Recent progress in photocatalytic NAD(P)H regeneration for photocatalytic-enzymatic-coupling system
Wei Lan, Maodi Wang, Huicong Dai, Qihua Yang
Recent progress in photocatalytic NAD(P)H regeneration for photocatalytic-enzymatic-coupling system
The enzymatic redox reactions in natural photosynthesis rely much on the participation of cofactors, with reduced nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate (NADH/NADPH) or their oxidized form (NAD+/NADP+) as an important redox power. The photocatalytic regeneration of expensive and unstable NADH/NADPH in vitro is an important process in enzymatic reduction and has attracted much research attention. Though different types of photocatalysts have been developed for photocatalytic NADH/NADPH regeneration, the efficiency is still relatively low. To elucidate the key factors affecting the performance of photocatalytic NADH/NADPH regeneration is helpful to rationally design the photocatalyst and improve the photocatalytic efficiency. In this paper, we overview the recent progress in photocatalytic NADH/NADPH regeneration with the focus on the strategies to improve the visible light adsorption, the charge separation and migration efficiency, as well as the surface reaction, which jointly determine the overall photocatalytic regeneration efficiency. The potential development of photocatalytic NADH/NADPH regeneration and photocatalytic-enzymatic-coupling system is prospected finally.
photocatalytic-enzymatic coupling / NAD(P)H regeneration / photocatalysis / efficiency
[1] |
Wu H , Tian C , Song X , Liu C , Yang D , Jiang Z . Methods for the regeneration of nicotinamide coenzymes. Green Chemistry, 2013, 15(7): 1773–1789
CrossRef
Google scholar
|
[2] |
Wang X , Yiu H H P . Heterogeneous catalysis mediated cofactor NADH regeneration for enzymatic reduction. ACS Catalysis, 2016, 6(3): 1880–1886
CrossRef
Google scholar
|
[3] |
Wang X , Saba T , Yiu H H P , Howe R F , Anderson J A , Shi J . Cofactor NAD(P)H regeneration inspired by heterogeneous pathways. Chem, 2017, 2(5): 621–654
CrossRef
Google scholar
|
[4] |
Zhang Y , Zhao Y , Li R , Liu J . Bioinspired NADH regeneration based on conjugated photocatalytic systems. Solar RRL, 2021, 5(2): 2000339
CrossRef
Google scholar
|
[5] |
Bai Y , Wang L , Ge J . Advances in photo-enzymatic-coupling catalysis system. Systems Microbiology and Biomanufacturing, 2021, 1(3): 245–256
CrossRef
Google scholar
|
[6] |
Jones J B , Sneddon D W , Higgins W , Lewis A J . Preparative-scale reductions of cyclic ketones and aldehyde substrates of horse liver alcohol dehydrogenase with in situ sodium dithionite recycling of catalytic amounts of NAD. Journal of the Chemical Society Chemical Communications, 1972, (15): 856–857
CrossRef
Google scholar
|
[7] |
Taylor K E , Jones J B . Nicotinamide coenzyme regeneration by dihydropyridine and pyridinium compounds. Journal of the American Chemical Society, 1976, 98(18): 5689–5694
CrossRef
Google scholar
|
[8] |
Hollmann F , Arends I W C E , Holtmann D . Enzymatic reductions for the chemist. Green Chemistry, 2011, 13(9): 2285–2314
CrossRef
Google scholar
|
[9] |
Roche J , Groenen-Serrano K , Reynes O , Chauvet F , Tzedakis T . NADH regenerated using immobilized FDH in a continuously supplied reactor—application to L-lactate synthesis. Chemical Engineering Journal, 2014, 239: 216–225
CrossRef
Google scholar
|
[10] |
Tensi L , Macchioni A . Extremely fast NADH-regeneration using phosphonic acid as hydride source and iridium-pyridine-2-sulfonamidate catalysts. ACS Catalysis, 2020, 10(14): 7945–7949
CrossRef
Google scholar
|
[11] |
Ganesan V , Kim J J , Shin J , Park K , Yoon S . Efficient nicotinamide adenine dinucleotide regeneration with a rhodium-carbene catalyst and isolation of a hydride intermediate. Inorganic Chemistry, 2022, 61(15): 5683–5690
CrossRef
Google scholar
|
[12] |
Burnett J W H , Li J , McCue A J , Kechagiopoulos P N , Howe R F , Wang X . Directing the H2-driven selective regeneration of NADH via Sn-doped Pt/SiO2. Green Chemistry, 2022, 24(4): 1451–1455
CrossRef
Google scholar
|
[13] |
Wang M , Ren X , Guo M , Liu J , Li H , Yang Q . Chemoselective NADH regeneration: the synergy effect of TiOx and Pt in NAD+ hydrogenation. ACS Sustainable Chemistry & Engineering, 2021, 9(18): 6499–6506
CrossRef
Google scholar
|
[14] |
Li S , Cheng Y , Chen Y , Li J , Sun Y , Shi J , Jiang Z . Topologically and chemically engineered conjugated polymer with synergistically intensified electron generation, transfer and utilization for photocatalytic nicotinamide cofactor regeneration. Applied Catalysis B: Environmental, 2022, 317: 121772
CrossRef
Google scholar
|
[15] |
Oppelt K T , Woss E , Stiftinger M , Schofberger W , Buchberger W , Knor G . Photocatalytic reduction of artificial and natural nucleotide co-factors with a chlorophyll-like tin-dihydroporphyrin sensitizer. Inorganic Chemistry, 2013, 52(20): 11910–11922
CrossRef
Google scholar
|
[16] |
Ji X , Kang Y , Fan T , Xiong Q , Zhang S , Tao W , Zhang H . An antimonene/Cp*Rh(phen)Cl/black phosphorus hybrid nanosheet-based Z-scheme artificial photosynthesis for enhanced photo/bio-catalytic CO2 reduction. Journal of Materials Chemistry A, 2020, 8(1): 323–333
CrossRef
Google scholar
|
[17] |
Zhang Y , Yu W , Cao S , Sun Z , Nie X , Liu Y , Zhao Z . Photocatalytic chemoselective transfer hydrogenation of quinolines to tetrahydroquinolines on hierarchical NiO/In2O3–CdS microspheres. ACS Catalysis, 2021, 11(21): 13408–13415
CrossRef
Google scholar
|
[18] |
Goren Z , Lapidot N , Willner I . Photocatalysed regeneration of NAD(P)H by CdS and TiO2 semiconductors: applications in enzymatic synthesis. Journal of Molecular Catalysis, 1988, 47(1): 21–32
CrossRef
Google scholar
|
[19] |
Immanuel S , Sivasubramanian R . Electrochemical reduction of NAD+ on graphene oxide and chemically reduced graphene oxide nanosheets. Materials Science and Engineering B, 2020, 262: 114705
CrossRef
Google scholar
|
[20] |
Liu F , Ding C , Tian S , Lu S M , Feng C , Tu D , Liu Y , Wang W , Li C . Electrocatalytic NAD+ reduction via hydrogen atom-coupled electron transfer. Chemical Science, 2022, 13(45): 13361–13367
CrossRef
Google scholar
|
[21] |
Lee Y S , Gerulskis R , Minteer S D . Advances in electrochemical cofactor regeneration: enzymatic and non-enzymatic approaches. Current Opinion in Biotechnology, 2022, 73: 14–21
CrossRef
Google scholar
|
[22] |
Singh C , Kumar A , Yadav R K , Gole V L , Dwivedi D K . Solar light-driven photocatalyst-enzyme attached artificial photosynthetic system for regeneration and production of 1,4-NADH and L-glutamate. Vietnam Journal of Chemistry, 2021, 59(2): 198–202
|
[23] |
Zhang S , Liu S , Sun Y , Li S , Shi J , Jiang Z . Enzyme-photo-coupled catalytic systems. Chemical Society Reviews, 2021, 50(24): 13449–13466
CrossRef
Google scholar
|
[24] |
Bhoware S S , Kim K Y , Kim J A , Wu Q , Kim J . Photocatalytic activity of Pt nanoparticles for visible light-driven production of NADH. Journal of Physical Chemistry C, 2011, 115(5): 2553–2557
CrossRef
Google scholar
|
[25] |
Huang J , Antonietti M , Liu J . Bio-inspired carbon nitride mesoporous spheres for artificial photosynthesis: photocatalytic cofactor regeneration for sustainable enzymatic synthesis. Journal of Materials Chemistry A, 2014, 2(21): 7686–7693
CrossRef
Google scholar
|
[26] |
Huang X , Liu J , Yang Q , Liu Y , Zhu Y , Li T , Tsang Y H , Zhang X . Microfluidic chip-based one-step fabrication of an artificial photosystem I for photocatalytic cofactor regeneration. RSC Advances, 2016, 6(104): 101974–101980
CrossRef
Google scholar
|
[27] |
Liu J , Huang J , Zhou H , Antonietti M . Uniform graphitic carbon nitride nanorod for efficient photocatalytic hydrogen evolution and sustained photoenzymatic catalysis. ACS Applied Materials & Interfaces, 2014, 6(11): 8434–8440
CrossRef
Google scholar
|
[28] |
Nam D H , Lee S H , Park C B . CdTe, CdSe, and CdS nanocrystals for highly efficient regeneration of nicotinamide cofactor under visible light. Small, 2010, 6(8): 922–926
CrossRef
Google scholar
|
[29] |
Ji X , Wang J , Mei L , Tao W , Barrett A , Su Z , Wang S , Ma G , Shi J , Zhang S . Porphyrin/SiO2/Cp*Rh(bpy)Cl hybrid nanoparticles mimicking chloroplast with enhanced electronic energy transfer for biocatalyzed artificial photosynthesis. Advanced Functional Materials, 2018, 28(9): 1705083
CrossRef
Google scholar
|
[30] |
Pan Q , Liu H , Zhao Y , Chen S , Xue B , Kan X , Huang X , Liu J , Li Z . Preparation of N-graphdiyne nanosheets at liquid/liquid interface for photocatalytic NADH regeneration. ACS Applied Materials & Interfaces, 2019, 11(3): 2740–2744
CrossRef
Google scholar
|
[31] |
Shi Q , Yang D , Jiang Z , Li J . Visible-light photocatalytic regeneration of NADH using P-doped TiO2 nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 2006, 43(1–4): 44–48
CrossRef
Google scholar
|
[32] |
Liu J , Antonietti M . Bio-inspired NADH regeneration by carbon nitride photocatalysis using diatom templates. Energy & Environmental Science, 2013, 6(5): 1486–1493
CrossRef
Google scholar
|
[33] |
Bavykina A , Kolobov N , Khan I S , Bau J A , Ramirez A , Gascon J . Metal-organic frameworks in heterogeneous catalysis: recent progress, new trends, and future perspectives. Chemical Reviews, 2020, 120(16): 8468–8535
CrossRef
Google scholar
|
[34] |
Gan X , Lei D , Wong K Y . Two-dimensional layered nanomaterials for visible-light-driven photocatalytic water splitting. Materials Today Energy, 2018, 10: 352–367
CrossRef
Google scholar
|
[35] |
Yang Y , Chen H , Lu J . Inactivation of algae by visible-light-driven modified photocatalysts: a review. Science of the Total Environment, 2023, 858: 159640
CrossRef
Google scholar
|
[36] |
Kawawaki T , Kawachi M , Yazaki D , Akinaga Y , Hirayama D , Negishi Y . Development and functionalization of visible-light-driven water-splitting photocatalysts. Nanomaterials, 2022, 12(3): 344
CrossRef
Google scholar
|
[37] |
Mandler D , Willner I . Photosensitized NAD(P)H regeneration systems; application in the reduction of butan-2-one, pyruvic, and acetoacetic acids and in the reductive amination of pyruvic and oxoglutaric acid to amino acid. Journal of the Chemical Society Perkin Transactions 2, 1986, (6): 805–811
CrossRef
Google scholar
|
[38] |
Habisreutinger S N , Schmidt-Mende L , Stolarczyk J K . Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition, 2013, 52(29): 7372–7408
CrossRef
Google scholar
|
[39] |
Kosco J , Moruzzi F , Willner B , McCulloch I . Photocatalysts based on organic semiconductors with tunable energy levels for solar fuel applications. Advanced Energy Materials, 2020, 10(39): 2001935
CrossRef
Google scholar
|
[40] |
Carmo M E G , Spies L , Silva G N , Lopes O F , Bein T , Schneider J , Patrocinio A O T . From conventional inorganic semiconductors to covalent organic frameworks: advances and opportunities in heterogeneous photocatalytic CO2 reduction. Journal of Materials Chemistry A, 2023, 11(26): 13815–13843
CrossRef
Google scholar
|
[41] |
Guo Y , Zhou Q , Zhu B , Tang C Y , Zhu Y . Advances in organic semiconductors for photocatalytic hydrogen evolution reaction. EES Catalysis, 2023, 1(4): 333–352
CrossRef
Google scholar
|
[42] |
Lee S Y , Park S J . TiO2 photocatalyst for water treatment applications. Journal of Industrial and Engineering Chemistry, 2013, 19(6): 1761–1769
CrossRef
Google scholar
|
[43] |
Nakata K , Fujishima A . TiO2 photocatalysis: design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(3): 169–189
CrossRef
Google scholar
|
[44] |
Fujishima A , Zhang X , Tryk D . TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 2008, 63(12): 515–582
CrossRef
Google scholar
|
[45] |
Asahi R , Morikawa T , Irie H , Ohwaki T . Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chemical Reviews, 2014, 114(19): 9824–9852
CrossRef
Google scholar
|
[46] |
Asahi R , Morikawa T , Ohwaki T , Aoki K , Taga Y . Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269–271
CrossRef
Google scholar
|
[47] |
Mancuso A , Blangetti N , Sacco O , Freyria F S , Bonelli B , Esposito S , Sannino D , Vaiano V . Photocatalytic degradation of crystal violet dye under visible light by Fe-doped TiO2 prepared by reverse-micelle sol-gel method. Nanomaterials, 2023, 13(2): 270
CrossRef
Google scholar
|
[48] |
Chen D , Yang D , Wang Q , Jiang Z . Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles. Industrial & Engineering Chemistry Research, 2006, 45(12): 4110–4116
CrossRef
Google scholar
|
[49] |
LiuFCaoHXuLFuHSunSXiaoZSunCLongXXiaYWangS. Design and preparation of highly active TiO2 photocatalysts by modulating their band structure. Journal of Colloid and Interface Science, 2022, 629(Part B): 336–344
|
[50] |
Naseri A , Samadi M , Pourjavadi A , Moshfegh A Z , Ramakrishna S . Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions. Journal of Materials Chemistry A, 2017, 5(45): 23406–23433
CrossRef
Google scholar
|
[51] |
Thomas A , Fischer A , Goettmann F , Antonietti M , Müller J O , Schlögl R , Carlsson J M . Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry, 2008, 18(41): 4893–4908
CrossRef
Google scholar
|
[52] |
Liu J , Cazelles R , Chen Z P , Zhou H , Galarneau A , Antonietti M . The bioinspired construction of an ordered carbon nitride array for photocatalytic mediated enzymatic reduction. Physical Chemistry Chemical Physics, 2014, 16(28): 14699–14705
CrossRef
Google scholar
|
[53] |
Tripathi A , Yadav R K , Singh S , Shahin R , Dwivedi D K , Gupta N K , Kim T W , Verma R K , Kumar K . A donor-acceptor self-assembled graphitic carbon nitride based EB-T photocatalytic system for generation and regeneration of C(sp3)–F bond and NADH under sunlight. Diamond and Related Materials, 2023, 136: 109998
CrossRef
Google scholar
|
[54] |
Singh C , Chaubey S , Singh P , Sharma K , Shambhavi A , Kumar R K , Yadav D K , Dwivedi J O , Baeg U .
CrossRef
Google scholar
|
[55] |
Xie F , Jia H , Wun C K T , Huang X , Chai Y , Tsoi C C , Pan Z , Zhu S , Ren K , Lo T W B .
CrossRef
Google scholar
|
[56] |
Swarnkar N , Yadav R K , Singh S , Shahin R , Shukla R K , Tripathi S K , Dwivedi D K , Nath S , Singh C , Baeg J O . Highly selective in-situ prepared g-C3N4/P-B composite photocatalyst for direct C–H bond arylation and NADH regeneration cofactor under solar light. Journal of Chemical Sciences, 2023, 135(2): 29
CrossRef
Google scholar
|
[57] |
Paul D R , Sharma R , Singh S , Singh P , Panchal P , Sharma A , Devi P , Nehra S P . Mg/Li Co-doped g-C3N4: an excellent photocatalyst for wastewater remediation and hydrogen production applications towards sustainable development. International Journal of Hydrogen Energy, 2023, 48(96): 37746–37761
CrossRef
Google scholar
|
[58] |
Wen J , Xie J , Chen X , Li X . A review on g-C3N4-based photocatalysts. Applied Surface Science, 2017, 391: 72–123
CrossRef
Google scholar
|
[59] |
Gupta S K , Gupta A K , Yadav R K , Singh A , Yadav B C . Highly efficient S-g-CN/Mo-368 catalyst for synergistically NADH regeneration under solar light. Photochemistry and Photobiology, 2022, 98(1): 160–168
CrossRef
Google scholar
|
[60] |
Wang K , Li Q , Liu B , Cheng B , Ho W , Yu J . Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Applied Catalysis B: Environmental, 2015, 176–177: 44–52
CrossRef
Google scholar
|
[61] |
Vu M H , Sakar M , Nguyen C C , Do T O . Chemically bonded Ni cocatalyst onto the S doped g-C3N4 nanosheets and their synergistic enhancement in H2 production under sunlight irradiation. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 4194–4203
CrossRef
Google scholar
|
[62] |
Sun C , Zhang H , Liu H , Zheng X , Zou W , Dong L , Qi L . Enhanced activity of visible-light photocatalytic H2 evolution of sulfur-doped g-C3N4 photocatalyst via nanoparticle metal Ni as cocatalyst. Applied Catalysis B: Environmental, 2018, 235: 66–74
CrossRef
Google scholar
|
[63] |
Singh P , Yadav R K , Kumar K , Lee Y , Gupta A K , Kumar K , Yadav B C , Singh S N , Dwivedi D K , Nam S H .
CrossRef
Google scholar
|
[64] |
Zhang P , Hu J , Shen Y , Yang X , Qu J , Du F , Sun W , Li C M . Photoenzymatic catalytic cascade system of a pyromellitic diimide/g-C3N4 heterojunction to efficiently regenerate NADH for highly selective CO2 reduction toward formic acid. ACS Applied Materials & Interfaces, 2021, 13(39): 46650–46658
CrossRef
Google scholar
|
[65] |
Mishra S , Yadav R K , Singh S , Chaubey S , Singh P , Singh C , Gupta S K , Gupta S , Tiwary D , Kim T W . Solar light responsive graphitic carbon nitride coupled porphyrin photocatalyst that uses for solar fine chemical production. Photochemistry and Photobiology, 2023, 99(4): 1080–1091
CrossRef
Google scholar
|
[66] |
Cheng L , Xiang Q , Liao Y , Zhang H . CdS-based photocatalysts. Energy & Environmental Science, 2018, 11(6): 1362–1391
CrossRef
Google scholar
|
[67] |
Prasad C , Madkhali N , Won J S , Lee J E , Sangaraju S , Choi H Y . CdS based heterojunction for water splitting: a review. Materials Science and Engineering B, 2023, 292: 116413
CrossRef
Google scholar
|
[68] |
Li Q , Li X , Wageh S , Al-Ghamdi A A , Yu J G . CdS/graphene nanocomposite photocatalysts. Advanced Energy Materials, 2015, 5(14): 1500010
CrossRef
Google scholar
|
[69] |
Chen W , Huang G B , Song H , Zhang J . Efficient and stable charge transfer channels for photocatalytic water splitting activity of CdS without sacrificial agents. Journal of Materials Chemistry A, 2020, 8(40): 20963–20969
CrossRef
Google scholar
|
[70] |
Fermín D J , Ponomarev E A , Peter L M . A kinetic study of CdS photocorrosion by intensity modulated photocurrent and photoelectrochemical impedance spectroscopy. Journal of Electroanalytical Chemistry, 1999, 473(1–2): 192–203
CrossRef
Google scholar
|
[71] |
Xiang X , Zhu B , Cheng B , Yu J , Lv H . Enhanced photocatalytic H2-production activity of CdS quantum dots using Sn2+ as cocatalyst under visible light irradiation. Small, 2020, 16(26): 2001024
CrossRef
Google scholar
|
[72] |
Roy A M , De G C , Sasmal N , Bhattacharyya S S . Determination of the flatband potential of semiconductor particles in suspension by photovoltage measurement. International Journal of Hydrogen Energy, 1995, 20(8): 627–630
CrossRef
Google scholar
|
[73] |
Wu C , Huang W , Liu H , Lv K , Li Q . Insight into synergistic effect of Ti3C2 MXene and MoS2 on anti-photocorrosion and photocatalytic of CdS for hydrogen production. Applied Catalysis B: Environmental, 2023, 330: 122653
CrossRef
Google scholar
|
[74] |
Chen Y , Zhong W , Chen F , Wang P , Fan J , Yu H . Photoinduced self-stability mechanism of CdS photocatalyst: the dependence of photocorrosion and H2-evolution performance. Journal of Materials Science and Technology, 2022, 121: 19–27
CrossRef
Google scholar
|
[75] |
Tang Y , Hu X , Liu C . Perfect inhibition of CdS photocorrosion by graphene sheltering engineering on TiO2 nanotube array for highly stable photocatalytic activity. Physical Chemistry Chemical Physics, 2014, 16(46): 25321–25329
CrossRef
Google scholar
|
[76] |
Zhang H , Zhu Y . Significant visible photoactivity and antiphotocorrosion performance of CdS photocatalysts after monolayer polyaniline hybridization. Journal of Physical Chemistry C, 2010, 114(13): 5822–5826
CrossRef
Google scholar
|
[77] |
Wang D , Bao C , Luo Q , Yin R , Li X , An J , Xu Z . Improved visible-light photocatalytic activity and anti-photocorrosion of CdS nanoparticles surface-modified by conjugated derivatives from polyvinyl chloride. Journal of Environmental Chemical Engineering, 2015, 3(3): 1578–1585
CrossRef
Google scholar
|
[78] |
Ning X , Zhen W , Wu Y , Lu G . Inhibition of CdS photocorrosion by Al2O3 shell for highly stable photocatalytic overall water splitting under visible light irradiation. Applied Catalysis B: Environmental, 2018, 226: 373–383
CrossRef
Google scholar
|
[79] |
Lu Z , Yan H , Li B , Song M , Hang Y , Zhou G , Xu Y , Ma C , Han S , Liu X . Imprinted modified S-scheme heterojunction with high selectivity for inhibiting CdS photocorrosion by coating with poly-o-phenylenediamine. Applied Surface Science, 2022, 605: 154694
CrossRef
Google scholar
|
[80] |
Gao C , Zhang S , Feng F , Hu S , Zhao Q , Chen Y . Constructing a CdS QDs/silica gel composite with high photosensitivity and prolonged recyclable operability for enhanced visible-light-driven NADH regeneration. Journal of Colloid and Interface Science, 2023, 652: 1043–1052
CrossRef
Google scholar
|
[81] |
Yang D , Zhang Y , Zou H , Zhang S , Wu Y , Cai Z , Shi J , Jiang Z . Phosphorus quantum dots-facilitated enrichment of electrons on g-C3N4 hollow tubes for visible-light-driven nicotinamide adenine dinucleotide regeneration. ACS Sustainable Chemistry & Engineering, 2018, 7(1): 285–295
CrossRef
Google scholar
|
[82] |
Wu Y , Ward Bond J , Li D , Zhang S , Shi J , Jiang Z . g-C3N4@α-Fe2O3/C photocatalysts: synergistically intensified charge generation and charge transfer for NADH regeneration. ACS Catalysis, 2018, 8(7): 5664–5674
CrossRef
Google scholar
|
[83] |
Chen L , Yang Y , Jiang D . CMPs as scaffolds for constructing porous catalytic frameworks: a built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers. Journal of the American Chemical Society, 2010, 132(26): 9138–9143
CrossRef
Google scholar
|
[84] |
Freund R , Zaremba O , Arnauts G , Ameloot R , Skorupskii G , Dinca M , Bavykina A , Gascon J , Ejsmont A , Goscianska J .
CrossRef
Google scholar
|
[85] |
Wang C , Li J , Lv X , Zhang Y , Guo G . Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy & Environmental Science, 2014, 7(9): 2831–2867
CrossRef
Google scholar
|
[86] |
Xie Y , Wang T , Liu X , Zou K , Deng W . Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer. Nature Communications, 2013, 4(1): 1960
CrossRef
Google scholar
|
[87] |
Lee J S M , Cooper A I . Advances in conjugated microporous polymers. Chemical Reviews, 2020, 120(4): 2171–2214
CrossRef
Google scholar
|
[88] |
Jiang J X , Su F , Trewin A , Wood C D , Campbell N L , Niu H , Dickinson C , Ganin A Y , Rosseinsky M J , Khimyak Y Z .
CrossRef
Google scholar
|
[89] |
Lan F , Wang Q , Chen H , Chen Y , Zhang Y , Huang B , Liu H , Liu J , Li R . Preparation of hydrophilic conjugated microporous polymers for efficient visible light-driven nicotinamide adenine dinucleotide regeneration and photobiocatalytic formaldehyde reduction. ACS Catalysis, 2020, 10(21): 12976–12986
CrossRef
Google scholar
|
[90] |
Wang Y , Liu H , Pan Q , Ding N , Yang C , Zhang Z , Jia C , Li Z , Liu J , Zhao Y . Construction of thiazolo[5,4-d]thiazole-based two-dimensional network for efficient photocatalytic CO2 reduction. ACS Applied Materials & Interfaces, 2020, 12(41): 46483–46489
CrossRef
Google scholar
|
[91] |
Côté A P , Benin A I , Ockwig N W , O’Keeffe M , Matzger A J , Yaghi O M . Porous, crystalline, covalent organic frameworks. Science, 2005, 310(5751): 1166–1170
CrossRef
Google scholar
|
[92] |
Liang Q , Li Z , Huang Z , Kang F , Yang Q . Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Advanced Functional Materials, 2015, 25(44): 6885–6892
CrossRef
Google scholar
|
[93] |
Yadav D , Kumar A , Kim J Y , Park N J , Baeg J O . Interfacially synthesized 2D COF thin film photocatalyst: efficient photocatalyst for solar formic acid production from CO2 and fine chemical synthesis. Journal of Materials Chemistry A, 2021, 9(15): 9573–9580
CrossRef
Google scholar
|
[94] |
Singh N , Yadav D , Mulay S V , Kim J Y , Park N J , Baeg J O . Band gap engineering in solvochromic 2D covalent organic framework photocatalysts for visible light-driven enhanced solar fuel production from carbon dioxide. ACS Applied Materials & Interfaces, 2021, 13(12): 14122–14131
CrossRef
Google scholar
|
[95] |
Wang Y , Liu H , Pan Q , Wu C , Hao W , Xu J , Chen R , Liu J , Li Z , Zhao Y . Construction of fully conjugated covalent organic frameworks via facile linkage conversion for efficient photoenzymatic catalysis. Journal of the American Chemical Society, 2020, 142(13): 5958–5963
CrossRef
Google scholar
|
[96] |
Aguirre M E , Isla Naveira R , Botta P M , Altieri T A , Wolosiuk A , Churio M S . Early instability of MIL-125-NH2 in aqueous solution and mediation of the visible photogeneration of an NADH cofactor. New Journal of Chemistry, 2021, 45(23): 10277–10286
CrossRef
Google scholar
|
[97] |
Mohamed R M , Ibrahim F M . Visible light photocatalytic reduction of nitrobenzene using Ag/Bi2MoO6 nanocomposite. Journal of Industrial and Engineering Chemistry, 2015, 22: 28–33
CrossRef
Google scholar
|
[98] |
Li H , Liu J , Wang M , Ren X , Li C , Ren Y , Yang Q . Fabrication of nanoCOF/polyoxometallate composites for photocatalytic NADH regeneration via cascade electron relay. Solar RRL, 2021, 5(1): 2000641
CrossRef
Google scholar
|
[99] |
Chen S , Zhang H , Fu X , Hu Y . Preparation, characterization, and photocatalytic performance of Ce2S3 for nitrobenzene reduction. Applied Surface Science, 2013, 275: 335–341
CrossRef
Google scholar
|
[100] |
Tsutsumi K , Uchikawa F , Sakai K , Tabata K . Photoinduced reduction of nitroarenes using a transition-metal-loaded silicon semiconductor under visible light irradiation. ACS Catalysis, 2016, 6(7): 4394–4398
CrossRef
Google scholar
|
[101] |
Yang B , Luo W , Liao Q , Zhu J , Gan M , Liu X , Qiu G . Photogenerated-hole scavenger for enhancing photocatalytic chalcopyrite bioleaching. Transactions of Nonferrous Metals Society of China, 2020, 30(1): 200–211
CrossRef
Google scholar
|
[102] |
Wang S , Wu X , Fang J , Zhang F , Liu Y , Liu H , He Y , Luo M , Li R . Direct Z-scheme polymer/polymer double-shell hollow nanostructures for efficient NADH regeneration and biocatalytic artificial photosynthesis under visible light. ACS Catalysis, 2023, 13(7): 4433–4443
CrossRef
Google scholar
|
[103] |
Tian Y , Zhou Y , Zong Y , Li J , Yang N , Zhang M , Guo Z , Song H . Construction of functionally compartmental inorganic photocatalyst-enzyme system via imitating chloroplast for efficient photoreduction of CO2 to formic acid. ACS Applied Materials & Interfaces, 2020, 12(31): 34795–34805
CrossRef
Google scholar
|
[104] |
Marschall R . Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Advanced Functional Materials, 2014, 24(17): 2421–2440
CrossRef
Google scholar
|
[105] |
Sun Z , Wang H , Wu Z , Wang L . g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction. Catalysis Today, 2018, 300: 160–172
CrossRef
Google scholar
|
[106] |
Zheng Y , Chen Y , Gao B , Lin B , Wang X . Phosphorene-based heterostructured photocatalysts. Engineering, 2021, 7(7): 991–1001
CrossRef
Google scholar
|
[107] |
Niu X , Bai X , Zhou Z , Wang J . Rational design and characterization of direct Z-scheme photocatalyst for overall water splitting from excited state dynamics simulations. ACS Catalysis, 2020, 10(3): 1976–1983
CrossRef
Google scholar
|
[108] |
Tu J , Wu W , Lei X , Li P . The SWSe-BP vdW heterostructure as a promising photocatalyst for water splitting with power conversion efficiency of 19.4%. ACS Omega, 2022, 7(42): 37061–37069
CrossRef
Google scholar
|
[109] |
Xiao M , Wang Z , Lyu M , Luo B , Wang S , Liu G , Cheng H M , Wang L . Hollow nanostructures for photocatalysis: advantages and challenges. Advanced Materials, 2019, 31(38): 1801369
CrossRef
Google scholar
|
[110] |
Wang H , Lin Q , Yin L , Yang Y , Qiu Y , Lu C , Yang H . Biomimetic design of hollow flower-like g-C3N4@PDA organic framework nanospheres for realizing an efficient photoreactivity. Small, 2019, 15(16): 1900011
CrossRef
Google scholar
|
[111] |
Zeng P , Ji X , Su Z , Zhang S . WS2/g-C3N4 composite as an efficient heterojunction photocatalyst for biocatalyzed artificial photosynthesis. RSC Advances, 2018, 8(37): 20557–20567
CrossRef
Google scholar
|
[112] |
Low J , Yu J , Jaroniec M , Wageh S , Al-Ghamdi A A . Heterojunction photocatalysts. Advanced Materials, 2017, 29(20): 1601694
CrossRef
Google scholar
|
[113] |
Ng B J , Putri L K , Kong X Y , Teh Y W , Pasbakhsh P , Chai S P . Z-scheme photocatalytic systems for solar water splitting. Advanced Materials, 2020, 7(7): 1903171
|
[114] |
Xu Q , Zhang L , Yu J , Wageh S , Al Ghamdi A A , Jaroniec M . Direct Z-scheme photocatalysts: principles, synthesis, and applications. Materials Today, 2018, 21(10): 1042–1063
CrossRef
Google scholar
|
[115] |
Singh R , Bhateria R . Core-shell nanostructures: a simplest two-component system with enhanced properties and multiple applications. Environmental Geochemistry and Health, 2021, 43(7): 2459–2482
CrossRef
Google scholar
|
[116] |
Ghosh Chaudhuri R , Paria S . Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chemical Reviews, 2012, 112(4): 2373–2433
CrossRef
Google scholar
|
[117] |
Das S , Pérez Ramírez J , Gong J , Dewangan N , Hidajat K , Gates B C , Kawi S . Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chemical Society Reviews, 2020, 49(10): 2937–3004
CrossRef
Google scholar
|
[118] |
Yang D , Zhang Y , Zhang S , Cheng Y , Wu Y , Cai Z , Wang X , Shi J , Jiang Z . Coordination between electrontransfer and molecule diffusion through a bioinspired amorphous titania nanoshell for photocatalytic nicotinamide cofactor regeneration. ACS Catalysis, 2019, 9(12): 11492–11501
CrossRef
Google scholar
|
[119] |
Zhou L , Su Z , Wang J , Cai Y , Ding N , Wang L , Zhang J , Liu Y , Lei J . Highly selective regeneration of 1,4-NADH enabled by a metal-free core-shell photocatalyst of resorcinol-formaldehyde resins@polyaniline under visible light. Applied Catalysis B: Environmental, 2024, 341: 123290
CrossRef
Google scholar
|
[120] |
Zhao H , Wang L , Liu G , Liu Y , Zhang S , Wang L , Zheng X , Zhou L , Gao J , Shi J .
CrossRef
Google scholar
|
[121] |
Yang J , Wang D , Han H , Li C . Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Accounts of Chemical Research, 2013, 46(8): 1900–1909
CrossRef
Google scholar
|
[122] |
Qi Y , Zhang J , Kong Y , Zhao Y , Chen S , Li D , Liu W , Chen Y , Xie T , Cui J .
CrossRef
Google scholar
|
[123] |
Xiao N , Li S , Li X , Ge L , Gao Y , Li N . The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen. Chinese Journal of Catalysis, 2020, 41(4): 642–671
CrossRef
Google scholar
|
[124] |
ZhouYHeYGaoMDingNLeiJZhouY. Efficient photocatalytic NADH regeneration with Rh-loaded Z-scheme mediator-free system. Chinese Chemical Letters, 2024(2), 35: 108690
|
[125] |
Jain P K , Huang X , El Sayed I H , El Sayed M A . Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics, 2007, 2(3): 107–118
CrossRef
Google scholar
|
[126] |
Fang M , Tan X , Liu Z , Hu B , Wang X . Recent progress on metal-enhanced photocatalysis: a review on the mechanism. Research, 2021, 2021: 9794329
CrossRef
Google scholar
|
[127] |
Jiang J , Wang X , Guo H . Enhanced interfacial charge transfer/separation by LSPR-induced defective semiconductor toward high CO2RR performance. Small, 2023, 19(33): 2301280
CrossRef
Google scholar
|
[128] |
Zhou S , Cai Y , Zhang J , Liu Y , Zhou L , Lei J . Au-loaded resorcinol-formaldehyde resin photocatalysts: hollow sphere structure design and localized surface plasmon resonance effect synergistically promote efficient nicotinamide adenine dinucleotide (NADH) regeneration. ACS Sustainable Chemistry & Engineering, 2022, 10(44): 14464–14473
CrossRef
Google scholar
|
[129] |
Dhankhar A , Jain V , Chakraborty I N , Pillai P P . Enhancing the photocatalytic regeneration of nicotinamide cofactors with surface engineered plasmonic antenna-reactor system. Journal of Photochemistry and Photobiology A Chemistry, 2023, 437: 114472
CrossRef
Google scholar
|
[130] |
Wang S , Gao Y , Miao S , Liu T , Mu L , Li R , Fan F , Li C . Positioning the water oxidation reaction sites in plasmonic photocatalysts. Journal of the American Chemical Society, 2017, 139(34): 11771–11778
CrossRef
Google scholar
|
[131] |
Zhao S , Zhang Y , Zhou Y , Fang J , Wang Y , Zhang C , Chen W . Fabrication of sandwich-structured g-C3N4/Au/BiOCl Z-scheme photocatalyst with enhanced photocatalytic performance under visible light irradiation. Journal of Materials Science, 2018, 53(8): 6008–6020
CrossRef
Google scholar
|
[132] |
Pachfule P , Acharjya A , Roeser J , Langenhahn T , Schwarze M , Schomacker R , Thomas A , Schmidt J . Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. Journal of the American Chemical Society, 2018, 140(4): 1423–1427
CrossRef
Google scholar
|
[133] |
Zhang L , Zhao Q , Shen L , Li Q , Liu T , Hou L , Yang J . Enhancing the photocatalytic activity of defective titania for carbon dioxide photoreduction via surface functionalization. Catalysis Science & Technology, 2022, 12(2): 509–518
CrossRef
Google scholar
|
[134] |
Feng C , Wu Z , Huang K , Ye J , Zhang H . Surface modification of 2D photocatalysts for solar energy conversion. Advanced Materials, 2022, 34(23): 2200180
CrossRef
Google scholar
|
[135] |
Ma B , Sun S , He H , Lv R , Deng J , Huo T , Zhao Y , Yu H , Zhou L . An efficient metal-free photocatalytic system with enhanced activity for NADH regeneration. Industrial & Engineering Chemistry Research, 2019, 58(51): 23567–23573
CrossRef
Google scholar
|
[136] |
Li C , Liu J , Li H , Wu K , Wang J , Yang Q . Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution. Nature Communications, 2022, 13(1): 2357
CrossRef
Google scholar
|
[137] |
Dai C , Liu B . Conjugated polymers for visible-light-driven photocatalysis. Energy & Environmental Science, 2020, 13(1): 24–52
CrossRef
Google scholar
|
[138] |
Lan Z , Ren W , Chen X , Zhang Y , Wang X . Conjugated donor-acceptor polymer photocatalysts with electron-output “tentacles” for efficient hydrogen evolution. Applied Catalysis B: Environmental, 2019, 245: 596–603
CrossRef
Google scholar
|
[139] |
Meng J , Tian Y , Li C , Lin X , Wang Z , Sun L , Zhou Y , Li J , Yang N , Zong Y .
CrossRef
Google scholar
|
[140] |
Son E J , Lee Y W , Ko J W , Park C B . Amorphous carbon nitride as a robust photocatalyst for biocatalytic solar-to-chemical conversion. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 2545–2552
CrossRef
Google scholar
|
[141] |
Linsebigler A , Lu G , Yates J T . Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews, 1995, 95(3): 735–758
CrossRef
Google scholar
|
[142] |
Ning X , Meng S , Fu X , Ye X , Chen S . Efficient utilization of photogenerated electrons and holes for photocatalytic selective organic syntheses in one reaction system using a narrow band gap CdS photocatalyst. Green Chemistry, 2016, 18(12): 3628–3639
CrossRef
Google scholar
|
[143] |
Emmanuel M A , Bender S G , Bilodeau C , Carceller J M , DeHovitz J S , Fu H , Liu Y , Nicholls B T , Ouyang Y , Page C G .
CrossRef
Google scholar
|
[144] |
Concepcion J J , Jurss J W , Brennaman M K , Hoertz P G , Patrocinio A O T , Murakami Iha N Y , Templeton J L , Meyer T J . Making oxygen with ruthenium complexes. Accounts of Chemical Research, 2009, 42(12): 1954–1965
CrossRef
Google scholar
|
[145] |
Sharma V K , Hutchison J M , Allgeier A M . Redox biocatalysis: quantitative comparisons of nicotinamide cofactor regeneration methods. ChemSusChem, 2022, 15(22): e202200888
CrossRef
Google scholar
|
[146] |
Zhang Y , Liu J . Bioinspired photocatalytic NADH regeneration by covalently metalated carbon nitride for enhanced CO2 reduction. Chemistry A European Journal, 2022, 28(55): e202201430
CrossRef
Google scholar
|
[147] |
Cheng Y , Shi J , Wu Y , Wang X , Sun Y , Cai Z , Chen Y , Jiang Z . Intensifying electron utilization by surface-anchored Rh complex for enhanced nicotinamide cofactor regeneration and photoenzymatic CO2 reduction. Research, 2021, 2021: 8175709
CrossRef
Google scholar
|
[148] |
Xing X , Liu Y , Shi M , Li K , Fan X , Wu Z , Wang N , Yu X . Preparation of chiral aryl alcohols: a controllable enzymatic strategy via light-driven NAD(P)H regeneration. New Journal of Chemistry, 2022, 46(13): 6274–6282
CrossRef
Google scholar
|
[149] |
Lin G , Zhang Y , Hua Y , Zhang C , Jia C , Ju D , Yu C , Li P , Liu J . Bioinspired metalation of the metal-organic framework MIL-125-NH2 for photocatalytic NADH regeneration and gas-liquid-solid three-phase enzymatic CO2 reduction. Angewandte Chemie International Edition, 2022, 61(31): e202206283
CrossRef
Google scholar
|
[150] |
Wu Y , Shi J , Li D , Zhang S , Gu B , Qiu Q , Sun Y , Zhang Y , Cai Z , Jiang Z . Synergy of electron transfer and electron utilization via metal-organic frameworks as an electron buffer tank for nicotinamide regeneration. ACS Catalysis, 2020, 10(5): 2894–2905
CrossRef
Google scholar
|
[151] |
Wu X , Wang S , Fang J , Chen H , Liu H , Li R . Enhanced photocatalytic efficiency in visible-light-induced NADH regeneration by intramolecular electron transfer. ACS Applied Materials & Interfaces, 2022, 14(34): 38895–38904
CrossRef
Google scholar
|
[152] |
Zhao Z , Zheng D , Guo M , Yu J , Zhang S , Zhang Z , Chen Y . Engineering olefin-linked covalent organic frameworks for photoenzymatic reduction of CO2. Angewandte Chemie International Edition, 2022, 61(12): e202200261
CrossRef
Google scholar
|
[153] |
Liu J , Ren X , Li C , Wang M , Li H , Yang Q . Assembly of COFs layer and electron mediator on silica for visible light driven photocatalytic NADH regeneration. Applied Catalysis B: Environmental, 2022, 310: 121314
CrossRef
Google scholar
|
[154] |
Zhao Y , Liu H , Wu C , Zhang Z , Pan Q , Hu F , Wang R , Li P , Huang X , Li Z . Fully conjugated two-dimensional sp2-carbon covalent organic frameworks as artificial photosystem I with high efficiency. Angewandte Chemie International Edition, 2019, 58(16): 5376–5381
CrossRef
Google scholar
|
[155] |
Roy S , Jain V , Kashyap R K , Rao A , Pillai P P . Electrostatically driven multielectron transfer for the photocatalytic regeneration of nicotinamide cofactor. ACS Catalysis, 2020, 10(10): 5522–5528
CrossRef
Google scholar
|
[156] |
Zhang Z , Tong J , Meng X , Cai Y , Ma S , Huo F , Luo J , Xu B , Zhang S , Pinelo M . Development of an ionic porphyrin-based platform as a biomimetic light-harvesting agent for high-performance photoenzymatic synthesis of methanol from CO2. ACS Sustainable Chemistry & Engineering, 2021, 9(34): 11503–11511
CrossRef
Google scholar
|
[157] |
Kim J H , Lee S H , Lee J S , Lee M , Park C B . Zn-containing porphyrin as a biomimetic light-harvesting molecule for biocatalyzed artificial photosynthesis. Chemical Communications, 2011, 47(37): 10227–10229
CrossRef
Google scholar
|
[158] |
Wang Y , Sun J , Zhang H , Zhao Z , Liu W . Tetra(4-carboxyphenyl)porphyrin for efficient cofactor regeneration under visible light and its immobilization. Catalysis Science & Technology, 2018, 8(10): 2578–2587
CrossRef
Google scholar
|
[159] |
Kita Y , Amao Y . Visible-light-driven 3-hydroxybutyrate production from acetone and low concentrations of CO2 with a system of hybridized photocatalytic NADH regeneration and multi-biocatalysts. Green Chemistry, 2023, 25(7): 2699–2710
CrossRef
Google scholar
|
[160] |
Huang D , Ju Z P , Li C S , Yao C M , Guo J . First-principles study of Ag2ZnSnS4 as a photocatalyst. Acta Physica Sinica, 2014, 63(24): 247101
CrossRef
Google scholar
|
[161] |
Ye Y , Zang Z , Zhou T , Dong F , Lu S , Tang X , Wei W , Zhang Y . Theoretical and experimental investigation of highly photocatalytic performance of CuInZnS nanoporous structure for removing the NO gas. Journal of Catalysis, 2018, 357: 100–107
CrossRef
Google scholar
|
[162] |
Ge L , Ke Y , Li X . Machine learning integrated photocatalysis: progress and challenges. Chemical Communications, 2023, 59(39): 5795–5806
CrossRef
Google scholar
|
[163] |
Mai H , Le T C , Chen D , Winkler D A , Caruso R A . Machine learning for electrocatalyst and photocatalyst design and discovery. Chemical Reviews, 2022, 122(16): 13478–13515
CrossRef
Google scholar
|
[164] |
Mor G K , Shankar K , Paulose M , Varghese O K , Grimes C A . Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Letters, 2006, 6(2): 215–218
CrossRef
Google scholar
|
[165] |
Chen C , Ma W , Zhao J . Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chemical Society Reviews, 2010, 39(11): 4206–4219
CrossRef
Google scholar
|
[166] |
Hargenrader G N , Weerasooriya R B , Ilic S , Niklas J , Poluektov O G , Glusac K D . Photoregeneration of biomimetic nicotinamide adenine dinucleotide analogues via a dye-sensitized approach. ACS Applied Energy Materials, 2019, 2(1): 80–91
CrossRef
Google scholar
|
[167] |
Mishra A , Fischer M K , Bauerle P . Metal-free organic dyes for dye-sensitized solar cells: from structure property relationships to design rules. Angewandte Chemie International Edition, 2009, 48(14): 2474–2499
CrossRef
Google scholar
|
[168] |
Mojiri-Foroushani M , Dehghani H , Salehi-Vanani N . Enhancement of dye-sensitized solar cells performances by improving electron density in conduction band of nanostructure TiO2 electrode with using a metalloporphyrin as additional dye. Electrochimica Acta, 2013, 92: 315–322
CrossRef
Google scholar
|
[169] |
Mendizabal F , Mera Adasme R , Xu W H , Sundholm D . Electronic and optical properties of metalloporphyrins of zinc on TiO2 cluster in dye-sensitized solar-cells (DSSC). A quantum chemistry study. RSC Advances, 2017, 7(68): 42677–42684
CrossRef
Google scholar
|
[170] |
Ludin N A , Al Alwani Mahmoud A M , Bakar Mohamad A , Kadhum A A H , Sopian K , Abdul Karim N S . Review on the development of natural dye photosensitizer for dye-sensitized solar cells. Renewable & Sustainable Energy Reviews, 2014, 31: 386–396
CrossRef
Google scholar
|
[171] |
Wu K L , Li C H , Chi Y , Clifford J N , Cabau L , Palomares E , Cheng Y M , Pan H A , Chou P T . Dye molecular structure device open-circuit voltage correlation in Ru(II) sensitizers with heteroleptic tridentate chelates for dye-sensitized solar cells. Journal of the American Chemical Society, 2012, 134(17): 7488–7496
CrossRef
Google scholar
|
[172] |
LeT TAkhtarM SParkD MLeeJ CYangO B. Water splitting on Rhodamine-B dye sensitized Co-doped TiO2 catalyst under visible light. Applied Catalysis B: Environmental, 2012, 111–112: 397–401
|
[173] |
Li Y , Xie C , Peng S , Lu G , Li S . Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution. Journal of Molecular Catalysis A: Chemical, 2008, 282(1–2): 117–123
CrossRef
Google scholar
|
[174] |
Ge M , Li Q , Cao C , Huang J , Li S , Zhang S , Chen Z , Zhang K , Al-Deyab S S , Lai Y . One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Advanced Science, 2017, 4(1): 1600152
CrossRef
Google scholar
|
[175] |
Perera S D , Mariano R G , Vu K , Nour N , Seitz O , Chabal Y , Balkus K J Jr . Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catalysis, 2012, 2(6): 949–956
CrossRef
Google scholar
|
[176] |
Jo Y K , Lee J M , Son S , Hwang S J . 2D inorganic nanosheet-based hybrid photocatalysts: design, applications, and perspectives. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 40: 150–190
CrossRef
Google scholar
|
[177] |
Liang S , Liang R , Wen L , Yuan R , Wu L , Fu X . Molecular recognitive photocatalytic degradation of various cationic pollutants by the selective adsorption on visible light-driven SnNb2O6 nanosheet photocatalyst. Applied Catalysis B: Environmental, 2012, 125: 103–110
CrossRef
Google scholar
|
[178] |
Dong K , Le T A , Nakibli Y , Schleusener A , Wächtler M , Amirav L . Molecular metallocorrole-nanorod photocatalytic system for sustainable hydrogen production. ChemSusChem, 2022, 15(17): e202200804
CrossRef
Google scholar
|
[179] |
Tongying P , Vietmeyer F , Aleksiuk D , Ferraudi G J , Krylova G , Kuno M . Double heterojunction nanowire photocatalysts for hydrogen generation. Nanoscale, 2014, 6(8): 4117–4124
CrossRef
Google scholar
|
[180] |
Xu J , Qin T , Chen W , Lv J , Zeng X , Sun J , Li Y , Zhou J . Synergizing piezoelectric and plasmonic modulation of Ag/BiFeO3 fibrous heterostructure toward boosted photoelectrochemical energy conversion. Nano Energy, 2021, 89: 106317
CrossRef
Google scholar
|
[181] |
Xu S , Guo L , Sun Q , Wang Z . Piezotronic effect enhanced plasmonic photocatalysis by AuNPs/BaTiO3 heterostructures. Advanced Functional Materials, 2019, 29(13): 1808737
CrossRef
Google scholar
|
[182] |
Jiang Z , Tan X , Huang Y . Piezoelectric effect enhanced photocatalysis in environmental remediation: state-of-the-art techniques and future scenarios. Science of the Total Environment, 2022, 806: 150924
CrossRef
Google scholar
|
[183] |
Li R , Zhang F , Wang D , Yang J , Li M , Zhu J , Zhou X , Han H , Li C . Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nature Communications, 2013, 4(1): 1432
CrossRef
Google scholar
|
[184] |
Huang M , Lian J , Si R , Wang L , Pan X , Liu P . Spatial separation of electrons and holes among ZnO polar {0001} and {101̅0} facets for enhanced photocatalytic performance. ACS Omega, 2022, 7(30): 26844–26852
CrossRef
Google scholar
|
[185] |
Wang W , Zhou Y , Wen Y , Ni Y , Lu C , Xu Z . Effect of destructive {001}–{101} heterojunction on separating photo-generated electrons and holes of anatase TiO2. Materials Letters, 2015, 158: 29–31
CrossRef
Google scholar
|
[186] |
Hu C , Tu S , Tian N , Ma T , Zhang Y , Huang H . Photocatalysis enhanced by external fields. Angewandte Chemie International Edition, 2021, 60(30): 16309–16328
CrossRef
Google scholar
|
[187] |
Jiang Z , Wang H , Huang H , Cao C . Photocatalysis enhancement by electric field: TiO2 thin film for degradation of dye X-3B. Chemosphere, 2004, 56(5): 503–508
CrossRef
Google scholar
|
[188] |
Yang H G , Sun C H , Qiao S Z , Zou J , Liu G , Smith S C , Cheng H M , Lu G Q . Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008, 453(7195): 638–641
CrossRef
Google scholar
|
[189] |
Xiong J , Di J , Xia J , Zhu W , Li H . Surface defect engineering in 2D nanomaterials for photocatalysis. Advanced Functional Materials, 2018, 28(39): 1801983
CrossRef
Google scholar
|
[190] |
Di J , Zhu C , Ji M , Duan M , Long R , Yan C , Gu K , Xiong J , She Y , Xia J .
CrossRef
Google scholar
|
[191] |
Maarisetty D , Mary R , Hang D R , Mohapatra P , Baral S S . The role of material defects in the photocatalytic CO2 reduction: interfacial properties, thermodynamics, kinetics and mechanism. Journal of CO2 Utilization, 2022, 64: 102175
|
[192] |
Yan X , Zhuang L , Zhu Z , Yao X . Defect engineering and characterization of active sites for efficient electrocatalysis. Nanoscale, 2021, 13(6): 3327–3345
CrossRef
Google scholar
|
[193] |
Niu P , Liu G , Cheng H . Nitrogen vacancy-promoted photocatalytic activity of graphitic carbon nitride. Journal of Physical Chemistry C, 2012, 116(20): 11013–11018
CrossRef
Google scholar
|
[194] |
Li H , Li J , Ai Z , Jia F , Zhang L . Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives. Angewandte Chemie International Edition, 2018, 57(1): 122–138
CrossRef
Google scholar
|
[195] |
Xue X , Chen R , Chen H , Hu Y , Ding Q , Liu Z , Ma L , Zhu G , Zhang W , Yu Q .
CrossRef
Google scholar
|
[196] |
Zafar Z , Yi S , Li J , Li C , Zhu Y , Zada A , Yao W , Liu Z , Yue X . Recent development in defects engineered photocatalysts: an overview of the experimental and theoretical strategies. Energy & Environmental Science, 2022, 5(1): 68–114
|
[197] |
Jiang Z , Lü C , Wu H . Photoregeneration of NADH using carbon-containing TiO2. Industrial & Engineering Chemistry Research, 2005, 44(12): 4165–4170
CrossRef
Google scholar
|
[198] |
Suzuki T M , Yoshino S , Takayama T , Iwase A , Kudo A , Morikawa T . Z-schematic and visible-light-driven CO2 reduction using H2O as an electron donor by a particulate mixture of a Ru-complex/(CuGa)1–xZn2xS2 hybrid catalyst, BiVO4 and an electron mediator. Chemical Communications, 2018, 54(72): 10199–10202
CrossRef
Google scholar
|
[199] |
Mifsud M , Gargiulo S , Iborra S , Arends I W C E , Hollmann F , Corma A . Photobiocatalytic chemistry of oxidoreductases using water as the electron donor. Nature Communications, 2014, 5(1): 3145
CrossRef
Google scholar
|
[200] |
Ruckebusch C , Sliwa M , Pernot P , de Juan A , Tauler R . Comprehensive data analysis of femtosecond transient absorption spectra: a review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(1): 1–27
CrossRef
Google scholar
|
[201] |
Jiang Y , Long R , Xiong Y . Regulating C–C coupling in thermocatalytic and electrocatalytic COx conversion based on surface science. Chemical Science, 2019, 10(31): 7310–7326
CrossRef
Google scholar
|
[202] |
Ma W , Chen Z , Bu J , Liu Z , Li J , Yan C , Cheng L , Zhang L , Zhang H , Zhang J .
CrossRef
Google scholar
|
[203] |
Wang L , Bao H , Lin H , Yang C , Song J , Huang X . An easy fabricated biomimetic leaf microreactor for photocatalytic nicotinamide adenine dinucleotide (NADH) regeneration. Applied Catalysis A: General, 2022, 641: 118685
CrossRef
Google scholar
|
[204] |
Huang Z , Wang L , Yang C , Chen J , Zhao G , Huang X . A versatile optofluidic microreactor for artificial photosynthesis induced coenzyme regeneration and L-glutamate synthesis. Lab on a Chip, 2022, 22(15): 2878–2885
CrossRef
Google scholar
|
[205] |
Ren S , Wang Z , Bilal M , Feng Y , Jiang Y , Jia S , Cui J . Co-immobilization multienzyme nanoreactor with co-factor regeneration for conversion of CO2. International Journal of Biological Macromolecules, 2020, 155: 110–118
CrossRef
Google scholar
|
/
〈 | 〉 |