): 2578–2587

DOI

159
Kita Y , Amao Y . Visible-light-driven 3-hydroxybutyrate production from acetone and low concentrations of CO2 with a system of hybridized photocatalytic NADH regeneration and multi-biocatalysts. Green Chemistry, 2023, 25(7): 2699–2710

DOI

160
Huang D , Ju Z P , Li C S , Yao C M , Guo J . First-principles study of Ag2ZnSnS4 as a photocatalyst. Acta Physica Sinica, 2014, 63(24): 247101

DOI

161
Ye Y , Zang Z , Zhou T , Dong F , Lu S , Tang X , Wei W , Zhang Y . Theoretical and experimental investigation of highly photocatalytic performance of CuInZnS nanoporous structure for removing the NO gas. Journal of Catalysis, 2018, 357: 100–107

DOI

162
Ge L , Ke Y , Li X . Machine learning integrated photocatalysis: progress and challenges. Chemical Communications, 2023, 59(39): 5795–5806

DOI

163
Mai H , Le T C , Chen D , Winkler D A , Caruso R A . Machine learning for electrocatalyst and photocatalyst design and discovery. Chemical Reviews, 2022, 122(16): 13478–13515

DOI

164
Mor G K , Shankar K , Paulose M , Varghese O K , Grimes C A . Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Letters, 2006, 6(2): 215–218

DOI

165
Chen C , Ma W , Zhao J . Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chemical Society Reviews, 2010, 39(11): 4206–4219

DOI

166
Hargenrader G N , Weerasooriya R B , Ilic S , Niklas J , Poluektov O G , Glusac K D . Photoregeneration of biomimetic nicotinamide adenine dinucleotide analogues via a dye-sensitized approach. ACS Applied Energy Materials, 2019, 2(1): 80–91

DOI

167
Mishra A , Fischer M K , Bauerle P . Metal-free organic dyes for dye-sensitized solar cells: from structure property relationships to design rules. Angewandte Chemie International Edition, 2009, 48(14): 2474–2499

DOI

168
Mojiri-Foroushani M , Dehghani H , Salehi-Vanani N . Enhancement of dye-sensitized solar cells performances by improving electron density in conduction band of nanostructure TiO2 electrode with using a metalloporphyrin as additional dye. Electrochimica Acta, 2013, 92: 315–322

DOI

169
Mendizabal F , Mera Adasme R , Xu W H , Sundholm D . Electronic and optical properties of metalloporphyrins of zinc on TiO2 cluster in dye-sensitized solar-cells (DSSC). A quantum chemistry study. RSC Advances, 2017, 7(68): 42677–42684

DOI

170
Ludin N A , Al Alwani Mahmoud A M , Bakar Mohamad A , Kadhum A A H , Sopian K , Abdul Karim N S . Review on the development of natural dye photosensitizer for dye-sensitized solar cells. Renewable & Sustainable Energy Reviews, 2014, 31: 386–396

DOI

171
Wu K L , Li C H , Chi Y , Clifford J N , Cabau L , Palomares E , Cheng Y M , Pan H A , Chou P T . Dye molecular structure device open-circuit voltage correlation in Ru(II) sensitizers with heteroleptic tridentate chelates for dye-sensitized solar cells. Journal of the American Chemical Society, 2012, 134(17): 7488–7496

DOI

172
LeT TAkhtarM SParkD MLeeJ CYangO B. Water splitting on Rhodamine-B dye sensitized Co-doped TiO2 catalyst under visible light. Applied Catalysis B: Environmental, 2012, 111–112: 397–401

173
Li Y , Xie C , Peng S , Lu G , Li S . Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution. Journal of Molecular Catalysis A: Chemical, 2008, 282(1–2): 117–123

DOI

174
Ge M , Li Q , Cao C , Huang J , Li S , Zhang S , Chen Z , Zhang K , Al-Deyab S S , Lai Y . One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Advanced Science, 2017, 4(1): 1600152

DOI

175
Perera S D , Mariano R G , Vu K , Nour N , Seitz O , Chabal Y , Balkus K J Jr . Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catalysis, 2012, 2(6): 949–956

DOI

176
Jo Y K , Lee J M , Son S , Hwang S J . 2D inorganic nanosheet-based hybrid photocatalysts: design, applications, and perspectives. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 40: 150–190

DOI

177
Liang S , Liang R , Wen L , Yuan R , Wu L , Fu X . Molecular recognitive photocatalytic degradation of various cationic pollutants by the selective adsorption on visible light-driven SnNb2O6 nanosheet photocatalyst. Applied Catalysis B: Environmental, 2012, 125: 103–110

DOI

178
Dong K , Le T A , Nakibli Y , Schleusener A , Wächtler M , Amirav L . Molecular metallocorrole-nanorod photocatalytic system for sustainable hydrogen production. ChemSusChem, 2022, 15(17): e202200804

DOI

179
Tongying P , Vietmeyer F , Aleksiuk D , Ferraudi G J , Krylova G , Kuno M . Double heterojunction nanowire photocatalysts for hydrogen generation. Nanoscale, 2014, 6(8): 4117–4124

DOI

180
Xu J , Qin T , Chen W , Lv J , Zeng X , Sun J , Li Y , Zhou J . Synergizing piezoelectric and plasmonic modulation of Ag/BiFeO3 fibrous heterostructure toward boosted photoelectrochemical energy conversion. Nano Energy, 2021, 89: 106317

DOI

181
Xu S , Guo L , Sun Q , Wang Z . Piezotronic effect enhanced plasmonic photocatalysis by AuNPs/BaTiO3 heterostructures. Advanced Functional Materials, 2019, 29(13): 1808737

DOI

182
Jiang Z , Tan X , Huang Y . Piezoelectric effect enhanced photocatalysis in environmental remediation: state-of-the-art techniques and future scenarios. Science of the Total Environment, 2022, 806: 150924

DOI

183
Li R , Zhang F , Wang D , Yang J , Li M , Zhu J , Zhou X , Han H , Li C . Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nature Communications, 2013, 4(1): 1432

DOI

184
Huang M , Lian J , Si R , Wang L , Pan X , Liu P . Spatial separation of electrons and holes among ZnO polar {0001} and {101̅0} facets for enhanced photocatalytic performance. ACS Omega, 2022, 7(30): 26844–26852

DOI

185
Wang W , Zhou Y , Wen Y , Ni Y , Lu C , Xu Z . Effect of destructive {001}–{101} heterojunction on separating photo-generated electrons and holes of anatase TiO2. Materials Letters, 2015, 158: 29–31

DOI

186
Hu C , Tu S , Tian N , Ma T , Zhang Y , Huang H . Photocatalysis enhanced by external fields. Angewandte Chemie International Edition, 2021, 60(30): 16309–16328

DOI

187
Jiang Z , Wang H , Huang H , Cao C . Photocatalysis enhancement by electric field: TiO2 thin film for degradation of dye X-3B. Chemosphere, 2004, 56(5): 503–508

DOI

188
Yang H G , Sun C H , Qiao S Z , Zou J , Liu G , Smith S C , Cheng H M , Lu G Q . Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008, 453(7195): 638–641

DOI

189
Xiong J , Di J , Xia J , Zhu W , Li H . Surface defect engineering in 2D nanomaterials for photocatalysis. Advanced Functional Materials, 2018, 28(39): 1801983

DOI

190
Di J , Zhu C , Ji M , Duan M , Long R , Yan C , Gu K , Xiong J , She Y , Xia J . . Defect-rich Bi12O17Cl2 nanotubes self-accelerating charge separation for boosting photocatalytic CO2 reduction. Angewandte Chemie International Edition, 2018, 57(45): 14847–14851

DOI

191
Maarisetty D , Mary R , Hang D R , Mohapatra P , Baral S S . The role of material defects in the photocatalytic CO2 reduction: interfacial properties, thermodynamics, kinetics and mechanism. Journal of CO2 Utilization, 2022, 64: 102175

192
Yan X , Zhuang L , Zhu Z , Yao X . Defect engineering and characterization of active sites for efficient electrocatalysis. Nanoscale, 2021, 13(6): 3327–3345

DOI

193
Niu P , Liu G , Cheng H . Nitrogen vacancy-promoted photocatalytic activity of graphitic carbon nitride. Journal of Physical Chemistry C, 2012, 116(20): 11013–11018

DOI

194
Li H , Li J , Ai Z , Jia F , Zhang L . Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives. Angewandte Chemie International Edition, 2018, 57(1): 122–138

DOI

195
Xue X , Chen R , Chen H , Hu Y , Ding Q , Liu Z , Ma L , Zhu G , Zhang W , Yu Q . . Oxygen vacancy engineering promoted photocatalytic ammonia synthesis on ultrathin two-dimensional bismuth oxybromide nanosheets. Nano Letters, 2018, 18(11): 7372–7377

DOI

196
Zafar Z , Yi S , Li J , Li C , Zhu Y , Zada A , Yao W , Liu Z , Yue X . Recent development in defects engineered photocatalysts: an overview of the experimental and theoretical strategies. Energy & Environmental Science, 2022, 5(1): 68–114

197
Jiang Z , Lü C , Wu H . Photoregeneration of NADH using carbon-containing TiO2. Industrial & Engineering Chemistry Research, 2005, 44(12): 4165–4170

DOI

198
Suzuki T M , Yoshino S , Takayama T , Iwase A , Kudo A , Morikawa T . Z-schematic and visible-light-driven CO2 reduction using H2O as an electron donor by a particulate mixture of a Ru-complex/(CuGa)1–xZn2xS2 hybrid catalyst, BiVO4 and an electron mediator. Chemical Communications, 2018, 54(72): 10199–10202

DOI

199
Mifsud M , Gargiulo S , Iborra S , Arends I W C E , Hollmann F , Corma A . Photobiocatalytic chemistry of oxidoreductases using water as the electron donor. Nature Communications, 2014, 5(1): 3145

DOI

200
Ruckebusch C , Sliwa M , Pernot P , de Juan A , Tauler R . Comprehensive data analysis of femtosecond transient absorption spectra: a review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(1): 1–27

DOI

201
Jiang Y , Long R , Xiong Y . Regulating C–C coupling in thermocatalytic and electrocatalytic COx conversion based on surface science. Chemical Science, 2019, 10(31): 7310–7326

DOI

202
Ma W , Chen Z , Bu J , Liu Z , Li J , Yan C , Cheng L , Zhang L , Zhang H , Zhang J . . π-Adsorption promoted electrocatalytic acetylene semihydrogenation on single-atom Ni dispersed N-doped carbon. Journal of Materials Chemistry A, 2022, 10(11): 6122–6128

DOI

203
Wang L , Bao H , Lin H , Yang C , Song J , Huang X . An easy fabricated biomimetic leaf microreactor for photocatalytic nicotinamide adenine dinucleotide (NADH) regeneration. Applied Catalysis A: General, 2022, 641: 118685

DOI

204
Huang Z , Wang L , Yang C , Chen J , Zhao G , Huang X . A versatile optofluidic microreactor for artificial photosynthesis induced coenzyme regeneration and L-glutamate synthesis. Lab on a Chip, 2022, 22(15): 2878–2885

DOI

205
Ren S , Wang Z , Bilal M , Feng Y , Jiang Y , Jia S , Cui J . Co-immobilization multienzyme nanoreactor with co-factor regeneration for conversion of CO2. International Journal of Biological Macromolecules, 2020, 155: 110–118

DOI

Outlines

/