Remarkable enhancement of gas selectivity on organosilica hybrid membranes using urea-modulated metal-organic framework nanoparticles

Yayun Zhao, Dechuan Zhao, Chunlong Kong, Yichao Lin, Xuezhen Wang, Liang Chen

PDF(4615 KB)
PDF(4615 KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (2) : 18. DOI: 10.1007/s11705-024-2383-7
RESEARCH ARTICLE

Remarkable enhancement of gas selectivity on organosilica hybrid membranes using urea-modulated metal-organic framework nanoparticles

Author information +
History +

Abstract

Metal-organic framework/organosilica hybrid membranes on tubular ceramic substrates have shown great potential for the implementation of membrane technology in practical gas separation projects due to their higher permeance compared to commercial polymers. However, the selectivities of the reported membranes are moderate. Here, we have incorporated urea-modulated metal-organic frameworks into organosilica membranes to greatly enhance its separation performance. The urea-modulated metal-organic frameworks exhibit less-defined edges of crystallographic facets and high defect density. They can be well-dispersed in the organosilica layer, which substantially suppresses the interfacial defects between metal-organic frameworks and organosilica, which is beneficial for improving the selectivity of membranes for gas separation. The results have shown that the enhanced ideal selectivity of H2/CH4 was 165 and that of CO2/CH4 was 43, with H2 permeance of about 1.25 × 10−6 mol·m−2·s−1·Pa−1 and CO2 permeance of 3.27 × 10−7 mol·m−2·s−1·Pa−1 at 0.2 MPa and 25 °C. In conclusion, the high level of hybrid membranes can be used to separate H2 (or CO2) from the binary gas mixture H2/CH4 (or CO2/CH4), which is important for gas separation in practical applications. Moreover, the simple and feasible modulation of metal-organic framework is a promising strategy to tune different metal-organic frameworks for membranes according to the actual demands.

Graphical abstract

Keywords

ZIF-8 nanocrystals / urea / organosilica / hybrid membrane / enhanced separation performance

Cite this article

Download citation ▾
Yayun Zhao, Dechuan Zhao, Chunlong Kong, Yichao Lin, Xuezhen Wang, Liang Chen. Remarkable enhancement of gas selectivity on organosilica hybrid membranes using urea-modulated metal-organic framework nanoparticles. Front. Chem. Sci. Eng., 2024, 18(2): 18 https://doi.org/10.1007/s11705-024-2383-7

References

[1]
Zhang S , Shen L , Deng H , Liu Q , You X , Yuan J , Jiang Z , Zhang S . Ultrathin membranes for separations: a new era driven by advanced nanotechnology. Advanced Materials, 2022, 34(21): 2108457
CrossRef Google scholar
[2]
Sholl D S , Lively R P . Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437
CrossRef Google scholar
[3]
GohP SIsmailA F. Chapter 9—Challenges, future directions, and conclusion. In: Goh P S, Ismail A F, eds. Nanocomposite Membranes for Gas Separation. Elsevier, 2020, 273–290
[4]
Jia Y , Liu P , Liu Y , Zhang D , Ning Y , Xu C , Zhang Y . In-situ interfacial crosslinking of NH2-MIL-53 and polyimide in MOF-incorporated mixed matrix membranes for efficient H2 purification. Fuel, 2023, 339: 126938
CrossRef Google scholar
[5]
Hou Q , Wu Y , Zhou S , Wei Y , Caro J , Wang H . Ultra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separation. Angewandte Chemie International Edition, 2019, 58(1): 327–331
CrossRef Google scholar
[6]
Choi E , Choi J I , Kim Y J , Kim Y J , Eum K , Choi Y , Kwon O , Kim M , Choi W , Ji H . . Graphene nanoribbon hybridization of zeolitic imidazolate framework membranes for intrinsic molecular separation. Angewandte Chemie International Edition, 2022, 61(49): e202214269
CrossRef Google scholar
[7]
AsadASameotoDSadrzadehM. Chapter 1—Overview of membrane technology. In: Sadrzadeh M, Mohammadi T, eds. Nanocomposite Membranes for Water and Gas Separation. Elsevier, 2020, 1–28
[8]
Su N C , Sun D T , Beavers C M , Britt D K , Queen W L , Urban J J . Enhanced permeation arising from dual transport pathways in hybrid polymer-MOF membranes. Energy & Environmental Science, 2016, 9(3): 922–931
CrossRef Google scholar
[9]
Bachman J E , Smith Z P , Li T , Xu T , Long J R . Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals. Nature Materials, 2016, 15(8): 845–849
CrossRef Google scholar
[10]
Guo Y , Ying Y , Mao Y , Peng X , Chen B . Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation. Angewandte Chemie International Edition, 2016, 55(48): 15120–15124
CrossRef Google scholar
[11]
Li C , Qi A , Ling Y , Tao Y , Zhang Y B , Li T . Establishing gas transport highways in MOF-based mixed matrix membranes. Science Advances, 2023, 9(13): eadf5087
CrossRef Google scholar
[12]
Wang C , Sun Y , Li L , Krishna R , Ji T , Chen S , Yan J , Liu Y . Titanium-oxo cluster assisted fabrication of a defect-rich Ti-MOF membrane showing versatile gas-separation performance. Angewandte Chemie International Edition, 2022, 61(26): e202203663
CrossRef Google scholar
[13]
Duan Y , Li L , Shen Z , Cheng J , He K . Engineering metal-organic-framework (MOF)-based membranes for gas and liquid separation. Membranes, 2023, 13(5): 480
CrossRef Google scholar
[14]
Carta M , Malpass-Evans R , Croad M , Rogan Y , Jansen J C , Bernardo P , Bazzarelli F , McKeown N B . An efficient polymer molecular sieve for membrane gas separations. Science, 2013, 339(6117): 303–307
CrossRef Google scholar
[15]
Seong J G , Zhuang Y , Kim S , Do Y S , Lee W H , Guiver M D , Lee Y M . Effect of methanol treatment on gas sorption and transport behavior of intrinsically microporous polyimide membranes incorporating Troger’s base. Journal of Membrane Science, 2015, 480: 104–114
CrossRef Google scholar
[16]
Qian Q , Wu A X , Chi W S , Asinger P A , Lin S , Hypsher A , Smith Z P . Mixed-matrix membranes formed from imide-functionalized UiO-66-NH2 for improved interfacial compatibility. ACS Applied Materials & Interfaces, 2019, 11(34): 31257–31269
CrossRef Google scholar
[17]
Qureshi H F , Nijmeijer A , Winnubst L . Influence of sol-gel process parameters on the micro-structure and performance of hybrid silica membranes. Journal of Membrane Science, 2013, 446: 19–25
CrossRef Google scholar
[18]
Yu L , Kanezashi M , Nagasawa H , Guo M , Moriyama N , Ito K , Tsuru T . Tailoring ultramicroporosity to maximize CO2 transport within pyrimidine-bridged organosilica membranes. ACS Applied Materials & Interfaces, 2019, 11(7): 7164–7173
CrossRef Google scholar
[19]
Mirza E Ş , Topuz B . Nanoscale tailoring on thin bimetallic organo-oxide membranes for H2/CO2 separation. Separation and Purification Technology, 2022, 280: 119801
CrossRef Google scholar
[20]
Kong C , Du H , Chen L , Chen B . Nanoscale MOF/organosilica membranes on tubular ceramic substrates for highly selective gas separation. Energy & Environmental Science, 2017, 10(8): 1812–1819
CrossRef Google scholar
[21]
Ge L , Zhou W , Rudolph V , Zhu Z . Mixed matrix membranes incorporated with size-reduced Cu-BTC for improved gas separation. Journal of Materials Chemistry A, 2013, 1(21): 6350–6358
CrossRef Google scholar
[22]
He S , Zhu B , Jiang X , Han G , Li S , Lau C H , Wu Y , Zhang Y , Shao L . Symbiosis-inspired de novo synthesis of ultrahigh MOF growth mixed matrix membranes for sustainable carbon capture. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(1): e2114964119
CrossRef Google scholar
[23]
Chen K , Ni L , Zhang H , Li L , Guo X , Qi J , Zhou Y , Zhu Z , Sun X , Li J . Phenolic resin regulated interface of ZIF-8 based mixed matrix membrane for enhanced gas separation. Journal of Membrane Science, 2023, 666: 121117
CrossRef Google scholar
[24]
Jiang X , He S , Han G , Long J , Li S , Lau C H , Zhang S , Shao L . Aqueous one-step modulation for synthesizing monodispersed ZIF-8 nanocrystals for mixed-matrix membrane. ACS Applied Materials & Interfaces, 2021, 13(9): 11296–11305
CrossRef Google scholar
[25]
Zhao Y , Zhou C , Kong C , Chen L . Ultrathin reduced graphene oxide/organosilica hybrid membrane for gas separation. JACS Au, 2021, 1(3): 328–335
CrossRef Google scholar
[26]
Wang Y , Xu Y , Ma H , Xu R , Liu H , Li D , Tian Z . Synthesis of ZIF-8 in a deep eutectic solvent using cooling-induced crystallisation. Microporous and Mesoporous Materials, 2014, 195: 50–59
CrossRef Google scholar
[27]
Wu H , Chua Y S , Krungleviciute V , Tyagi M , Chen P , Yildirim T , Zhou W . Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. Journal of the American Chemical Society, 2013, 135(28): 10525–10532
CrossRef Google scholar
[28]
Zornoza B , Martinez-Joaristi A , Serra-Crespo P , Tellez C , Coronas J , Gascon J , Kapteijn F . Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. Chemical Communications, 2011, 47(33): 9522–9524
CrossRef Google scholar
[29]
Robeson L M . The upper bound revisited. Journal of Membrane Science, 2008, 320(1–2): 390–400
CrossRef Google scholar
[30]
Swaidan R , Ghanem B , Pinnau I . Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations. ACS Macro Letters, 2015, 4(9): 947–951
CrossRef Google scholar
[31]
Cacho-Bailo F , Etxeberría-Benavides M , Karvan O , Téllez C , Coronas J . Sequential amine functionalization inducing structural transition in an aldehyde-containing zeolitic imidazolate framework: application to gas separation membranes. CrystEngComm, 2017, 19(11): 1545–1554
CrossRef Google scholar
[32]
Chai S , Du H , Zhao Y , Lin Y , Kong C , Chen L . Fabrication of highly selective organosilica membrane for gas separation by mixing bis(triethoxysilyl)ethane with methyltriethoxysilane. Separation and Purification Technology, 2019, 222: 162–167
CrossRef Google scholar
[33]
Fan Y , Li J , Wang S , Meng X , Jin Y , Yang N , Meng B , Li J , Liu S . Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation. Frontiers of Chemical Science and Engineering, 2021, 15(4): 882–891
CrossRef Google scholar
[34]
Ghalei B , Sakurai K , Kinoshita Y , Wakimoto K , Isfahani A P , Song Q , Doitomi K , Furukawa S , Hirao H , Kusuda H . . Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nature Energy, 2017, 2(7): 17086
CrossRef Google scholar
[35]
Li J Y , Lin Y T , Wang D K , Tseng H H , Wey M Y . Effect of heat diffusivity for driving chain stitching of dual-type hybrid organosilica-derived membranes. Separation and Purification Technology, 2022, 290: 120848
CrossRef Google scholar
[36]
Li Y , Ma C , Nian P , Liu H , Zhang X . Green synthesis of ZIF-8 tubular membranes from a recyclable 2-methylimidazole water-solvent solution by ZnO nanorods self-converted strategy for gas separation. Journal of Membrane Science, 2019, 581: 344–354
CrossRef Google scholar
[37]
Ma X , Wan Z , Li Y , He X , Caro J , Huang A . Anisotropic gas separation in oriented ZIF-95 membranes prepared by vapor-assisted in-plane epitaxial growth. Angewandte Chemie International Edition, 2020, 59(47): 20858–20862
CrossRef Google scholar
[38]
Mise Y , Ahn S J , Takagaki A , Kikuchi R , Oyama S T . Fabrication and evaluation of trimethylmethoxysilane (TMMOS)-derived membranes for gas separation. Membranes, 2019, 9(10): 123
CrossRef Google scholar
[39]
Wang Y , Jin H , Ma Q , Mo K , Mao H , Feldhoff A , Cao X , Li Y , Pan F , Jiang Z . A MOF glass membrane for gas separation. Angewandte Chemie International Edition, 2020, 59(11): 4365–4369
CrossRef Google scholar
[40]
Eljaddi T , Bouillon J , Roizard D , Lebrun L . Pebax-based composite membranes with high transport properties enhanced by ZIF-8 for CO2 separation. Membranes, 2022, 12(9): 836
CrossRef Google scholar
[41]
Guo A , Ban Y , Yang K , Zhou Y , Cao N , Zhao M , Yang W . Molecular sieving mixed matrix membranes embodying nano-fillers with extremely narrow pore-openings. Journal of Membrane Science, 2020, 601: 117880
CrossRef Google scholar
[42]
Guo M , Kanezashi M , Nagasawa H , Yu L , Ohshita J , Tsuru T . Amino-decorated organosilica membranes for highly permeable CO2 capture. Journal of Membrane Science, 2020, 611: 118328
CrossRef Google scholar
[43]
Jia M , Zhang X F , Feng Y , Zhou Y , Yao J . In-situ growing ZIF-8 on cellulose nanofibers to form gas separation membrane for CO2 separation. Journal of Membrane Science, 2020, 595: 117579
CrossRef Google scholar
[44]
Jiang Y , Liu C , Caro J , Huang A . A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance. Microporous and Mesoporous Materials, 2019, 274: 203–211
CrossRef Google scholar
[45]
Krokidas P , Spera M B M , Boutsika L G , Bratsos I , Charalambopoulou G , Economou I G , Steriotis T . Nanoengineered ZIF fillers for mixed matrix membranes with enhanced CO2/CH4 selectivity. Separation and Purification Technology, 2023, 307: 122737
CrossRef Google scholar
[46]
Liu B , Li D , Yao J , Sun H . Enhanced CO2 selectivity of polyimide membranes through dispersion of polyethyleneimine decorated UiO-66 particles. Journal of Applied Polymer Science, 2020, 137(36): 49068
CrossRef Google scholar
[47]
Liu B , Li Z , Li D , Sun H , Yao J . Polyzwitterion-grafted UiO-66-PEI incorporating polyimide membrane for high efficiency CO2/CH4 separation. Separation and Purification Technology, 2021, 267: 118617
CrossRef Google scholar
[48]
Maleh M S , Raisi A . Preparation of high performance mixed matrix membranes by one-pot synthesis of ZIF-8 nanoparticles into Pebax-2533 for CO2 separation. Chemical Engineering Research & Design, 2022, 186: 266–275
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

We acknowledge the financial supports of this work from “Pioneer” and “Leading Goose” R&D Program of Zhejiang Province (Grant No. 2022C01029), National Natural Science Foundation of China (Grant No. 21978309), Natural Science Foundation of Zhejiang Province (Grant No. LY21E020008), Youth Innovation Promotion Association, Chinese Acadenry of Sciences (Grant No. 2020300), Ningbo Natural Science Foundation (Grant No. 2023J354), and Ningbo S&T Innovation 2025 Major Special Program (Grant No. 2020Z036).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2383-7 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(4615 KB)

Accesses

Citations

Detail

Sections
Recommended

/