Combined effects of sea urchin-like structure and mixed Cu+/Cu0 states on promoting C2 formation in electrocatalytic CO2 reduction
Mengqing Shan, Dongsheng Lu, Jiatong Dong, Shen Yan, Jinyu Han, Hua Wang
Combined effects of sea urchin-like structure and mixed Cu+/Cu0 states on promoting C2 formation in electrocatalytic CO2 reduction
Surface engineering and Cu valence regulation are essential factors in improving the C2 selectivity during the electrochemical reduction of CO2. Herein, we present a sea urchin-like CuO/Cu2O catalyst derived from rhombic dodecahedra Cu2O through one-step oxidation/etching method where the mixed Cu+/Cu0 states are formed via in situ reduction during electrocatalysis. The combined effects of the morphology and the mixed Cu+/Cu0 states on C–C coupling are evaluated by the Faradaic efficiency of C2 and the C2/C1 ratio obtained in an H-cell. R-CuO/Cu2O exhibited 49.5% Faradaic efficiency of C2 with a C2/C1 ratio of 3.1 at −1.4 V vs. reversible hydrogen electrode, which are 1.5 and 3.2 times higher than those of R-Cu2O, respectively. Using a flow-cell, 68.0% Faradaic efficiency of C2 is achieved at a current density of 500 mA·cm−2. The formation of the mixed Cu+/Cu0 states was confirmed by in situ Raman spectra. Additionally, the sea urchin-like structure provides more active sites and enables faster electron transfer. As a result, the excellent C2 production on R-CuO/Cu2O is primarily attributed to the synergistic effects of the sea urchin-like structure and the stable mixed Cu+/Cu0 states. Therefore, this work presents an integrated strategy for developing Cu-based electrocatalysts for C2 production through electrochemical CO2 reduction.
CO2 electrolysis / sea urchin-like structure / Cu+/Cu0 / C2 products
[1] |
Zhao Y J , Wang X Y , Sang X H , Zheng S X , Yang B , Lei L C , Hou Y , Li Z J . Spin polarization strategy to deploy proton resource over atomic-level metal sites for highly selective CO2 electrolysis. Frontiers of Chemical Science and Engineering, 2022, 16(12): 1772–1781
CrossRef
Google scholar
|
[2] |
Woldu A R , Huang Z , Zhao P , Hu L , Astruc D . Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coordination Chemistry Reviews, 2022, 454: 214340
CrossRef
Google scholar
|
[3] |
Wang J , Wang H , Han Z , Han J . Electrodeposited porous Pb electrode with improved electrocatalytic performance for the electroreduction of CO2 to formic acid. Frontiers of Chemical Science and Engineering, 2016, 9(1): 57–63
CrossRef
Google scholar
|
[4] |
Qu J P , Cao X J , Gao L , Li J Y , Li L , Xie Y H , Zhao Y F , Zhang J Q , Wu M H , Liu H . Electrochemical carbon dioxide reduction to ethylene: from mechanistic understanding to catalyst surface engineering. Nano-Micro Letters, 2023, 15(1): 178
CrossRef
Google scholar
|
[5] |
Yao D , Tang C , Vasileff A , Zhi X , Jiao Y , Qiao S Z . The controllable reconstruction of Bi-MOFs for electrochemical CO2 reduction through electrolyte and potential mediation. Angewandte Chemie International Edition, 2021, 60(33): 18178–18184
CrossRef
Google scholar
|
[6] |
Saha P , Amanullah S , Dey A . Selectivity in electrochemical CO2 reduction. Accounts of Chemical Research, 2022, 55(2): 134–144
CrossRef
Google scholar
|
[7] |
Zhu J X , Li J T , Lu R H , Yu R H , Zhao S Y , Li C B , Lv L , Xia L X , Chen X , Cai W .
CrossRef
Google scholar
|
[8] |
Chen P C , Chen C B , Yang Y , Maulana A L , Jin J B , Feijoo J L , Yang P D . Chemical and structural evolution of AgCu catalysts in electrochemical CO2 reduction. Journal of the American Chemical Society, 2023, 145(18): 10116–10125
CrossRef
Google scholar
|
[9] |
Li S M , Yan X D , Tang J Q , Cao D X , Sun X L , Tian G L , Tang X K , Guo H F , Wu Q Y , Sun J .
CrossRef
Google scholar
|
[10] |
Wang M Y , Zhang S B , Li M , Han A G , Zhu X L , Ge Q F , Han J Y , Wang H . Facile synthesis of hierarchical flower-like Ag/Cu2O and Au/Cu2O nanostructures and enhanced catalytic performance in electrochemical reduction of CO2. Frontiers of Chemical Science and Engineering, 2020, 14(5): 813–823
CrossRef
Google scholar
|
[11] |
Wang J L , Tan H Y , Zhu Y P , Chu H , Chen H M . Linking the dynamic chemical state of catalysts with the product profile of electrocatalytic CO2 reduction. Angewandte Chemie, 2021, 133(32): 17394–17407
CrossRef
Google scholar
|
[12] |
Zhang Q , Wang J , Guo F , He G , Yang X , Li W , Xu J , Yin Z . Nitrogen cold plasma treatment stabilizes Cu0/Cu+ electrocatalysts to enhance CO2 to C2 conversion. Journal of Energy Chemistry, 2023, 84: 321–328
CrossRef
Google scholar
|
[13] |
Yuan X , Chen S , Cheng D , Li L , Zhu W , Zhong D , Zhao Z J , Li J , Wang T , Gong J . Controllable Cu0–Cu+ sites for electrocatalytic reduction of carbon dioxide. Angewandte Chemie International Edition, 2021, 60(28): 15344–15347
CrossRef
Google scholar
|
[14] |
Sun L R , Han J Y , Ge Q F , Zhu X L , Wang H . Understanding the role of Cu+/Cu0 sites at Cu2O based catalysts in ethanol production from CO2 electroreduction—a DFT study. RSC Advances, 2022, 12(30): 19394–19401
CrossRef
Google scholar
|
[15] |
Wang S N , Wang D , Tian B Q , Gao X X , Han L , Zhong Y , Song S C , Wang Z L , Li Y P , Gui J N .
CrossRef
Google scholar
|
[16] |
He T W , Tang C , Puente Santiago A R , Luque R , Pan H , Du A J . Tuning CO binding strength via engineering the copper/borophene interface for highly efficient conversion of CO into ethanol. Journal of Materials Chemistry A, 2021, 9(22): 13192–13199
CrossRef
Google scholar
|
[17] |
Kim C , Cho K M , Park K , Kim J Y , Yun G T , Toma F M , Gereige I , Jung H T . Cu/Cu2O interconnected porous aerogel catalyst for highly productive electrosynthesis of ethanol from CO2. Advanced Functional Materials, 2021, 31(32): 2102142
CrossRef
Google scholar
|
[18] |
Liu W , Zhai P B , Li A , Wei B , Si K P , Wei Y , Wang X G , Zhu G D , Chen Q , Gu X K .
CrossRef
Google scholar
|
[19] |
Jiang K , Huang Y F , Zeng G S , Toma F M , Goddard W A III , Bell A T . Effects of surface roughness on the electrochemical reduction of CO2 over Cu. ACS Energy Letters, 2020, 5(4): 1206–1214
CrossRef
Google scholar
|
[20] |
Sang J Q , Wei P F , Liu T F , Lv H F , Ni X M , Gao D F , Zhang J W , Li H F , Zang Y P , Yang F .
CrossRef
Google scholar
|
[21] |
Li W , Feng X L , Zhang Z , Jin X , Liu D P , Zhang Y . A controllable surface etching strategy for well-defined spiny yolk@shell CuO@CeO2 cubes and their catalytic performance boost. Advanced Functional Materials, 2018, 28(49): 1802559
CrossRef
Google scholar
|
[22] |
Hua Q , Chen K , Chang S J , Ma Y S , Huang W X . Crystal plane-dependent compositional and structural evolution of uniform Cu2O nanocrystals in aqueous ammonia solutions. Journal of Physical Chemistry C, 2011, 115(42): 20618–20627
CrossRef
Google scholar
|
[23] |
Scholten F , Nguyen K L C , Bruce J P , Heyde M , Roldan Cuenya B . Identifying structure-selectivity correlations in the electrochemical reduction of CO2: a comparison of well-ordered atomically clean and chemically etched copper single-crystal surfaces. Angewandte Chemie International Edition, 2021, 60(35): 19169–19175
CrossRef
Google scholar
|
[24] |
Yang P P , Zhang X L , Gao F Y , Zheng Y R , Niu Z Z , Yu X , Liu R , Wu Z Z , Qin S , Chi L P .
CrossRef
Google scholar
|
[25] |
Huang W C , Lyu L M , Yang Y C , Huang M H . Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. Journal of the American Chemical Society, 2011, 134(2): 1261–1267
CrossRef
Google scholar
|
[26] |
Huang J J , Chen Z , Cai J M , Jin Y Z , Wang T , Wang J H . Activating copper oxide for stable electrocatalytic ammonia oxidation reaction via in-situ introducing oxygen vacancies. Nano Research, 2022, 15(7): 5987–5994
CrossRef
Google scholar
|
[27] |
Yan X , Chen C , Wu Y , Liu S , Chen Y , Feng R , Zhang J , Han B . Efficient electroreduction of CO2 to C2+ products on CeO2 modified CuO. Chemical Science, 2021, 12(19): 6638–6645
CrossRef
Google scholar
|
[28] |
Alabsi M H , Wang X L , Zheng P , Ramirez A , Duan A J , Xu C M , Huang K W . Screening and design of active metals on dendritic mesoporous Ce0.3Zr0.7O2 for efficient CO2 hydrogenation to methanol. Fuel, 2022, 317: 123471
CrossRef
Google scholar
|
[29] |
Wang X Q , Chen Q , Zhou Y J , Li H M , Fu J W , Liu M . Cu-based bimetallic catalysts for CO2 reduction reaction. Advanced Sensor and Energy Materials, 2022, 1(3): 100023
CrossRef
Google scholar
|
[30] |
Luo H Q , Li B , Ma J G , Cheng P . Surface modification of Nano-Cu2O for controlling CO2 electrochemical reduction to ethylene and syngas. Angewandte Chemie International Edition, 2022, 61(11): e202116736
CrossRef
Google scholar
|
[31] |
Chou T C , Chang C C , Yu H L , Yu W Y , Dong C L , Velasco Vélez J J , Chuang C H , Chen L C , Lee J F , Chen J M .
CrossRef
Google scholar
|
[32] |
Wu Z Z , Zhang X L , Niu Z Z , Gao F Y , Yang P P , Chi L P , Shi L , Wei W S , Liu R , Chen Z .
CrossRef
Google scholar
|
[33] |
Park D G , Choi J W , Chun H , Jang H S , Lee H , Choi W H , Moon B C , Kim K H , Kim M G , Choi K M .
CrossRef
Google scholar
|
[34] |
Fang M W , Wang M L , Wang Z W , Zhang Z X , Zhou H C , Dai L M , Zhu Y , Jiang L . Hydrophobic, ultrastable Cuδ+ for robust CO2 electroreduction to C2 products at ampere-current levels. Journal of the American Chemical Society, 2023, 145(20): 11323–11332
CrossRef
Google scholar
|
[35] |
Wordsworth J , Benedetti T M , Somerville S V , Schuhmann W , Tilley R D , Gooding J J . The influence of nanoconfinement on electrocatalysis. Angewandte Chemie International Edition, 2022, 61(28): e202200755
CrossRef
Google scholar
|
[36] |
Lee S , Kim D , Lee J . Electrocatalytic production of C3–C4 compounds by conversion of CO2 on a chloride-induced Bi-phasic Cu2O–Cu catalyst. Angewandte Chemie International Edition, 2015, 54(49): 14701–14705
CrossRef
Google scholar
|
[37] |
Kuang S Y , Li M L , Xia R , Xing L , Su Y Q , Fan Q , Liu J P , Hensen E J M , Ma X B , Zhang S . Stable surface-anchored Cu nanocubes for CO2 electroreduction to ethylene. ACS Applied Nano Materials, 2020, 3(8): 8328–8334
CrossRef
Google scholar
|
[38] |
Yang W , Liu H , Qi Y , Li Y , Cui Y , Yu L , Cui X , Deng D . Boosting C–C coupling to multicarbon products via high-pressure CO electroreduction. Journal of Energy Chemistry, 2023, 85: 102–107
CrossRef
Google scholar
|
[39] |
Sebastián-Pascual P , Escudero-Escribano M . Addressing the interfacial properties for CO electroreduction on Cu with cyclic voltammetry. ACS Energy Letters, 2019, 5(1): 130–135
CrossRef
Google scholar
|
[40] |
Choi C , Kwon S , Cheng T , Xu M J , Tieu P , Lee C , Cai J , Lee H M , Pan X Q , Duan X F .
CrossRef
Google scholar
|
[41] |
Jiang Y W , Wang X Y , Duan D L , He C H , Ma J , Zhang W Q , Liu H J , Long R , Li Z B , Kong T T .
CrossRef
Google scholar
|
[42] |
Liu P , Hensen E J M . Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. Journal of the American Chemical Society, 2013, 135(38): 14032–14035
CrossRef
Google scholar
|
[43] |
Lyu Z H , Zhu S Q , Xie M H , Zhang Y , Chen Z T , Chen R H , Tian M K , Chi M F , Shao M H , Xia Y N . Controlling the surface oxidation of Cu nanowires improves their catalytic selectivity and stability toward C2+ products in CO2 reduction. Angewandte Chemie International Edition, 2021, 60(4): 1909–1915
CrossRef
Google scholar
|
[44] |
Xie M C , Shen Y , Ma W C , Wei D Y , Zhang B , Wang Z H , Wang Y H , Zhang Q H , Xie S J , Wang C .
CrossRef
Google scholar
|
[45] |
Wang Y , Zhao J K , Cao C , Ding J , Wang R Y , Zeng J , Bao J , Liu B . Amino-functionalized Cu for efficient electrochemical reduction of CO to acetate. ACS Catalysis, 2023, 13(6): 3532–3540
CrossRef
Google scholar
|
[46] |
Duan G Y , Li X Q , Ding G R , Han L J , Xu B H , Zhang S J . Highly efficient electrocatalytic CO2 reduction to C2+ products on a poly(ionic liquid)-based Cu0–CuI tandem catalyst. Angewandte Chemie International Edition, 2022, 61(9): e202110657
CrossRef
Google scholar
|
[47] |
Zhang J , Wang Y , Li Z , Xia S , Cai R , Ma L , Zhang T , Ackley J , Yang S , Wu Y .
CrossRef
Google scholar
|
[48] |
Lei Q , Huang L , Yin J , Davaasuren B , Yuan Y , Dong X , Wu Z , Wang X , Yao K , Lu X .
CrossRef
Google scholar
|
[49] |
Chen S , Li Y , Bu Z , Yang F , Luo J , An Q , Zeng Z , Wang J , Deng S . Boosting CO2-to-CO conversion on a robust single-atom copper decorated carbon catalyst by enhancing intermediate binding strength. Journal of Materials Chemistry A, 2021, 9(3): 1705–1712
CrossRef
Google scholar
|
[50] |
Liu H , Miao B Y , Chuai H , Chen X , Zhang S , Ma X B . Nanoporous tin oxides for efficient electrochemical CO2 reduction to formate. Green Chemical Engineering, 2022, 3(2): 138–145
CrossRef
Google scholar
|
/
〈 | 〉 |