Remarkable enhancement of gas selectivity on organosilica hybrid membranes using urea-modulated metal-organic framework nanoparticles
Received date: 14 Sep 2023
Accepted date: 05 Nov 2023
Copyright
Metal-organic framework/organosilica hybrid membranes on tubular ceramic substrates have shown great potential for the implementation of membrane technology in practical gas separation projects due to their higher permeance compared to commercial polymers. However, the selectivities of the reported membranes are moderate. Here, we have incorporated urea-modulated metal-organic frameworks into organosilica membranes to greatly enhance its separation performance. The urea-modulated metal-organic frameworks exhibit less-defined edges of crystallographic facets and high defect density. They can be well-dispersed in the organosilica layer, which substantially suppresses the interfacial defects between metal-organic frameworks and organosilica, which is beneficial for improving the selectivity of membranes for gas separation. The results have shown that the enhanced ideal selectivity of H2/CH4 was 165 and that of CO2/CH4 was 43, with H2 permeance of about 1.25 × 10−6 mol·m−2·s−1·Pa−1 and CO2 permeance of 3.27 × 10−7 mol·m−2·s−1·Pa−1 at 0.2 MPa and 25 °C. In conclusion, the high level of hybrid membranes can be used to separate H2 (or CO2) from the binary gas mixture H2/CH4 (or CO2/CH4), which is important for gas separation in practical applications. Moreover, the simple and feasible modulation of metal-organic framework is a promising strategy to tune different metal-organic frameworks for membranes according to the actual demands.
Yayun Zhao , Dechuan Zhao , Chunlong Kong , Yichao Lin , Xuezhen Wang , Liang Chen . Remarkable enhancement of gas selectivity on organosilica hybrid membranes using urea-modulated metal-organic framework nanoparticles[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(2) : 18 . DOI: 10.1007/s11705-024-2383-7
1 |
Zhang S , Shen L , Deng H , Liu Q , You X , Yuan J , Jiang Z , Zhang S . Ultrathin membranes for separations: a new era driven by advanced nanotechnology. Advanced Materials, 2022, 34(21): 2108457
|
2 |
Sholl D S , Lively R P . Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437
|
3 |
GohP SIsmailA F. Chapter 9—Challenges, future directions, and conclusion. In: Goh P S, Ismail A F, eds. Nanocomposite Membranes for Gas Separation. Elsevier, 2020, 273–290
|
4 |
Jia Y , Liu P , Liu Y , Zhang D , Ning Y , Xu C , Zhang Y . In-situ interfacial crosslinking of NH2-MIL-53 and polyimide in MOF-incorporated mixed matrix membranes for efficient H2 purification. Fuel, 2023, 339: 126938
|
5 |
Hou Q , Wu Y , Zhou S , Wei Y , Caro J , Wang H . Ultra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separation. Angewandte Chemie International Edition, 2019, 58(1): 327–331
|
6 |
Choi E , Choi J I , Kim Y J , Kim Y J , Eum K , Choi Y , Kwon O , Kim M , Choi W , Ji H .
|
7 |
AsadASameotoDSadrzadehM. Chapter 1—Overview of membrane technology. In: Sadrzadeh M, Mohammadi T, eds. Nanocomposite Membranes for Water and Gas Separation. Elsevier, 2020, 1–28
|
8 |
Su N C , Sun D T , Beavers C M , Britt D K , Queen W L , Urban J J . Enhanced permeation arising from dual transport pathways in hybrid polymer-MOF membranes. Energy & Environmental Science, 2016, 9(3): 922–931
|
9 |
Bachman J E , Smith Z P , Li T , Xu T , Long J R . Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals. Nature Materials, 2016, 15(8): 845–849
|
10 |
Guo Y , Ying Y , Mao Y , Peng X , Chen B . Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation. Angewandte Chemie International Edition, 2016, 55(48): 15120–15124
|
11 |
Li C , Qi A , Ling Y , Tao Y , Zhang Y B , Li T . Establishing gas transport highways in MOF-based mixed matrix membranes. Science Advances, 2023, 9(13): eadf5087
|
12 |
Wang C , Sun Y , Li L , Krishna R , Ji T , Chen S , Yan J , Liu Y . Titanium-oxo cluster assisted fabrication of a defect-rich Ti-MOF membrane showing versatile gas-separation performance. Angewandte Chemie International Edition, 2022, 61(26): e202203663
|
13 |
Duan Y , Li L , Shen Z , Cheng J , He K . Engineering metal-organic-framework (MOF)-based membranes for gas and liquid separation. Membranes, 2023, 13(5): 480
|
14 |
Carta M , Malpass-Evans R , Croad M , Rogan Y , Jansen J C , Bernardo P , Bazzarelli F , McKeown N B . An efficient polymer molecular sieve for membrane gas separations. Science, 2013, 339(6117): 303–307
|
15 |
Seong J G , Zhuang Y , Kim S , Do Y S , Lee W H , Guiver M D , Lee Y M . Effect of methanol treatment on gas sorption and transport behavior of intrinsically microporous polyimide membranes incorporating Troger’s base. Journal of Membrane Science, 2015, 480: 104–114
|
16 |
Qian Q , Wu A X , Chi W S , Asinger P A , Lin S , Hypsher A , Smith Z P . Mixed-matrix membranes formed from imide-functionalized UiO-66-NH2 for improved interfacial compatibility. ACS Applied Materials & Interfaces, 2019, 11(34): 31257–31269
|
17 |
Qureshi H F , Nijmeijer A , Winnubst L . Influence of sol-gel process parameters on the micro-structure and performance of hybrid silica membranes. Journal of Membrane Science, 2013, 446: 19–25
|
18 |
Yu L , Kanezashi M , Nagasawa H , Guo M , Moriyama N , Ito K , Tsuru T . Tailoring ultramicroporosity to maximize CO2 transport within pyrimidine-bridged organosilica membranes. ACS Applied Materials & Interfaces, 2019, 11(7): 7164–7173
|
19 |
Mirza E Ş , Topuz B . Nanoscale tailoring on thin bimetallic organo-oxide membranes for H2/CO2 separation. Separation and Purification Technology, 2022, 280: 119801
|
20 |
Kong C , Du H , Chen L , Chen B . Nanoscale MOF/organosilica membranes on tubular ceramic substrates for highly selective gas separation. Energy & Environmental Science, 2017, 10(8): 1812–1819
|
21 |
Ge L , Zhou W , Rudolph V , Zhu Z . Mixed matrix membranes incorporated with size-reduced Cu-BTC for improved gas separation. Journal of Materials Chemistry A, 2013, 1(21): 6350–6358
|
22 |
He S , Zhu B , Jiang X , Han G , Li S , Lau C H , Wu Y , Zhang Y , Shao L . Symbiosis-inspired de novo synthesis of ultrahigh MOF growth mixed matrix membranes for sustainable carbon capture. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(1): e2114964119
|
23 |
Chen K , Ni L , Zhang H , Li L , Guo X , Qi J , Zhou Y , Zhu Z , Sun X , Li J . Phenolic resin regulated interface of ZIF-8 based mixed matrix membrane for enhanced gas separation. Journal of Membrane Science, 2023, 666: 121117
|
24 |
Jiang X , He S , Han G , Long J , Li S , Lau C H , Zhang S , Shao L . Aqueous one-step modulation for synthesizing monodispersed ZIF-8 nanocrystals for mixed-matrix membrane. ACS Applied Materials & Interfaces, 2021, 13(9): 11296–11305
|
25 |
Zhao Y , Zhou C , Kong C , Chen L . Ultrathin reduced graphene oxide/organosilica hybrid membrane for gas separation. JACS Au, 2021, 1(3): 328–335
|
26 |
Wang Y , Xu Y , Ma H , Xu R , Liu H , Li D , Tian Z . Synthesis of ZIF-8 in a deep eutectic solvent using cooling-induced crystallisation. Microporous and Mesoporous Materials, 2014, 195: 50–59
|
27 |
Wu H , Chua Y S , Krungleviciute V , Tyagi M , Chen P , Yildirim T , Zhou W . Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. Journal of the American Chemical Society, 2013, 135(28): 10525–10532
|
28 |
Zornoza B , Martinez-Joaristi A , Serra-Crespo P , Tellez C , Coronas J , Gascon J , Kapteijn F . Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. Chemical Communications, 2011, 47(33): 9522–9524
|
29 |
Robeson L M . The upper bound revisited. Journal of Membrane Science, 2008, 320(1–2): 390–400
|
30 |
Swaidan R , Ghanem B , Pinnau I . Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations. ACS Macro Letters, 2015, 4(9): 947–951
|
31 |
Cacho-Bailo F , Etxeberría-Benavides M , Karvan O , Téllez C , Coronas J . Sequential amine functionalization inducing structural transition in an aldehyde-containing zeolitic imidazolate framework: application to gas separation membranes. CrystEngComm, 2017, 19(11): 1545–1554
|
32 |
Chai S , Du H , Zhao Y , Lin Y , Kong C , Chen L . Fabrication of highly selective organosilica membrane for gas separation by mixing bis(triethoxysilyl)ethane with methyltriethoxysilane. Separation and Purification Technology, 2019, 222: 162–167
|
33 |
Fan Y , Li J , Wang S , Meng X , Jin Y , Yang N , Meng B , Li J , Liu S . Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation. Frontiers of Chemical Science and Engineering, 2021, 15(4): 882–891
|
34 |
Ghalei B , Sakurai K , Kinoshita Y , Wakimoto K , Isfahani A P , Song Q , Doitomi K , Furukawa S , Hirao H , Kusuda H .
|
35 |
Li J Y , Lin Y T , Wang D K , Tseng H H , Wey M Y . Effect of heat diffusivity for driving chain stitching of dual-type hybrid organosilica-derived membranes. Separation and Purification Technology, 2022, 290: 120848
|
36 |
Li Y , Ma C , Nian P , Liu H , Zhang X . Green synthesis of ZIF-8 tubular membranes from a recyclable 2-methylimidazole water-solvent solution by ZnO nanorods self-converted strategy for gas separation. Journal of Membrane Science, 2019, 581: 344–354
|
37 |
Ma X , Wan Z , Li Y , He X , Caro J , Huang A . Anisotropic gas separation in oriented ZIF-95 membranes prepared by vapor-assisted in-plane epitaxial growth. Angewandte Chemie International Edition, 2020, 59(47): 20858–20862
|
38 |
Mise Y , Ahn S J , Takagaki A , Kikuchi R , Oyama S T . Fabrication and evaluation of trimethylmethoxysilane (TMMOS)-derived membranes for gas separation. Membranes, 2019, 9(10): 123
|
39 |
Wang Y , Jin H , Ma Q , Mo K , Mao H , Feldhoff A , Cao X , Li Y , Pan F , Jiang Z . A MOF glass membrane for gas separation. Angewandte Chemie International Edition, 2020, 59(11): 4365–4369
|
40 |
Eljaddi T , Bouillon J , Roizard D , Lebrun L . Pebax-based composite membranes with high transport properties enhanced by ZIF-8 for CO2 separation. Membranes, 2022, 12(9): 836
|
41 |
Guo A , Ban Y , Yang K , Zhou Y , Cao N , Zhao M , Yang W . Molecular sieving mixed matrix membranes embodying nano-fillers with extremely narrow pore-openings. Journal of Membrane Science, 2020, 601: 117880
|
42 |
Guo M , Kanezashi M , Nagasawa H , Yu L , Ohshita J , Tsuru T . Amino-decorated organosilica membranes for highly permeable CO2 capture. Journal of Membrane Science, 2020, 611: 118328
|
43 |
Jia M , Zhang X F , Feng Y , Zhou Y , Yao J . In-situ growing ZIF-8 on cellulose nanofibers to form gas separation membrane for CO2 separation. Journal of Membrane Science, 2020, 595: 117579
|
44 |
Jiang Y , Liu C , Caro J , Huang A . A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance. Microporous and Mesoporous Materials, 2019, 274: 203–211
|
45 |
Krokidas P , Spera M B M , Boutsika L G , Bratsos I , Charalambopoulou G , Economou I G , Steriotis T . Nanoengineered ZIF fillers for mixed matrix membranes with enhanced CO2/CH4 selectivity. Separation and Purification Technology, 2023, 307: 122737
|
46 |
Liu B , Li D , Yao J , Sun H . Enhanced CO2 selectivity of polyimide membranes through dispersion of polyethyleneimine decorated UiO-66 particles. Journal of Applied Polymer Science, 2020, 137(36): 49068
|
47 |
Liu B , Li Z , Li D , Sun H , Yao J . Polyzwitterion-grafted UiO-66-PEI incorporating polyimide membrane for high efficiency CO2/CH4 separation. Separation and Purification Technology, 2021, 267: 118617
|
48 |
Maleh M S , Raisi A . Preparation of high performance mixed matrix membranes by one-pot synthesis of ZIF-8 nanoparticles into Pebax-2533 for CO2 separation. Chemical Engineering Research & Design, 2022, 186: 266–275
|
/
〈 | 〉 |