Remarkable enhancement of gas selectivity on organosilica hybrid membranes using urea-modulated metal-organic framework nanoparticles

  • Yayun Zhao 1,2 ,
  • Dechuan Zhao , 1,3 ,
  • Chunlong Kong 1 ,
  • Yichao Lin 1 ,
  • Xuezhen Wang , 1 ,
  • Liang Chen , 1,2
Expand
  • 1. Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • 3. Collaboration Innovation Center for Tissue Repair Material Engineering Technology, China West Normal University, Nanchong 637009, China
chemzdc@126.com
wangxzh@nimte.ac.cn
chenliang@nimte.ac.cn

Received date: 14 Sep 2023

Accepted date: 05 Nov 2023

Copyright

2024 Higher Education Press

Abstract

Metal-organic framework/organosilica hybrid membranes on tubular ceramic substrates have shown great potential for the implementation of membrane technology in practical gas separation projects due to their higher permeance compared to commercial polymers. However, the selectivities of the reported membranes are moderate. Here, we have incorporated urea-modulated metal-organic frameworks into organosilica membranes to greatly enhance its separation performance. The urea-modulated metal-organic frameworks exhibit less-defined edges of crystallographic facets and high defect density. They can be well-dispersed in the organosilica layer, which substantially suppresses the interfacial defects between metal-organic frameworks and organosilica, which is beneficial for improving the selectivity of membranes for gas separation. The results have shown that the enhanced ideal selectivity of H2/CH4 was 165 and that of CO2/CH4 was 43, with H2 permeance of about 1.25 × 10−6 mol·m−2·s−1·Pa−1 and CO2 permeance of 3.27 × 10−7 mol·m−2·s−1·Pa−1 at 0.2 MPa and 25 °C. In conclusion, the high level of hybrid membranes can be used to separate H2 (or CO2) from the binary gas mixture H2/CH4 (or CO2/CH4), which is important for gas separation in practical applications. Moreover, the simple and feasible modulation of metal-organic framework is a promising strategy to tune different metal-organic frameworks for membranes according to the actual demands.

Cite this article

Yayun Zhao , Dechuan Zhao , Chunlong Kong , Yichao Lin , Xuezhen Wang , Liang Chen . Remarkable enhancement of gas selectivity on organosilica hybrid membranes using urea-modulated metal-organic framework nanoparticles[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(2) : 18 . DOI: 10.1007/s11705-024-2383-7

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

We acknowledge the financial supports of this work from “Pioneer” and “Leading Goose” R&D Program of Zhejiang Province (Grant No. 2022C01029), National Natural Science Foundation of China (Grant No. 21978309), Natural Science Foundation of Zhejiang Province (Grant No. LY21E020008), Youth Innovation Promotion Association, Chinese Acadenry of Sciences (Grant No. 2020300), Ningbo Natural Science Foundation (Grant No. 2023J354), and Ningbo S&T Innovation 2025 Major Special Program (Grant No. 2020Z036).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2383-7 and is accessible for authorized users.
1
Zhang S , Shen L , Deng H , Liu Q , You X , Yuan J , Jiang Z , Zhang S . Ultrathin membranes for separations: a new era driven by advanced nanotechnology. Advanced Materials, 2022, 34(21): 2108457

DOI

2
Sholl D S , Lively R P . Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437

DOI

3
GohP SIsmailA F. Chapter 9—Challenges, future directions, and conclusion. In: Goh P S, Ismail A F, eds. Nanocomposite Membranes for Gas Separation. Elsevier, 2020, 273–290

4
Jia Y , Liu P , Liu Y , Zhang D , Ning Y , Xu C , Zhang Y . In-situ interfacial crosslinking of NH2-MIL-53 and polyimide in MOF-incorporated mixed matrix membranes for efficient H2 purification. Fuel, 2023, 339: 126938

DOI

5
Hou Q , Wu Y , Zhou S , Wei Y , Caro J , Wang H . Ultra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separation. Angewandte Chemie International Edition, 2019, 58(1): 327–331

DOI

6
Choi E , Choi J I , Kim Y J , Kim Y J , Eum K , Choi Y , Kwon O , Kim M , Choi W , Ji H . . Graphene nanoribbon hybridization of zeolitic imidazolate framework membranes for intrinsic molecular separation. Angewandte Chemie International Edition, 2022, 61(49): e202214269

DOI

7
AsadASameotoDSadrzadehM. Chapter 1—Overview of membrane technology. In: Sadrzadeh M, Mohammadi T, eds. Nanocomposite Membranes for Water and Gas Separation. Elsevier, 2020, 1–28

8
Su N C , Sun D T , Beavers C M , Britt D K , Queen W L , Urban J J . Enhanced permeation arising from dual transport pathways in hybrid polymer-MOF membranes. Energy & Environmental Science, 2016, 9(3): 922–931

DOI

9
Bachman J E , Smith Z P , Li T , Xu T , Long J R . Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals. Nature Materials, 2016, 15(8): 845–849

DOI

10
Guo Y , Ying Y , Mao Y , Peng X , Chen B . Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation. Angewandte Chemie International Edition, 2016, 55(48): 15120–15124

DOI

11
Li C , Qi A , Ling Y , Tao Y , Zhang Y B , Li T . Establishing gas transport highways in MOF-based mixed matrix membranes. Science Advances, 2023, 9(13): eadf5087

DOI

12
Wang C , Sun Y , Li L , Krishna R , Ji T , Chen S , Yan J , Liu Y . Titanium-oxo cluster assisted fabrication of a defect-rich Ti-MOF membrane showing versatile gas-separation performance. Angewandte Chemie International Edition, 2022, 61(26): e202203663

DOI

13
Duan Y , Li L , Shen Z , Cheng J , He K . Engineering metal-organic-framework (MOF)-based membranes for gas and liquid separation. Membranes, 2023, 13(5): 480

DOI

14
Carta M , Malpass-Evans R , Croad M , Rogan Y , Jansen J C , Bernardo P , Bazzarelli F , McKeown N B . An efficient polymer molecular sieve for membrane gas separations. Science, 2013, 339(6117): 303–307

DOI

15
Seong J G , Zhuang Y , Kim S , Do Y S , Lee W H , Guiver M D , Lee Y M . Effect of methanol treatment on gas sorption and transport behavior of intrinsically microporous polyimide membranes incorporating Troger’s base. Journal of Membrane Science, 2015, 480: 104–114

DOI

16
Qian Q , Wu A X , Chi W S , Asinger P A , Lin S , Hypsher A , Smith Z P . Mixed-matrix membranes formed from imide-functionalized UiO-66-NH2 for improved interfacial compatibility. ACS Applied Materials & Interfaces, 2019, 11(34): 31257–31269

DOI

17
Qureshi H F , Nijmeijer A , Winnubst L . Influence of sol-gel process parameters on the micro-structure and performance of hybrid silica membranes. Journal of Membrane Science, 2013, 446: 19–25

DOI

18
Yu L , Kanezashi M , Nagasawa H , Guo M , Moriyama N , Ito K , Tsuru T . Tailoring ultramicroporosity to maximize CO2 transport within pyrimidine-bridged organosilica membranes. ACS Applied Materials & Interfaces, 2019, 11(7): 7164–7173

DOI

19
Mirza E Ş , Topuz B . Nanoscale tailoring on thin bimetallic organo-oxide membranes for H2/CO2 separation. Separation and Purification Technology, 2022, 280: 119801

DOI

20
Kong C , Du H , Chen L , Chen B . Nanoscale MOF/organosilica membranes on tubular ceramic substrates for highly selective gas separation. Energy & Environmental Science, 2017, 10(8): 1812–1819

DOI

21
Ge L , Zhou W , Rudolph V , Zhu Z . Mixed matrix membranes incorporated with size-reduced Cu-BTC for improved gas separation. Journal of Materials Chemistry A, 2013, 1(21): 6350–6358

DOI

22
He S , Zhu B , Jiang X , Han G , Li S , Lau C H , Wu Y , Zhang Y , Shao L . Symbiosis-inspired de novo synthesis of ultrahigh MOF growth mixed matrix membranes for sustainable carbon capture. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(1): e2114964119

DOI

23
Chen K , Ni L , Zhang H , Li L , Guo X , Qi J , Zhou Y , Zhu Z , Sun X , Li J . Phenolic resin regulated interface of ZIF-8 based mixed matrix membrane for enhanced gas separation. Journal of Membrane Science, 2023, 666: 121117

DOI

24
Jiang X , He S , Han G , Long J , Li S , Lau C H , Zhang S , Shao L . Aqueous one-step modulation for synthesizing monodispersed ZIF-8 nanocrystals for mixed-matrix membrane. ACS Applied Materials & Interfaces, 2021, 13(9): 11296–11305

DOI

25
Zhao Y , Zhou C , Kong C , Chen L . Ultrathin reduced graphene oxide/organosilica hybrid membrane for gas separation. JACS Au, 2021, 1(3): 328–335

DOI

26
Wang Y , Xu Y , Ma H , Xu R , Liu H , Li D , Tian Z . Synthesis of ZIF-8 in a deep eutectic solvent using cooling-induced crystallisation. Microporous and Mesoporous Materials, 2014, 195: 50–59

DOI

27
Wu H , Chua Y S , Krungleviciute V , Tyagi M , Chen P , Yildirim T , Zhou W . Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. Journal of the American Chemical Society, 2013, 135(28): 10525–10532

DOI

28
Zornoza B , Martinez-Joaristi A , Serra-Crespo P , Tellez C , Coronas J , Gascon J , Kapteijn F . Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. Chemical Communications, 2011, 47(33): 9522–9524

DOI

29
Robeson L M . The upper bound revisited. Journal of Membrane Science, 2008, 320(1–2): 390–400

DOI

30
Swaidan R , Ghanem B , Pinnau I . Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations. ACS Macro Letters, 2015, 4(9): 947–951

DOI

31
Cacho-Bailo F , Etxeberría-Benavides M , Karvan O , Téllez C , Coronas J . Sequential amine functionalization inducing structural transition in an aldehyde-containing zeolitic imidazolate framework: application to gas separation membranes. CrystEngComm, 2017, 19(11): 1545–1554

DOI

32
Chai S , Du H , Zhao Y , Lin Y , Kong C , Chen L . Fabrication of highly selective organosilica membrane for gas separation by mixing bis(triethoxysilyl)ethane with methyltriethoxysilane. Separation and Purification Technology, 2019, 222: 162–167

DOI

33
Fan Y , Li J , Wang S , Meng X , Jin Y , Yang N , Meng B , Li J , Liu S . Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation. Frontiers of Chemical Science and Engineering, 2021, 15(4): 882–891

DOI

34
Ghalei B , Sakurai K , Kinoshita Y , Wakimoto K , Isfahani A P , Song Q , Doitomi K , Furukawa S , Hirao H , Kusuda H . . Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nature Energy, 2017, 2(7): 17086

DOI

35
Li J Y , Lin Y T , Wang D K , Tseng H H , Wey M Y . Effect of heat diffusivity for driving chain stitching of dual-type hybrid organosilica-derived membranes. Separation and Purification Technology, 2022, 290: 120848

DOI

36
Li Y , Ma C , Nian P , Liu H , Zhang X . Green synthesis of ZIF-8 tubular membranes from a recyclable 2-methylimidazole water-solvent solution by ZnO nanorods self-converted strategy for gas separation. Journal of Membrane Science, 2019, 581: 344–354

DOI

37
Ma X , Wan Z , Li Y , He X , Caro J , Huang A . Anisotropic gas separation in oriented ZIF-95 membranes prepared by vapor-assisted in-plane epitaxial growth. Angewandte Chemie International Edition, 2020, 59(47): 20858–20862

DOI

38
Mise Y , Ahn S J , Takagaki A , Kikuchi R , Oyama S T . Fabrication and evaluation of trimethylmethoxysilane (TMMOS)-derived membranes for gas separation. Membranes, 2019, 9(10): 123

DOI

39
Wang Y , Jin H , Ma Q , Mo K , Mao H , Feldhoff A , Cao X , Li Y , Pan F , Jiang Z . A MOF glass membrane for gas separation. Angewandte Chemie International Edition, 2020, 59(11): 4365–4369

DOI

40
Eljaddi T , Bouillon J , Roizard D , Lebrun L . Pebax-based composite membranes with high transport properties enhanced by ZIF-8 for CO2 separation. Membranes, 2022, 12(9): 836

DOI

41
Guo A , Ban Y , Yang K , Zhou Y , Cao N , Zhao M , Yang W . Molecular sieving mixed matrix membranes embodying nano-fillers with extremely narrow pore-openings. Journal of Membrane Science, 2020, 601: 117880

DOI

42
Guo M , Kanezashi M , Nagasawa H , Yu L , Ohshita J , Tsuru T . Amino-decorated organosilica membranes for highly permeable CO2 capture. Journal of Membrane Science, 2020, 611: 118328

DOI

43
Jia M , Zhang X F , Feng Y , Zhou Y , Yao J . In-situ growing ZIF-8 on cellulose nanofibers to form gas separation membrane for CO2 separation. Journal of Membrane Science, 2020, 595: 117579

DOI

44
Jiang Y , Liu C , Caro J , Huang A . A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance. Microporous and Mesoporous Materials, 2019, 274: 203–211

DOI

45
Krokidas P , Spera M B M , Boutsika L G , Bratsos I , Charalambopoulou G , Economou I G , Steriotis T . Nanoengineered ZIF fillers for mixed matrix membranes with enhanced CO2/CH4 selectivity. Separation and Purification Technology, 2023, 307: 122737

DOI

46
Liu B , Li D , Yao J , Sun H . Enhanced CO2 selectivity of polyimide membranes through dispersion of polyethyleneimine decorated UiO-66 particles. Journal of Applied Polymer Science, 2020, 137(36): 49068

DOI

47
Liu B , Li Z , Li D , Sun H , Yao J . Polyzwitterion-grafted UiO-66-PEI incorporating polyimide membrane for high efficiency CO2/CH4 separation. Separation and Purification Technology, 2021, 267: 118617

DOI

48
Maleh M S , Raisi A . Preparation of high performance mixed matrix membranes by one-pot synthesis of ZIF-8 nanoparticles into Pebax-2533 for CO2 separation. Chemical Engineering Research & Design, 2022, 186: 266–275

DOI

Outlines

/