Combined effects of sea urchin-like structure and mixed Cu+/Cu0 states on promoting C2 formation in electrocatalytic CO2 reduction
Received date: 21 Sep 2023
Accepted date: 09 Dec 2023
Copyright
Surface engineering and Cu valence regulation are essential factors in improving the C2 selectivity during the electrochemical reduction of CO2. Herein, we present a sea urchin-like CuO/Cu2O catalyst derived from rhombic dodecahedra Cu2O through one-step oxidation/etching method where the mixed Cu+/Cu0 states are formed via in situ reduction during electrocatalysis. The combined effects of the morphology and the mixed Cu+/Cu0 states on C–C coupling are evaluated by the Faradaic efficiency of C2 and the C2/C1 ratio obtained in an H-cell. R-CuO/Cu2O exhibited 49.5% Faradaic efficiency of C2 with a C2/C1 ratio of 3.1 at −1.4 V vs. reversible hydrogen electrode, which are 1.5 and 3.2 times higher than those of R-Cu2O, respectively. Using a flow-cell, 68.0% Faradaic efficiency of C2 is achieved at a current density of 500 mA·cm−2. The formation of the mixed Cu+/Cu0 states was confirmed by in situ Raman spectra. Additionally, the sea urchin-like structure provides more active sites and enables faster electron transfer. As a result, the excellent C2 production on R-CuO/Cu2O is primarily attributed to the synergistic effects of the sea urchin-like structure and the stable mixed Cu+/Cu0 states. Therefore, this work presents an integrated strategy for developing Cu-based electrocatalysts for C2 production through electrochemical CO2 reduction.
Key words: CO2 electrolysis; sea urchin-like structure; Cu+/Cu0; C2 products
Mengqing Shan , Dongsheng Lu , Jiatong Dong , Shen Yan , Jinyu Han , Hua Wang . Combined effects of sea urchin-like structure and mixed Cu+/Cu0 states on promoting C2 formation in electrocatalytic CO2 reduction[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(3) : 30 . DOI: 10.1007/s11705-024-2393-5
1 |
Zhao Y J , Wang X Y , Sang X H , Zheng S X , Yang B , Lei L C , Hou Y , Li Z J . Spin polarization strategy to deploy proton resource over atomic-level metal sites for highly selective CO2 electrolysis. Frontiers of Chemical Science and Engineering, 2022, 16(12): 1772–1781
|
2 |
Woldu A R , Huang Z , Zhao P , Hu L , Astruc D . Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coordination Chemistry Reviews, 2022, 454: 214340
|
3 |
Wang J , Wang H , Han Z , Han J . Electrodeposited porous Pb electrode with improved electrocatalytic performance for the electroreduction of CO2 to formic acid. Frontiers of Chemical Science and Engineering, 2016, 9(1): 57–63
|
4 |
Qu J P , Cao X J , Gao L , Li J Y , Li L , Xie Y H , Zhao Y F , Zhang J Q , Wu M H , Liu H . Electrochemical carbon dioxide reduction to ethylene: from mechanistic understanding to catalyst surface engineering. Nano-Micro Letters, 2023, 15(1): 178
|
5 |
Yao D , Tang C , Vasileff A , Zhi X , Jiao Y , Qiao S Z . The controllable reconstruction of Bi-MOFs for electrochemical CO2 reduction through electrolyte and potential mediation. Angewandte Chemie International Edition, 2021, 60(33): 18178–18184
|
6 |
Saha P , Amanullah S , Dey A . Selectivity in electrochemical CO2 reduction. Accounts of Chemical Research, 2022, 55(2): 134–144
|
7 |
Zhu J X , Li J T , Lu R H , Yu R H , Zhao S Y , Li C B , Lv L , Xia L X , Chen X , Cai W .
|
8 |
Chen P C , Chen C B , Yang Y , Maulana A L , Jin J B , Feijoo J L , Yang P D . Chemical and structural evolution of AgCu catalysts in electrochemical CO2 reduction. Journal of the American Chemical Society, 2023, 145(18): 10116–10125
|
9 |
Li S M , Yan X D , Tang J Q , Cao D X , Sun X L , Tian G L , Tang X K , Guo H F , Wu Q Y , Sun J .
|
10 |
Wang M Y , Zhang S B , Li M , Han A G , Zhu X L , Ge Q F , Han J Y , Wang H . Facile synthesis of hierarchical flower-like Ag/Cu2O and Au/Cu2O nanostructures and enhanced catalytic performance in electrochemical reduction of CO2. Frontiers of Chemical Science and Engineering, 2020, 14(5): 813–823
|
11 |
Wang J L , Tan H Y , Zhu Y P , Chu H , Chen H M . Linking the dynamic chemical state of catalysts with the product profile of electrocatalytic CO2 reduction. Angewandte Chemie, 2021, 133(32): 17394–17407
|
12 |
Zhang Q , Wang J , Guo F , He G , Yang X , Li W , Xu J , Yin Z . Nitrogen cold plasma treatment stabilizes Cu0/Cu+ electrocatalysts to enhance CO2 to C2 conversion. Journal of Energy Chemistry, 2023, 84: 321–328
|
13 |
Yuan X , Chen S , Cheng D , Li L , Zhu W , Zhong D , Zhao Z J , Li J , Wang T , Gong J . Controllable Cu0–Cu+ sites for electrocatalytic reduction of carbon dioxide. Angewandte Chemie International Edition, 2021, 60(28): 15344–15347
|
14 |
Sun L R , Han J Y , Ge Q F , Zhu X L , Wang H . Understanding the role of Cu+/Cu0 sites at Cu2O based catalysts in ethanol production from CO2 electroreduction—a DFT study. RSC Advances, 2022, 12(30): 19394–19401
|
15 |
Wang S N , Wang D , Tian B Q , Gao X X , Han L , Zhong Y , Song S C , Wang Z L , Li Y P , Gui J N .
|
16 |
He T W , Tang C , Puente Santiago A R , Luque R , Pan H , Du A J . Tuning CO binding strength via engineering the copper/borophene interface for highly efficient conversion of CO into ethanol. Journal of Materials Chemistry A, 2021, 9(22): 13192–13199
|
17 |
Kim C , Cho K M , Park K , Kim J Y , Yun G T , Toma F M , Gereige I , Jung H T . Cu/Cu2O interconnected porous aerogel catalyst for highly productive electrosynthesis of ethanol from CO2. Advanced Functional Materials, 2021, 31(32): 2102142
|
18 |
Liu W , Zhai P B , Li A , Wei B , Si K P , Wei Y , Wang X G , Zhu G D , Chen Q , Gu X K .
|
19 |
Jiang K , Huang Y F , Zeng G S , Toma F M , Goddard W A III , Bell A T . Effects of surface roughness on the electrochemical reduction of CO2 over Cu. ACS Energy Letters, 2020, 5(4): 1206–1214
|
20 |
Sang J Q , Wei P F , Liu T F , Lv H F , Ni X M , Gao D F , Zhang J W , Li H F , Zang Y P , Yang F .
|
21 |
Li W , Feng X L , Zhang Z , Jin X , Liu D P , Zhang Y . A controllable surface etching strategy for well-defined spiny yolk@shell CuO@CeO2 cubes and their catalytic performance boost. Advanced Functional Materials, 2018, 28(49): 1802559
|
22 |
Hua Q , Chen K , Chang S J , Ma Y S , Huang W X . Crystal plane-dependent compositional and structural evolution of uniform Cu2O nanocrystals in aqueous ammonia solutions. Journal of Physical Chemistry C, 2011, 115(42): 20618–20627
|
23 |
Scholten F , Nguyen K L C , Bruce J P , Heyde M , Roldan Cuenya B . Identifying structure-selectivity correlations in the electrochemical reduction of CO2: a comparison of well-ordered atomically clean and chemically etched copper single-crystal surfaces. Angewandte Chemie International Edition, 2021, 60(35): 19169–19175
|
24 |
Yang P P , Zhang X L , Gao F Y , Zheng Y R , Niu Z Z , Yu X , Liu R , Wu Z Z , Qin S , Chi L P .
|
25 |
Huang W C , Lyu L M , Yang Y C , Huang M H . Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. Journal of the American Chemical Society, 2011, 134(2): 1261–1267
|
26 |
Huang J J , Chen Z , Cai J M , Jin Y Z , Wang T , Wang J H . Activating copper oxide for stable electrocatalytic ammonia oxidation reaction via in-situ introducing oxygen vacancies. Nano Research, 2022, 15(7): 5987–5994
|
27 |
Yan X , Chen C , Wu Y , Liu S , Chen Y , Feng R , Zhang J , Han B . Efficient electroreduction of CO2 to C2+ products on CeO2 modified CuO. Chemical Science, 2021, 12(19): 6638–6645
|
28 |
Alabsi M H , Wang X L , Zheng P , Ramirez A , Duan A J , Xu C M , Huang K W . Screening and design of active metals on dendritic mesoporous Ce0.3Zr0.7O2 for efficient CO2 hydrogenation to methanol. Fuel, 2022, 317: 123471
|
29 |
Wang X Q , Chen Q , Zhou Y J , Li H M , Fu J W , Liu M . Cu-based bimetallic catalysts for CO2 reduction reaction. Advanced Sensor and Energy Materials, 2022, 1(3): 100023
|
30 |
Luo H Q , Li B , Ma J G , Cheng P . Surface modification of Nano-Cu2O for controlling CO2 electrochemical reduction to ethylene and syngas. Angewandte Chemie International Edition, 2022, 61(11): e202116736
|
31 |
Chou T C , Chang C C , Yu H L , Yu W Y , Dong C L , Velasco Vélez J J , Chuang C H , Chen L C , Lee J F , Chen J M .
|
32 |
Wu Z Z , Zhang X L , Niu Z Z , Gao F Y , Yang P P , Chi L P , Shi L , Wei W S , Liu R , Chen Z .
|
33 |
Park D G , Choi J W , Chun H , Jang H S , Lee H , Choi W H , Moon B C , Kim K H , Kim M G , Choi K M .
|
34 |
Fang M W , Wang M L , Wang Z W , Zhang Z X , Zhou H C , Dai L M , Zhu Y , Jiang L . Hydrophobic, ultrastable Cuδ+ for robust CO2 electroreduction to C2 products at ampere-current levels. Journal of the American Chemical Society, 2023, 145(20): 11323–11332
|
35 |
Wordsworth J , Benedetti T M , Somerville S V , Schuhmann W , Tilley R D , Gooding J J . The influence of nanoconfinement on electrocatalysis. Angewandte Chemie International Edition, 2022, 61(28): e202200755
|
36 |
Lee S , Kim D , Lee J . Electrocatalytic production of C3–C4 compounds by conversion of CO2 on a chloride-induced Bi-phasic Cu2O–Cu catalyst. Angewandte Chemie International Edition, 2015, 54(49): 14701–14705
|
37 |
Kuang S Y , Li M L , Xia R , Xing L , Su Y Q , Fan Q , Liu J P , Hensen E J M , Ma X B , Zhang S . Stable surface-anchored Cu nanocubes for CO2 electroreduction to ethylene. ACS Applied Nano Materials, 2020, 3(8): 8328–8334
|
38 |
Yang W , Liu H , Qi Y , Li Y , Cui Y , Yu L , Cui X , Deng D . Boosting C–C coupling to multicarbon products via high-pressure CO electroreduction. Journal of Energy Chemistry, 2023, 85: 102–107
|
39 |
Sebastián-Pascual P , Escudero-Escribano M . Addressing the interfacial properties for CO electroreduction on Cu with cyclic voltammetry. ACS Energy Letters, 2019, 5(1): 130–135
|
40 |
Choi C , Kwon S , Cheng T , Xu M J , Tieu P , Lee C , Cai J , Lee H M , Pan X Q , Duan X F .
|
41 |
Jiang Y W , Wang X Y , Duan D L , He C H , Ma J , Zhang W Q , Liu H J , Long R , Li Z B , Kong T T .
|
42 |
Liu P , Hensen E J M . Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. Journal of the American Chemical Society, 2013, 135(38): 14032–14035
|
43 |
Lyu Z H , Zhu S Q , Xie M H , Zhang Y , Chen Z T , Chen R H , Tian M K , Chi M F , Shao M H , Xia Y N . Controlling the surface oxidation of Cu nanowires improves their catalytic selectivity and stability toward C2+ products in CO2 reduction. Angewandte Chemie International Edition, 2021, 60(4): 1909–1915
|
44 |
Xie M C , Shen Y , Ma W C , Wei D Y , Zhang B , Wang Z H , Wang Y H , Zhang Q H , Xie S J , Wang C .
|
45 |
Wang Y , Zhao J K , Cao C , Ding J , Wang R Y , Zeng J , Bao J , Liu B . Amino-functionalized Cu for efficient electrochemical reduction of CO to acetate. ACS Catalysis, 2023, 13(6): 3532–3540
|
46 |
Duan G Y , Li X Q , Ding G R , Han L J , Xu B H , Zhang S J . Highly efficient electrocatalytic CO2 reduction to C2+ products on a poly(ionic liquid)-based Cu0–CuI tandem catalyst. Angewandte Chemie International Edition, 2022, 61(9): e202110657
|
47 |
Zhang J , Wang Y , Li Z , Xia S , Cai R , Ma L , Zhang T , Ackley J , Yang S , Wu Y .
|
48 |
Lei Q , Huang L , Yin J , Davaasuren B , Yuan Y , Dong X , Wu Z , Wang X , Yao K , Lu X .
|
49 |
Chen S , Li Y , Bu Z , Yang F , Luo J , An Q , Zeng Z , Wang J , Deng S . Boosting CO2-to-CO conversion on a robust single-atom copper decorated carbon catalyst by enhancing intermediate binding strength. Journal of Materials Chemistry A, 2021, 9(3): 1705–1712
|
50 |
Liu H , Miao B Y , Chuai H , Chen X , Zhang S , Ma X B . Nanoporous tin oxides for efficient electrochemical CO2 reduction to formate. Green Chemical Engineering, 2022, 3(2): 138–145
|
/
〈 |
|
〉 |