Combined effects of sea urchin-like structure and mixed Cu+/Cu0 states on promoting C2 formation in electrocatalytic CO2 reduction

Mengqing Shan, Dongsheng Lu, Jiatong Dong, Shen Yan, Jinyu Han, Hua Wang

PDF(10817 KB)
PDF(10817 KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (3) : 30. DOI: 10.1007/s11705-024-2393-5
RESEARCH ARTICLE

Combined effects of sea urchin-like structure and mixed Cu+/Cu0 states on promoting C2 formation in electrocatalytic CO2 reduction

Author information +
History +

Abstract

Surface engineering and Cu valence regulation are essential factors in improving the C2 selectivity during the electrochemical reduction of CO2. Herein, we present a sea urchin-like CuO/Cu2O catalyst derived from rhombic dodecahedra Cu2O through one-step oxidation/etching method where the mixed Cu+/Cu0 states are formed via in situ reduction during electrocatalysis. The combined effects of the morphology and the mixed Cu+/Cu0 states on C–C coupling are evaluated by the Faradaic efficiency of C2 and the C2/C1 ratio obtained in an H-cell. R-CuO/Cu2O exhibited 49.5% Faradaic efficiency of C2 with a C2/C1 ratio of 3.1 at −1.4 V vs. reversible hydrogen electrode, which are 1.5 and 3.2 times higher than those of R-Cu2O, respectively. Using a flow-cell, 68.0% Faradaic efficiency of C2 is achieved at a current density of 500 mA·cm−2. The formation of the mixed Cu+/Cu0 states was confirmed by in situ Raman spectra. Additionally, the sea urchin-like structure provides more active sites and enables faster electron transfer. As a result, the excellent C2 production on R-CuO/Cu2O is primarily attributed to the synergistic effects of the sea urchin-like structure and the stable mixed Cu+/Cu0 states. Therefore, this work presents an integrated strategy for developing Cu-based electrocatalysts for C2 production through electrochemical CO2 reduction.

Graphical abstract

Keywords

CO2 electrolysis / sea urchin-like structure / Cu+/Cu0 / C2 products

Cite this article

Download citation ▾
Mengqing Shan, Dongsheng Lu, Jiatong Dong, Shen Yan, Jinyu Han, Hua Wang. Combined effects of sea urchin-like structure and mixed Cu+/Cu0 states on promoting C2 formation in electrocatalytic CO2 reduction. Front. Chem. Sci. Eng., 2024, 18(3): 30 https://doi.org/10.1007/s11705-024-2393-5

References

[1]
Zhao Y J , Wang X Y , Sang X H , Zheng S X , Yang B , Lei L C , Hou Y , Li Z J . Spin polarization strategy to deploy proton resource over atomic-level metal sites for highly selective CO2 electrolysis. Frontiers of Chemical Science and Engineering, 2022, 16(12): 1772–1781
CrossRef Google scholar
[2]
Woldu A R , Huang Z , Zhao P , Hu L , Astruc D . Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coordination Chemistry Reviews, 2022, 454: 214340
CrossRef Google scholar
[3]
Wang J , Wang H , Han Z , Han J . Electrodeposited porous Pb electrode with improved electrocatalytic performance for the electroreduction of CO2 to formic acid. Frontiers of Chemical Science and Engineering, 2016, 9(1): 57–63
CrossRef Google scholar
[4]
Qu J P , Cao X J , Gao L , Li J Y , Li L , Xie Y H , Zhao Y F , Zhang J Q , Wu M H , Liu H . Electrochemical carbon dioxide reduction to ethylene: from mechanistic understanding to catalyst surface engineering. Nano-Micro Letters, 2023, 15(1): 178
CrossRef Google scholar
[5]
Yao D , Tang C , Vasileff A , Zhi X , Jiao Y , Qiao S Z . The controllable reconstruction of Bi-MOFs for electrochemical CO2 reduction through electrolyte and potential mediation. Angewandte Chemie International Edition, 2021, 60(33): 18178–18184
CrossRef Google scholar
[6]
Saha P , Amanullah S , Dey A . Selectivity in electrochemical CO2 reduction. Accounts of Chemical Research, 2022, 55(2): 134–144
CrossRef Google scholar
[7]
Zhu J X , Li J T , Lu R H , Yu R H , Zhao S Y , Li C B , Lv L , Xia L X , Chen X , Cai W . . Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction. Nature Communications, 2023, 14(1): 4670
CrossRef Google scholar
[8]
Chen P C , Chen C B , Yang Y , Maulana A L , Jin J B , Feijoo J L , Yang P D . Chemical and structural evolution of AgCu catalysts in electrochemical CO2 reduction. Journal of the American Chemical Society, 2023, 145(18): 10116–10125
CrossRef Google scholar
[9]
Li S M , Yan X D , Tang J Q , Cao D X , Sun X L , Tian G L , Tang X K , Guo H F , Wu Q Y , Sun J . . Cu26 nanoclusters with quintuple ligand shells for CO2 electrocatalytic reduction. Chemistry of Materials, 2023, 35(15): 6123–6132
CrossRef Google scholar
[10]
Wang M Y , Zhang S B , Li M , Han A G , Zhu X L , Ge Q F , Han J Y , Wang H . Facile synthesis of hierarchical flower-like Ag/Cu2O and Au/Cu2O nanostructures and enhanced catalytic performance in electrochemical reduction of CO2. Frontiers of Chemical Science and Engineering, 2020, 14(5): 813–823
CrossRef Google scholar
[11]
Wang J L , Tan H Y , Zhu Y P , Chu H , Chen H M . Linking the dynamic chemical state of catalysts with the product profile of electrocatalytic CO2 reduction. Angewandte Chemie, 2021, 133(32): 17394–17407
CrossRef Google scholar
[12]
Zhang Q , Wang J , Guo F , He G , Yang X , Li W , Xu J , Yin Z . Nitrogen cold plasma treatment stabilizes Cu0/Cu+ electrocatalysts to enhance CO2 to C2 conversion. Journal of Energy Chemistry, 2023, 84: 321–328
CrossRef Google scholar
[13]
Yuan X , Chen S , Cheng D , Li L , Zhu W , Zhong D , Zhao Z J , Li J , Wang T , Gong J . Controllable Cu0–Cu+ sites for electrocatalytic reduction of carbon dioxide. Angewandte Chemie International Edition, 2021, 60(28): 15344–15347
CrossRef Google scholar
[14]
Sun L R , Han J Y , Ge Q F , Zhu X L , Wang H . Understanding the role of Cu+/Cu0 sites at Cu2O based catalysts in ethanol production from CO2 electroreduction—a DFT study. RSC Advances, 2022, 12(30): 19394–19401
CrossRef Google scholar
[15]
Wang S N , Wang D , Tian B Q , Gao X X , Han L , Zhong Y , Song S C , Wang Z L , Li Y P , Gui J N . . Synergistic Cu+/Cu0 on Cu2O–Cu interfaces for efficient and selective C2+ production in electrocatalytic CO2 conversion. Science China Materials, 2023, 66(5): 1801–1809
CrossRef Google scholar
[16]
He T W , Tang C , Puente Santiago A R , Luque R , Pan H , Du A J . Tuning CO binding strength via engineering the copper/borophene interface for highly efficient conversion of CO into ethanol. Journal of Materials Chemistry A, 2021, 9(22): 13192–13199
CrossRef Google scholar
[17]
Kim C , Cho K M , Park K , Kim J Y , Yun G T , Toma F M , Gereige I , Jung H T . Cu/Cu2O interconnected porous aerogel catalyst for highly productive electrosynthesis of ethanol from CO2. Advanced Functional Materials, 2021, 31(32): 2102142
CrossRef Google scholar
[18]
Liu W , Zhai P B , Li A , Wei B , Si K P , Wei Y , Wang X G , Zhu G D , Chen Q , Gu X K . . Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. Nature Communications, 2022, 13(1): 1877
CrossRef Google scholar
[19]
Jiang K , Huang Y F , Zeng G S , Toma F M , Goddard W A III , Bell A T . Effects of surface roughness on the electrochemical reduction of CO2 over Cu. ACS Energy Letters, 2020, 5(4): 1206–1214
CrossRef Google scholar
[20]
Sang J Q , Wei P F , Liu T F , Lv H F , Ni X M , Gao D F , Zhang J W , Li H F , Zang Y P , Yang F . . A reconstructed Cu2P2O7 catalyst for selective CO2 electroreduction to multicarbon products. Angewandte Chemie International Edition, 2021, 61(5): e202114238
CrossRef Google scholar
[21]
Li W , Feng X L , Zhang Z , Jin X , Liu D P , Zhang Y . A controllable surface etching strategy for well-defined spiny yolk@shell CuO@CeO2 cubes and their catalytic performance boost. Advanced Functional Materials, 2018, 28(49): 1802559
CrossRef Google scholar
[22]
Hua Q , Chen K , Chang S J , Ma Y S , Huang W X . Crystal plane-dependent compositional and structural evolution of uniform Cu2O nanocrystals in aqueous ammonia solutions. Journal of Physical Chemistry C, 2011, 115(42): 20618–20627
CrossRef Google scholar
[23]
Scholten F , Nguyen K L C , Bruce J P , Heyde M , Roldan Cuenya B . Identifying structure-selectivity correlations in the electrochemical reduction of CO2: a comparison of well-ordered atomically clean and chemically etched copper single-crystal surfaces. Angewandte Chemie International Edition, 2021, 60(35): 19169–19175
CrossRef Google scholar
[24]
Yang P P , Zhang X L , Gao F Y , Zheng Y R , Niu Z Z , Yu X , Liu R , Wu Z Z , Qin S , Chi L P . . Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels. Journal of the American Chemical Society, 2020, 142(13): 6400–6408
CrossRef Google scholar
[25]
Huang W C , Lyu L M , Yang Y C , Huang M H . Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. Journal of the American Chemical Society, 2011, 134(2): 1261–1267
CrossRef Google scholar
[26]
Huang J J , Chen Z , Cai J M , Jin Y Z , Wang T , Wang J H . Activating copper oxide for stable electrocatalytic ammonia oxidation reaction via in-situ introducing oxygen vacancies. Nano Research, 2022, 15(7): 5987–5994
CrossRef Google scholar
[27]
Yan X , Chen C , Wu Y , Liu S , Chen Y , Feng R , Zhang J , Han B . Efficient electroreduction of CO2 to C2+ products on CeO2 modified CuO. Chemical Science, 2021, 12(19): 6638–6645
CrossRef Google scholar
[28]
Alabsi M H , Wang X L , Zheng P , Ramirez A , Duan A J , Xu C M , Huang K W . Screening and design of active metals on dendritic mesoporous Ce0.3Zr0.7O2 for efficient CO2 hydrogenation to methanol. Fuel, 2022, 317: 123471
CrossRef Google scholar
[29]
Wang X Q , Chen Q , Zhou Y J , Li H M , Fu J W , Liu M . Cu-based bimetallic catalysts for CO2 reduction reaction. Advanced Sensor and Energy Materials, 2022, 1(3): 100023
CrossRef Google scholar
[30]
Luo H Q , Li B , Ma J G , Cheng P . Surface modification of Nano-Cu2O for controlling CO2 electrochemical reduction to ethylene and syngas. Angewandte Chemie International Edition, 2022, 61(11): e202116736
CrossRef Google scholar
[31]
Chou T C , Chang C C , Yu H L , Yu W Y , Dong C L , Velasco Vélez J J , Chuang C H , Chen L C , Lee J F , Chen J M . . Controlling the oxidation state of the Cu electrode and reaction intermediates for electrochemical CO2 reduction to ethylene. Journal of the American Chemical Society, 2020, 142(6): 2857–2867
CrossRef Google scholar
[32]
Wu Z Z , Zhang X L , Niu Z Z , Gao F Y , Yang P P , Chi L P , Shi L , Wei W S , Liu R , Chen Z . . Identification of Cu(100)/Cu(111) interfaces as superior active sites for CO dimerization during CO2 electroreduction. Journal of the American Chemical Society, 2021, 144(1): 259–269
CrossRef Google scholar
[33]
Park D G , Choi J W , Chun H , Jang H S , Lee H , Choi W H , Moon B C , Kim K H , Kim M G , Choi K M . . Increasing CO binding energy and defects by preserving Cu oxidation state via O2-plasma-assisted N doping on CuO enables high C2+ selectivity and long-term stability in electrochemical CO2 reduction. ACS Catalysis, 2023, 13(13): 9222–9233
CrossRef Google scholar
[34]
Fang M W , Wang M L , Wang Z W , Zhang Z X , Zhou H C , Dai L M , Zhu Y , Jiang L . Hydrophobic, ultrastable Cuδ+ for robust CO2 electroreduction to C2 products at ampere-current levels. Journal of the American Chemical Society, 2023, 145(20): 11323–11332
CrossRef Google scholar
[35]
Wordsworth J , Benedetti T M , Somerville S V , Schuhmann W , Tilley R D , Gooding J J . The influence of nanoconfinement on electrocatalysis. Angewandte Chemie International Edition, 2022, 61(28): e202200755
CrossRef Google scholar
[36]
Lee S , Kim D , Lee J . Electrocatalytic production of C3–C4 compounds by conversion of CO2 on a chloride-induced Bi-phasic Cu2O–Cu catalyst. Angewandte Chemie International Edition, 2015, 54(49): 14701–14705
CrossRef Google scholar
[37]
Kuang S Y , Li M L , Xia R , Xing L , Su Y Q , Fan Q , Liu J P , Hensen E J M , Ma X B , Zhang S . Stable surface-anchored Cu nanocubes for CO2 electroreduction to ethylene. ACS Applied Nano Materials, 2020, 3(8): 8328–8334
CrossRef Google scholar
[38]
Yang W , Liu H , Qi Y , Li Y , Cui Y , Yu L , Cui X , Deng D . Boosting C–C coupling to multicarbon products via high-pressure CO electroreduction. Journal of Energy Chemistry, 2023, 85: 102–107
CrossRef Google scholar
[39]
Sebastián-Pascual P , Escudero-Escribano M . Addressing the interfacial properties for CO electroreduction on Cu with cyclic voltammetry. ACS Energy Letters, 2019, 5(1): 130–135
CrossRef Google scholar
[40]
Choi C , Kwon S , Cheng T , Xu M J , Tieu P , Lee C , Cai J , Lee H M , Pan X Q , Duan X F . . Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nature Catalysis, 2020, 3(10): 804–812
CrossRef Google scholar
[41]
Jiang Y W , Wang X Y , Duan D L , He C H , Ma J , Zhang W Q , Liu H J , Long R , Li Z B , Kong T T . . Structural reconstruction of Cu2O superparticles toward electrocatalytic CO2 reduction with high C2+ products selectivity. Advanced Science, 2022, 9(16): 2105292
CrossRef Google scholar
[42]
Liu P , Hensen E J M . Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. Journal of the American Chemical Society, 2013, 135(38): 14032–14035
CrossRef Google scholar
[43]
Lyu Z H , Zhu S Q , Xie M H , Zhang Y , Chen Z T , Chen R H , Tian M K , Chi M F , Shao M H , Xia Y N . Controlling the surface oxidation of Cu nanowires improves their catalytic selectivity and stability toward C2+ products in CO2 reduction. Angewandte Chemie International Edition, 2021, 60(4): 1909–1915
CrossRef Google scholar
[44]
Xie M C , Shen Y , Ma W C , Wei D Y , Zhang B , Wang Z H , Wang Y H , Zhang Q H , Xie S J , Wang C . . Fast screening for copper-based bimetallic electrocatalysts: efficient electrocatalytic reduction of CO2 to C2+ products on magnesium-modified copper. Angewandte Chemie International Edition, 2022, 61(51): e202213423
CrossRef Google scholar
[45]
Wang Y , Zhao J K , Cao C , Ding J , Wang R Y , Zeng J , Bao J , Liu B . Amino-functionalized Cu for efficient electrochemical reduction of CO to acetate. ACS Catalysis, 2023, 13(6): 3532–3540
CrossRef Google scholar
[46]
Duan G Y , Li X Q , Ding G R , Han L J , Xu B H , Zhang S J . Highly efficient electrocatalytic CO2 reduction to C2+ products on a poly(ionic liquid)-based Cu0–CuI tandem catalyst. Angewandte Chemie International Edition, 2022, 61(9): e202110657
CrossRef Google scholar
[47]
Zhang J , Wang Y , Li Z , Xia S , Cai R , Ma L , Zhang T , Ackley J , Yang S , Wu Y . . Grain boundary-derived Cu+/Cu0 interfaces in CuO nanosheets for low overpotential carbon dioxide electroreduction to ethylene. Advanced Science, 2022, 9(21): 2200454
CrossRef Google scholar
[48]
Lei Q , Huang L , Yin J , Davaasuren B , Yuan Y , Dong X , Wu Z , Wang X , Yao K , Lu X . . Structural evolution and strain generation of derived-Cu catalysts during CO2 electroreduction. Nature Communications, 2022, 13(1): 4857
CrossRef Google scholar
[49]
Chen S , Li Y , Bu Z , Yang F , Luo J , An Q , Zeng Z , Wang J , Deng S . Boosting CO2-to-CO conversion on a robust single-atom copper decorated carbon catalyst by enhancing intermediate binding strength. Journal of Materials Chemistry A, 2021, 9(3): 1705–1712
CrossRef Google scholar
[50]
Liu H , Miao B Y , Chuai H , Chen X , Zhang S , Ma X B . Nanoporous tin oxides for efficient electrochemical CO2 reduction to formate. Green Chemical Engineering, 2022, 3(2): 138–145
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 22178266). We are grateful to Donghai Mei group of Tiangong University for providing in situ Raman spectroscopy tests. We thank Prof. Xiaolei Wang and Dr. Mahrima Majid of University of Alberta for polishing English language of the full text.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2393-5 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(10817 KB)

Accesses

Citations

Detail

Sections
Recommended

/