Excitonic devices based on two-dimensional transition metal dichalcogenides van der Waals heterostructures

  • Yulun Liu 1 ,
  • Yaojie Zhu 2 ,
  • Zuowei Yan 1 ,
  • Ruixue Bai 1 ,
  • Xilin Zhang 1 ,
  • Yanbo Ren 1 ,
  • Xiaoyu Cheng 1 ,
  • Hui Ma , 2 ,
  • Chongyun Jiang , 1
Expand
  • 1. College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
  • 2. School of Physical Science and Technology, Tiangong University, Tianjin 300387, China
mahuimoving@163.com
jiang.chongyun@nankai.edu.cn

Received date: 11 Sep 2023

Accepted date: 29 Oct 2023

Copyright

2024 Higher Education Press

Abstract

Excitonic devices are an emerging class of technology that utilizes excitons as carriers for encoding, transmitting, and storing information. Van der Waals heterostructures based on transition metal dichalcogenides often exhibit a type II band alignment, which facilitates the generation of interlayer excitons. As a bonded pair of electrons and holes in the separation layer, interlayer excitons offer the chance to investigate exciton transport due to their intrinsic out-of-plane dipole moment and extended exciton lifetime. Furthermore, interlayer excitons can potentially analyze other encoding strategies for information processing beyond the conventional utilization of spin and charge. The review provided valuable insights and recommendations for researchers studying interlayer excitonic devices within van der Waals heterostructures based on transition metal dichalcogenides. Firstly, we provide an overview of the essential attributes of transition metal dichalcogenide materials, focusing on their fundamental properties, excitonic effects, and the distinctive features exhibited by interlayer excitons in van der Waals heterostructures. Subsequently, this discourse emphasizes the recent advancements in interlayer excitonic devices founded on van der Waals heterostructures, with specific attention is given to the utilization of valley electronics for information processing, employing the valley index. In conclusion, this paper examines the potential and current challenges associated with excitonic devices.

Cite this article

Yulun Liu , Yaojie Zhu , Zuowei Yan , Ruixue Bai , Xilin Zhang , Yanbo Ren , Xiaoyu Cheng , Hui Ma , Chongyun Jiang . Excitonic devices based on two-dimensional transition metal dichalcogenides van der Waals heterostructures[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(2) : 16 . DOI: 10.1007/s11705-023-2382-0

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFB2803900), National Natural Science Foundation of China (Grant Nos. 61704121, 61974075), the Natural Science Foundation of Tianjin City (Grant Nos. 19JCQNJC00700, 22JCZDJC00460), the Scientific Research Project of Tianjin Municipal Education Commission (Grant No. 2019KJ028), Fundamental Research Funds for the Central Universities of Nankai University (Grant No. 22JCZDJC00460). C.Y.J. acknowledges the Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin and the Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education of China.
1
Song Y , Jia C , Xiong H , Wang B , Jiang Z , Huang K , Hwang J , Li Z , Hwang C , Liu Z . . Signatures of the exciton gas phase and its condensation in monolayer 1T-ZrTe2. Nature Communications, 2023, 14(1): 1116

DOI

2
Tagarelli F , Lopriore E , Erkensten D , Perea-Causín R , Brem S , Hagel J , Sun Z , Pasquale G , Watanabe K , Taniguchi T . . Electrical control of hybrid exciton transport in a van der Waals heterostructure. Nature Photonics, 2023, 17(7): 615–621

DOI

3
Datta B , Khatoniar M , Deshmukh P , Thouin F , Bushati R , De Liberato S , Cohen S K , Menon V M . Highly nonlinear dipolar exciton-polaritons in bilayer MoS2. Nature Communications, 2022, 13(1): 6341

DOI

4
Zhang Z , Regan E C , Wang D , Zhao W , Wang S , Sayyad M , Yumigeta K , Watanabe K , Taniguchi T , Tongay S . . Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and Moiré WS2/WSe2. Nature Physics, 2022, 18(10): 1214–1220

DOI

5
Erkensten D , Brem S , Perea-Causin R , Malic E . Microscopic origin of anomalous interlayer exciton transport in van der Waals heterostructures. Physical Review Materials, 2022, 6(9): 094006

DOI

6
Yuan H , Liu Z , Xu G , Zhou B , Wu S , Dumcenco D , Yan K , Zhang Y , Mo S K , Dudin P . . Evolution of the valley position in bulk transition-metal chalcogenides and their monolayer limit. Nano Letters, 2016, 16(8): 4738–4745

DOI

7
Zhang Y , Chang T R , Zhou B , Cui Y T , Yan H , Liu Z , Schmitt F , Lee J , Moore R , Chen Y . . Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nature Nanotechnology, 2014, 9(2): 111–115

DOI

8
Li Q , Song J H , Xu F , van de Groep J , Hong J , Daus A , Lee Y J , Johnson A C , Pop E , Liu F . . A purcell-enabled monolayer semiconductor free-space optical modulator. Nature Photonics, 2023, 17(10): 897–903

DOI

9
Zhang Q , Sun H , Tang J , Dai X , Wang Z , Ning C Z . Prolonging valley polarization lifetime through gate-controlled exciton-to-trion conversion in monolayer molybdenum ditelluride. Nature Communications, 2022, 13(1): 4101

DOI

10
Chen Y S , Chiu S K , Tsai D L , Liu C Y , Ting H A , Yao Y C , Son H , Haider G , Kalbáč M , Ting C C . . Mediator-assisted synthesis of WS2 with ultrahigh-optoelectronic performance at multi-wafer scale. npj 2D Materials and Applications, 2022, 6(1): 1–8

11
Xiao J , Zhang Y , Chen H , Xu N , Deng S . Enhanced performance of a monolayer MoS2/WSe2 heterojunction as a photoelectrochemical cathode. Nano-Micro Letters, 2018, 10(4): 60

DOI

12
Jiang Y , Wang R , Li X , Ma Z , Li L , Su J , Yan Y , Song X , Xia C . Photovoltaic field-effect photodiodes based on double van der Waals heterojunctions. ACS Nano, 2021, 15(9): 14295–14304

DOI

13
Yu X , Zhao G , Liu C , Wu C , Huang H , He J , Zhang N A . MoS2 and Graphene alternately stacking van der Waals heterostructure for Li+/Mg2+ co-intercalation. Advanced Functional Materials, 2021, 31(42): 2103214

DOI

14
Liu X , Wang W , Yang F , Feng S , Hu Z , Lu J , Ni Z . Bi2O2Se/BP van der Waals heterojunction for high performance broadband photodetector. Science China. Information Sciences, 2021, 64(4): 140404

DOI

15
Wu Y , Chen X , Cao J , Zhu Y , Yuan W , Hu Z , Ao Z , Brudvig G W , Tian F , Yu J C . . Photocatalytically recovering hydrogen energy from wastewater treatment using MoS2@TiO2 with sulfur/oxygen dual-defect. Applied Catalysis B: Environmental, 2022, 303(4): 120878

DOI

16
Zeng Y , Dai W , Ma R , Li Z , Ou Z , Wang C , Yu Y , Zhu T , Liu X , Wang T . . Distinguishing ultrafast energy transfer in atomically thin MoS2/WS2 heterostructures. Small, 2022, 18(44): 2204317

DOI

17
Zhou Y , Garoufalis C S , Baskoutas S , Zeng Z , Jia Y . Twisting enabled charge transfer excitons in epitaxially fused quantum dot molecules. Nano Letters, 2022, 22(12): 4912–4918

DOI

18
Hu Z , Liu X , Hernandez-Martinez P L , Zhang S , Gu P , Du W , Xu W , Demir H V , Liu H , Xiong Q . Interfacial charge and energy transfer in van der Waals heterojunctions. InfoMat, 2022, 4(3): e12290

DOI

19
Kiemle J , Sigger F , Lorke M , Miller B , Watanabe K , Taniguchi T , Holleitner A , Wurstbauer U . Control of the orbital character of indirect excitons in MoS2/WS2 heterobilayers. Physical Review. B, 2020, 101(12): 121404

DOI

20
Kim H , Aino K , Shinokita K , Zhang W , Watanabe K , Taniguchi T , Matsuda K . Dynamics of Moiré exciton in a twisted MoSe2/WSe2 heterobilayer. Advanced Optical Materials, 2023, 11(14): 2300146

DOI

21
Tan Q , Rasmita A , Li S , Liu S , Huang Z , Xiong Q , Yang S A , Novoselov K S , Gao W . Layer-engineered interlayer excitons. Science Advances, 2021, 7(30): eabh0863

DOI

22
Kim J , Jin C , Chen B , Cai H , Zhao T , Lee P , Kahn S , Watanabe K , Taniguchi T , Tongay S . . Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Science Advances, 2017, 3(7): e1700518

DOI

23
Jiang C , Xu W , Rasmita A , Huang Z , Li K , Xiong Q , Gao W . Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures. Nature Communications, 2018, 9(1): 753

DOI

24
Shanks D N , Mahdikhanysarvejahany F , Stanfill T G , Koehler M R , Mandrus D G , Taniguchi T , Watanabe K , LeRoy B J , Schaibley J R . Interlayer exciton diode and transistor. Nano Letters, 2022, 22(16): 6599–6605

DOI

25
Tang Y , Gu J , Liu S , Watanabe K , Taniguchi T , Hone J , Mak K F , Shan J . Tuning layer-hybridized Moiré excitons by the quantum-confined Stark effect. Nature Nanotechnology, 2021, 16(1): 52–57

DOI

26
Meng Y , Wang T , Jin C , Li Z , Miao S , Lian Z , Taniguchi T , Watanabe K , Song F , Shi S F . Electrical switching between exciton dissociation to exciton funneling in MoSe2/WS2 heterostructure. Nature Communications, 2020, 11(1): 2640

DOI

27
Joe A Y , Jauregui L A , Pistunova K , Mier Valdivia A M , Lu Z , Wild D S , Scuri G , De Greve K , Gelly R J , Zhou Y . . Electrically controlled emission from singlet and triplet exciton species in atomically thin light-emitting diodes. Physical Review. B, 2021, 103(16): L161411

DOI

28
Hagel J , Brem S , Malic E . Electrical tuning of Moiré excitons in MoSe2 bilayers. 2D Materials, 2022, 10(1): 014013

29
Erkensten D , Brem S , Perea-Causín R , Hagel J , Tagarelli F , Lopriore E , Kis A , Malic E . Electrically tunable dipolar interactions between layer-hybridized excitons. Nanoscale, 2023, 15(26): 11064–11071

DOI

30
Nagler P , Plechinger G , Ballottin M V , Mitioglu A , Meier S , Paradiso N , Strunk C , Chernikov A , Christianen P C M , Schüller C . . Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure. 2D Materials, 2017, 4(2): 025112

31
Karni O , Barré E , Lau S C , Gillen R , Ma E Y , Kim B , Watanabe K , Taniguchi T , Maultzsch J , Barmak K . . Infrared interlayer exciton emission in MoS2/WSe2 heterostructures. Physical Review Letters, 2019, 123(24): 247402

DOI

32
Rivera P , Yu H , Seyler K L , Wilson N P , Yao W , Xu X . Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nature Nanotechnology, 2018, 13(11): 1004–1015

DOI

33
Jauregui L A , Joe A Y , Pistunova K , Wild D S , High A A , Zhou Y , Scuri G , De Greve K , Sushko A , Yu C H . . Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science, 2019, 366(6467): 870–875

DOI

34
Kamban H C , Pedersen T G . Interlayer excitons in van der Waals heterostructures: binding energy, stark shift, and field-induced dissociation. Scientific Reports, 2020, 10(1): 5537

DOI

35
Merkl P , Mooshammer F , Steinleitner P , Girnghuber A , Lin K Q , Nagler P , Holler J , Schueller C , Lupton J M , Korn T . . Ultrafast transition between exciton phases in van der Waals heterostructures. Nature Materials, 2019, 18(7): 691–696

DOI

36
Dong X Y , Li R Z , Deng J P , Wang Z W . Interlayer exciton-polaron effect in transition metal dichalcogenides van der Waals heterostructures. Journal of Physics and Chemistry of Solids, 2019, 134(1): 1–4

DOI

37
Ponomarev E , Ubrig N , Gutiérrez-Lezama I , Berger H , Morpurgo A F . Semiconducting van der Waals interfaces as artificial semiconductors. Nano Letters, 2018, 18(8): 5146–5152

DOI

38
Brotons-Gisbert M , Baek H , Campbell A , Watanabe K , Taniguchi T , Gerardot B D . Moiré-trapped interlayer trions in a charge-tunable WSe2/MoSe2 heterobilayer. Physical Review X, 2021, 11(3): 031033

DOI

39
Brotons-Gisbert M , Baek H , Molina-Sánchez A , Campbell A , Scerri E , White D , Watanabe K , Taniguchi T , Bonato C , Gerardot B D . Spin-layer locking of interlayer excitons trapped in Moiré potentials. Nature Materials, 2020, 19(6): 630–636

DOI

40
Yu H , Liu G B , Tang J , Xu X , Yao W . Moiré excitons: from programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. Science Advances, 2017, 3(11): e1701696

DOI

41
Rasmussen F A , Thygesen K S . Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. Journal of Physical Chemistry C, 2015, 119(23): 13169–13183

DOI

42
Yin X , Tang C S , Zheng Y , Gao J , Wu J , Zhang H , Chhowalla M , Chen W , Wee A T S . Recent developments in 2D transition metal dichalcogenides: phase transition and applications of the (quasi-)metallic phases. Chemical Society Reviews, 2021, 50(18): 10087–10115

DOI

43
Li Y , Su L , Lu Y , Luo Q , Liang P , Shu H , Chen X . High-throughput screening of phase-engineered atomically thin transition-metal dichalcogenides for van der Waals contacts at the schottky-mott limit. InfoMat, 2023, 5(7): e12407

DOI

44
Manzeli S , Ovchinnikov D , Pasquier D , Yazyev O V , Kis A . 2D transition metal dichalcogenides. Nature Reviews. Materials, 2017, 2(8): 17033

DOI

45
Mak K F , Lee C , Hone J , Shan J , Heinz T F . Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters, 2010, 105(13): 136805

DOI

46
Splendiani A , Sun L , Zhang Y , Li T , Kim J , Chim C Y , Galli G , Wang F . Emerging photoluminescence in monolayer MoS2. Nano Letters, 2010, 10(4): 1271–1275

DOI

47
Xiao D , Liu G B , Feng W , Xu X , Yao W . Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Physical Review Letters, 2012, 108(19): 196802

DOI

48
Mak K F , He K , Shan J , Heinz T F . Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotechnology, 2012, 7(8): 494–498

DOI

49
Koperski M , Molas M R , Arora A , Nogajewski K , Bartos M , Wyzula J , Vaclavkova D , Kossacki P , Potemski M . Orbital, spin and valley contributions to zeeman splitting of excitonic resonances in MoSe2, WSe2 and WS2 monolayers. 2D Materials, 2018, 6(1): 015001

50
Zhang X X , You Y , Zhao S Y F , Heinz T F . Experimental evidence for dark excitons in monolayer WSe2. Physical Review Letters, 2015, 115(25): 257403

DOI

51
Ye Z , Cao T , OʼBrien K , Zhu H , Yin X , Wang Y , Louie S G , Zhang X . Probing excitonic dark states in single-layer tungsten disulphide. Nature, 2014, 513(7517): 214–218

DOI

52
Molas M R , Faugeras C , Slobodeniuk A O , Nogajewski K , Bartos M , Basko D M , Potemski M . Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides. 2D Materials, 2017, 4(2): 021003

53
Arora A , Nogajewski K , Molas M , Koperski M , Potemski M . Exciton band structure in layered MoSe2: from a monolayer to the bulk limit. Nanoscale, 2015, 7(48): 20769–20775

DOI

54
Hao K , Shreiner R , Kindseth A , High A A . Optically controllable magnetism in atomically thin semiconductors. Science Advances, 2022, 8(39): eabq7650

DOI

55
Li Z , Xiao Y , Gong Y , Wang Z , Kang Y , Zu S , Ajayan P M , Nordlander P , Fang Z . Active light control of the MoS2 monolayer exciton binding energy. ACS Nano, 2015, 9(10): 10158–10164

DOI

56
Chernikov A , Berkelbach T C , Hill H M , Rigosi A , Li Y , Aslan B , Reichman D R , Hybertsen M S , Heinz T F . Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2. Physical Review Letters, 2014, 113(7): 076802

DOI

57
Sie E J , McIver J W , Lee Y H , Fu L , Kong J , Gedik N . Valley-selective optical stark effect in monolayer WS2. Nature Materials, 2015, 14(3): 290–294

DOI

58
Shreiner R , Hao K , Butcher A , High A A . Electrically controllable chirality in a nanophotonic interface with a two-dimensional semiconductor. Nature Photonics, 2022, 16(4): 330–336

DOI

59
Aivazian G , Gong Z , Jones A M , Chu R L , Yan J , Mandrus D G , Zhang C , Cobden D , Yao W , Xu X . Magnetic control of valley pseudospin in monolayer WSe2. Nature Physics, 2015, 11(2): 148–152

DOI

60
Zeng H , Dai J , Yao W , Xiao D , Cui X . Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotechnology, 2012, 7(8): 490–493

DOI

61
Cao T , Wang G , Han W , Ye H , Zhu C , Shi J , Niu Q , Tan P , Wang E , Liu B . . Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Communications, 2012, 3(1): 887

DOI

62
Jones A M , Yu H , Ghimire N J , Wu S , Aivazian G , Ross J S , Zhao B , Yan J , Mandrus D G , Xiao D . . Optical generation of excitonic valley coherence in monolayer WSe2. Nature Nanotechnology, 2013, 8(9): 634–638

DOI

63
Mujeeb F , Chakrabarti P , Mahamiya V , Shukla A , Dhar S . Influence of defects on the valley polarization properties of monolayer MoS2 grown by chemical vapor deposition. Physical Review. B, 2023, 107(11): 115429

DOI

64
Mai C , Barrette A , Yu Y , Semenov Y G , Kim K W , Cao L , Gundogdu K . Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. Nano Letters, 2014, 14(1): 202–206

DOI

65
Sie E J , Lui C H , Lee Y H , Fu L , Kong J , Gedik N . Large, valley-exclusive bloch-siegert shift in monolayer WS2. Science, 2017, 355(6329): 1066–1069

DOI

66
Scuri G , Andersen T I , Zhou Y , Wild D S , Sung J , Gelly R J , Bérubé D , Heo H , Shao L , Joe A Y . . Electrically tunable valley dynamics in twisted WSe2/WSe2 bilayers. Physical Review Letters, 2020, 124(21): 217403

DOI

67
Srivastava A , Sidler M , Allain A V , Lembke D S , Kis A , Imamoğlu A . Valley zeeman effect in elementary optical excitations of monolayer WSe2. Nature Physics, 2015, 11(2): 141–147

DOI

68
Arora A , Deilmann T , Marauhn P , Drüppel M , Schneider R , Molas M R , Vaclavkova D , Vasconcellos S . Valley-contrasting optics of interlayer excitons in Mo- and W-based bulk transition metal dichalcogenides. Nanoscale, 2018, 10(33): 15571–15577

DOI

69
Fortin-Deschenes M , Watanabe K , Taniguchi T , Xia F . Van der Waals epitaxy of tunable Moiré enabled by alloying. Nature Materials, 2023, 22(10): 1–8

DOI

70
Conti S , Chaves A , Pandey T , Covaci L , Peeters F M , Neilson D , Milosevic M V . Flattening conduction and valence bands for interlayer excitons in a Moiré MoS2/WSe2 heterobilayer. Nanoscale, 2023, 15(34): 14032–14042

DOI

71
Ge C , Zhang D , Xiao F , Zhao H , He M , Huang L , Hou S , Tong Q , Pan A , Wang X . Observation and modulation of high-temperature Moiré-locale excitons in van der Waals heterobilayers. ACS Nano, 2023, 17(16): 16115–16122

DOI

72
Li F , Wang Y , Liang Y , Dai Y , Huang B , Wei W . Direct formation of interlayer excitons in MoSSe/WSSe van der Waals heterobilayer. Journal of Physics Condensed Matter, 2023, 35(30): 304005

DOI

73
Lim S Y , Kim H G , Choi Y W , Taniguchi T , Watanabe K , Choi H J , Cheong H . Modulation of phonons and excitons due to Moiré potentials in twisted bilayer of WSe2/MoSe2. ACS Nano, 2023, 17(14): 13938–13947

DOI

74
Louca C , Genco A , Chiavazzo S , Lyons T P , Randerson S , Trovatello C , Claronino P , Jayaprakash R , Hu X , Howarth J . . Interspecies exciton interactions lead to enhanced nonlinearity of dipolar excitons and polaritons in MoS2 homobilayers. Nature Communications, 2023, 14(1): 3818

DOI

75
Özçelik V O , Azadani J G , Yang C , Koester S J , Low T . Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Physical Review. B, 2016, 94(3): 035125

DOI

76
Kim Y S , Kang S , So J P , Kim J C , Kim K , Yang S , Jung Y , Shin Y , Lee S , Lee D . . Atomic-layer-confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides. Science Advances, 2021, 7(13): eabd7921

DOI

77
Zhang C , Gong C , Nie Y , Min K-A , Liang C , Oh Y J , Zhang H , Wang W , Hong S , Colombo L . . Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in van der Waals heterostructures. 2D Materials, 2016, 4(1): 015026

78
Xu K , Xu Y , Zhang H , Peng B , Shao H , Ni G , Li J , Yao M , Lu H , Zhu H . . The role of Andersonʼs rule in determining electronic, optical and transport properties of transition metal dichalcogenide heterostructures. Physical Chemistry Chemical Physics, 2018, 20(48): 30351–30364

DOI

79
Guo Y , Robertson J . Band engineering in transition metal dichalcogenides: stacked versus lateral heterostructures. Applied Physics Letters, 2016, 108(23): 233104

DOI

80
Wilson N R , Nguyen P V , Seyler K , Rivera P , Marsden A J , Laker Z P L , Constantinescu G C , Kandyba V , Barinov A , Hine N D M . . Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Science Advances, 2017, 3(2): e1601832

DOI

81
Chiu M H , Zhang C , Shiu H W , Chuu C P , Chen C H , Chang C Y S , Chen C H , Chou M Y , Shih C K , Li L J . Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nature Communications, 2015, 6(1): 7666

DOI

82
Zeng H , Liu X , Zhang H , Cheng X . New theoretical insights into the photoinduced carrier transfer dynamics in WS2/WSe2 van der Waals heterostructures. Physical Chemistry Chemical Physics, 2021, 23(1): 694–701

DOI

83
Wu L , Cong C , Shang J , Yang W , Chen Y , Zhou J , Ai W , Wang Y , Feng S , Zhang H . . Raman scattering investigation of twisted WS2/MoS2 heterostructures: interlayer mechanical coupling versus charge transfer. Nano Research, 2021, 14(7): 2215–2223

DOI

84
Zheng T , Lin Y C , Rafizadeh N , Geohegan D B , Ni Z , Xiao K , Zhao H . Janus monolayers for ultrafast and directional charge transfer in transition metal dichalcogenide heterostructures. ACS Nano, 2022, 16(3): 4197–4205

DOI

85
Kafle T R , Kattel B , Lane S D , Wang T , Zhao H , Chan W L . Charge transfer exciton and spin flipping at organic transition-metal dichalcogenide interfaces. ACS Nano, 2017, 11(10): 10184–10192

DOI

86
Froehlicher G , Lorchat E , Berciaud S . Charge versus energy transfer in atomically thin graphene-transition metal dichalcogenide van der Waals heterostructures. Physical Review X, 2018, 8(1): 011007

DOI

87
Policht V R , Russo M , Liu F , Trovatello C , Maiuri M , Bai Y , Zhu X , Dal Conte S , Cerullo G . Dissecting interlayer hole and electron transfer in transition metal dichalcogenide heterostructures via two-dimensional electronic spectroscopy. Nano Letters, 2021, 21(11): 4738–4743

DOI

88
Hong X , Kim J , Shi S F , Zhang Y , Jin C , Sun Y , Tongay S , Wu J , Zhang Y , Wang F . Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nature Nanotechnology, 2014, 9(9): 682–686

DOI

89
Tran K , Moody G , Wu F , Lu X , Choi J , Kim K , Rai A , Sanchez D A , Quan J , Singh A . . Evidence for Moiré excitons in van der waals heterostructures. Nature, 2019, 567(7746): 71–75

DOI

90
Liu E , Barré E , van Baren J , Wilson M , Taniguchi T , Watanabe K , Cui Y T , Gabor N M , Heinz T F , Chang Y C , Lui C H . Signatures of Moiré trions in WSe2/MoSe2 heterobilayers. Nature, 2021, 594(7861): 46–50

DOI

91
Rivera P , Schaibley J R , Jones A M , Ross J S , Wu S , Aivazian G , Klement P , Seyler K , Clark G , Ghimire N J . . Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nature Communications, 2015, 6(1): 6242

DOI

92
Baranowski M , Surrente A , Klopotowski L , Urban J M , Zhang N , Maude D K , Wiwatowski K , Mackowski S , Kung Y C , Dumcenco D . . Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der Waals heterostructure. Nano Letters, 2017, 17(10): 6360–6365

DOI

93
Shinokita K , Watanabe K , Taniguchi T , Matsuda K . Valley relaxation of the Moiré excitons in a WSe2/MoSe2 heterobilayer. ACS Nano, 2022, 16(10): 16862–16868

DOI

94
Li W , Lu X , Wu J , Srivastava A . Optical control of the valley zeeman effect through many-exciton interactions. Nature Nanotechnology, 2021, 16(2): 148–152

DOI

95
Alexeev E M , Catanzaro A , Skrypka O V , Nayak P K , Ahn S , Pak S , Lee J , Sohn J I , Novoselov K S , Shin H S . . Imaging of interlayer coupling in van der waals heterostructures using a bright-field optical microscope. Nano Letters, 2017, 17(9): 5342–5349

DOI

96
Luong D H , Lee H S , Neupane G P , Roy S , Ghimire G , Lee J H , Vu Q A , Lee Y H . Tunneling photocurrent assisted by interlayer excitons in staggered van der Waals hetero-bilayers. Advanced Materials, 2017, 29(33): 1701512

DOI

97
Sun Z , Ciarrocchi A , Tagarelli F , Gonzalez Marin J F , Watanabe K , Taniguchi T , Kis A . Excitonic transport driven by repulsive dipolar interaction in a van der Waals heterostructure. Nature Photonics, 2022, 16(1): 79–85

DOI

98
Schwartz I , Shimazaki Y , Kuhlenkamp C , Watanabe K , Taniguchi T , Kroner M , Imamoğlu A . Electrically tunable feshbach resonances in twisted bilayer semiconductors. Science, 2021, 374(6565): 336–340

DOI

99
Kezerashvili R Ya , Spiridonova A . Magnetoexcitons in transition metal dichalcogenides monolayers, bilayers, and van der Waals heterostructures. Physical Review Research, 2021, 3(3): 033078

DOI

100
Latini S , Winther K T , Olsen T , Thygesen K S . Interlayer excitons and band alignment in MoS2/hBN/WSe2 van der Waals heterostructures. Nano Letters, 2017, 17(2): 938–945

DOI

101
Zhou H , Zhao Y , Tao W , Li Y , Zhou Q , Zhu H . Controlling exciton and valley dynamics in two-dimensional heterostructures with atomically precise interlayer proximity. ACS Nano, 2020, 14(4): 4618–4625

DOI

102
Shimazaki Y , Schwartz I , Watanabe K , Taniguchi T , Kroner M , Imamoğlu A . Strongly correlated electrons and hybrid excitons in a Moiré heterostructure. Nature, 2020, 580(7804): 472–477

DOI

103
Ma L , Nguyen P X , Wang Z , Zeng Y , Watanabe K , Taniguchi T , MacDonald A H , Mak K F , Shan J . Strongly correlated excitonic insulator in atomic double layers. Nature, 2021, 598(7882): 585–589

DOI

104
Ruiz-Tijerina D A , FalʼKo V . Interlayer hybridization and Moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Physical Review. B, 2019, 99(12): 125424

DOI

105
Seyler K L , Rivera P , Yu H , Wilson N P , Ray E L , Mandrus D G , Yan J , Yao W , Xu X . Signatures of Moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567(7746): 66–70

DOI

106
Wu K , Zhong H , Guo Q , Tang J , Zhang J , Qian L , Shi Z , Zhang C , Yuan S , Zhang S . . Identification of twist-angle-dependent excitons in WS2/WSe2 heterobilayers. National Science Review, 2022, 9(6): nwab135

DOI

107
Marcellina E , Liu X , Hu Z , Fieramosca A , Huang Y , Du W , Liu S , Zhao J , Watanabe K , Taniguchi T . . Evidence for Moiré trions in twisted MoSe2 homobilayers. Nano Letters, 2021, 21(10): 4461–4468

DOI

108
Sokolowski N , Palai S , Dyksik M , Posmyk K , Baranowski M , Surrente A , Maude D , Carrascoso F , Cakiroglu O , Sanchez E . . Twist-angle dependent dehybridization of momentum-indirect excitons in MoSe2/MoS2 heterostructures. 2D Materials, 2023, 10(3): 034003

109
Yoon Y , Zhang Z , Qi R , Joe A Y , Sailus R , Watanabe K , Taniguchi T , Tongay S , Wang F . Charge transfer dynamics in MoSe2/hBN/WSe2 heterostructures. Nano Letters, 2022, 22(24): 10140–10146

DOI

110
Bernardi M , Ataca C , Palummo M , Grossman J C . Optical and electronic properties of two-dimensional layered materials. Nanophotonics, 2017, 6(2): 479–493

DOI

111
Zhang X , Tan Q H , Wu J B , Shi W , Tan P H . Review on the raman spectroscopy of different types of layered materials. Nanoscale, 2016, 8(12): 6435–6450

DOI

112
Gong Y , Lin J , Wang X , Shi G , Lei S , Lin Z , Zou X , Ye G , Vajtai R , Yakobson B I . . Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Materials, 2014, 13(12): 1135–1142

DOI

113
Hsu W T , Lu L S , Wu P H , Lee M H , Chen P J , Wu P Y , Chou Y C , Jeng H T , Li L J , Chu M W . . Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers. Nature Communications, 2018, 9(1): 1356

DOI

114
Zhang C , Chuu C P , Ren X , Li M Y , Li L J , Jin C , Chou M Y , Shih C K . Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Science Advances, 2017, 3(1): e1601459

DOI

115
Hong J , Hu Z , Probert M , Li K , Lv D , Yang X , Gu L , Mao N , Feng Q , Xie L . . Exploring atomic defects in molybdenum disulphide monolayers. Nature Communications, 2015, 6(1): 6293

DOI

116
Rhodes D , Chae S H , Ribeiro-Palau R , Hone J . Disorder in van der waals heterostructures of 2D materials. Nature Materials, 2019, 18(6): 541–549

DOI

117
Dean C R , Young A F , Meric I , Lee C , Wang L , Sorgenfrei S , Watanabe K , Taniguchi T , Kim P , Shepard K L . . Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology, 2010, 5(10): 722–726

DOI

118
Pizzocchero F , Gammelgaard L , Jessen B S , Caridad J M , Wang L , Hone J , Bøggild P , Booth T J . The hot pick-up technique for batch assembly of van der Waals heterostructures. Nature Communications, 2016, 7(1): 1–10

DOI

119
Kretinin A V , Cao Y , Tu J S , Yu G L , Jalil R , Novoselov K S , Haigh S J , Gholinia A , Mishchenko A , Lozada M . . Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Letters, 2014, 14(6): 3270–3276

DOI

120
Lui C H , Ye Z , Ji C , Chiu K C , Chou C T , Andersen T I , Means-Shively C , Anderson H , Wu J M , Kidd T . . Observation of interlayer phonon modes in van der Waals heterostructures. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(16): 165403

DOI

121
Liu F , Wu W , Bai Y , Chae S H , Li Q , Wang J , Hone J , Zhu X Y . Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science, 2020, 367(6480): 903–906

DOI

122
Huang Y , Pan Y H , Yang R , Bao L H , Meng L , Luo H L , Cai Y Q , Liu G D , Zhao W J , Zhou Z . . Universal mechanical exfoliation of large-area 2D crystals. Nature Communications, 2020, 11(1): 2453

DOI

123
Shim J , Bae S H , Kong W , Lee D , Qiao K , Nezich D , Park Y J , Zhao R , Sundaram S , Li X . . Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science, 2018, 362(6415): 665–670

DOI

124
Ciarrocchi A , Tagarelli F , Avsar A , Kis A . Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics. Nature Reviews. Materials, 2022, 7(6): 449–464

DOI

125
Ciarrocchi A , Unuchek D , Avsar A , Watanabe K , Taniguchi T , Kis A . Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nature Photonics, 2019, 13(2): 131–136

DOI

126
Ripin A , Peng R , Zhang X , Chakravarthi S , He M , Xu X , Fu K M , Cao T , Li M . Tunable phononic coupling in excitonic quantum emitters. Nature Nanotechnology, 2023, 18(6): 1020–1026

DOI

127
Chen Y , Liu Z , Li J , Cheng X , Ma J , Wang H , Li D . Robust interlayer coupling in two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(8): 10258–10264

DOI

128
Kremser M , Brotons-Gisbert M , Knörzer J , Gückelhorn J , Meyer M , Barbone M , Stier A V , Gerardot B D , Müller K , Finley J J . Discrete interactions between a few interlayer excitons trapped at a MoSe2-WSe2 heterointerface. npj 2D Materials and Applications, 2020, 4(1): 1–6

129
Sun X , Zhu Y , Qin H , Liu B , Tang Y , Lü T , Rahman S , Yildirim T , Lu Y . Enhanced interactions of interlayer excitons in free-standing heterobilayers. Nature, 2022, 610(7932): 478–484

DOI

130
Wu F , Lovorn T , MacDonald A H . Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Physical Review. B, 2018, 97(3): 035306

DOI

131
Yu H , Wang Y , Tong Q , Xu X , Yao W . Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Physical Review Letters, 2015, 115(18): 187002

DOI

132
Alexeev E M , Ruiz-Tijerina D A , Danovich M , Hamer M J , Terry D J , Nayak P K , Ahn S , Pak S , Lee J , Sohn J I . . Resonantly hybridized excitons in Moiré superlattices in van der Waals heterostructures. Nature, 2019, 567(7746): 81–86

DOI

133
Zhang L , Zhang Z , Wu F , Wang D , Gogna R , Hou S , Watanabe K , Taniguchi T , Kulkarni K , Kuo T . Twist-angle dependence of Moiré excitons in WS2/MoSe2 heterobilayers. Nature Communications, 2020, 11(1): 5888

DOI

134
Rivera P , Seyler K L , Yu H , Schaibley J R , Yan J , Mandrus D G , Yao W , Xu X . Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science, 2016, 351(6274): 688–691

DOI

135
Förste J , Tepliakov N V , Kruchinin S Y , Lindlau J , Funk V , Förg M , Watanabe K , Taniguchi T , Baimuratov A S , Högele A . Exciton g-factors in monolayer and bilayer WSe2 from experiment and theory. Nature Communications, 2020, 11(1): 4539

DOI

136
Li Z , Förste J , Watanabe K , Taniguchi T , Urbaszek B , Baimuratov A S , Gerber I C , Högele A , Bilgin I . Stacking-dependent exciton multiplicity in WSe2 bilayers. Physical Review. B, 2022, 106(4): 045411

DOI

137
Li Z , Wang T , Miao S , Li Y , Lu Z , Jin C , Lian Z , Meng Y , Blei M , Taniguchi T . . Phonon-exciton interactions in WSe2 under a quantizing magnetic field. Nature Communications, 2020, 11(1): 3104

DOI

138
Liu E , van Baren J , Taniguchi T , Watanabe K , Chang Y C , Lui C H . Landau-quantized excitonic absorption and luminescence in a monolayer valley semiconductor. Physical Review Letters, 2020, 124(9): 097401

DOI

139
He M , Rivera P , Van Tuan D , Wilson N P , Yang M , Taniguchi T , Watanabe K , Yan J , Mandrus D G , Yu H . . Valley phonons and exciton complexes in a monolayer semiconductor. Nature Communications, 2020, 11(1): 618

DOI

140
Faria P E Junior , Fabian J . Signatures of electric field and layer separation effects on the spin-valley physics of MoSe2/WSe2 heterobilayers: from energy bands to dipolar excitons. Nanomaterials, 2023, 13(7): 1187

DOI

141
Smirnov D S , Holler J , Kempf M , Zipfel J , Nagler P , Ballottin M , Mitioglu A A , Chernikov A , Christianen P C M , Schueller C . . Valley-magnetophonon resonance for interlayer excitons. 2D Materials, 2022, 9(4): 045016

142
Nagler P , Ballottin M V , Mitioglu A A , Mooshammer F , Paradiso N , Strunk C , Huber R , Chernikov A , Christianen P C M , Schüller C . . Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nature Communications, 2017, 8(1): 1551

DOI

143
Wang T , Miao S , Li Z , Meng Y , Lu Z , Lian Z , Blei M , Taniguchi T , Watanabe K , Tongay S . . Giant valley-zeeman splitting from spin-singlet and spin-triplet interlayer excitons in WSe2/MoSe2 heterostructure. Nano Letters, 2020, 20(1): 694–700

DOI

144
Baek H , Brotons-Gisbert M , Koong Z X , Campbell A , Rambach M , Watanabe K , Taniguchi T , Gerardot B D . Highly energy-tunable quantum light from Moiré-trapped excitons. Science Advances, 2020, 6(37): eaba8526

DOI

145
Woźniak T , Faria P E Junior , Seifert G , Chaves A , Kunstmann J . Exciton g factors of van der Waals heterostructures from first-principles calculations. Physical Review. B, 2020, 101(23): 235408

DOI

146
Li W , Lu X , Dubey S , Devenica L , Srivastava A . Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nature Materials, 2020, 19(6): 624–629

DOI

147
Miller B , Steinhoff A , Pano B , Klein J , Jahnke F , Holleitner A , Wurstbauer U . Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Letters, 2017, 17(9): 5229–5237

DOI

148
Xia J , Yan J , Wang Z , He Y , Gong Y , Chen W , Sum T C , Liu Z , Ajayan P M , Shen Z . Strong coupling and pressure engineering in WSe2-MoSe2 heterobilayers. Nature Physics, 2021, 17(1): 92–98

DOI

149
Moon H , Grosso G , Chakraborty C , Peng C , Taniguchi T , Watanabe K , Englund D . Dynamic exciton funneling by local strain control in a monolayer semiconductor. Nano Letters, 2020, 20(9): 6791–6797

DOI

150
He Y , Yang Y , Zhang Z , Gong Y , Zhou W , Hu Z , Ye G , Zhang X , Bianco E , Lei S . . Strain-induced electronic structure changes in stacked van der Waals heterostructures. Nano Letters, 2016, 16(5): 3314–3320

DOI

151
Lu X B , Li X Q , Yang L . Modulated interlayer exciton properties in a two-dimensional Moiré crystal. Physical Review. B, 2019, 100(15): 155416

DOI

152
Geng W T , Wang V , Liu Y C , Ohno T , Nara J . Moiré potential, lattice corrugation, and band gap spatial variation in a twist-free MoTe2/MoS2 heterobilayer. Journal of Physical Chemistry Letters, 2020, 11(7): 2637–2646

DOI

153
Jin C , Regan E C , Yan A , Iqbal Bakti Utama M , Wang D , Zhao S , Qin Y , Yang S , Zheng Z , Shi S . . Observation of Moiré excitons in WSe2/WS2 heterostructure superlattices. Nature, 2019, 567(7746): 76–80

DOI

154
Wu B , Zheng H , Li S , Ding J , He J , Zeng Y , Chen K , Liu Z , Chen S , Pan A . . Evidence for Moiré intralayer excitons in twisted WSe2/WSe2 homobilayer superlattices. Light, Science & Applications, 2022, 11(1): 166

DOI

155
Li Z , Lu X , Cordovilla Leon D F , Lyu Z , Xie H , Hou J , Lu Y , Guo X , Kaczmarek A , Taniguchi T . . Interlayer exciton transport in MoSe2/WSe2 heterostructures. ACS Nano, 2021, 15(1): 1539–1547

DOI

156
Wang J , Shi Q , Shih E M , Zhou L , Wu W , Bai Y , Rhodes D , Barmak K , Hone J , Dean C R . . Diffusivity reveals three distinct phases of interlayer excitons in MoSe2/WSe2 heterobilayers. Physical Review Letters, 2021, 126(10): 106804

DOI

157
Zhang L , Wu F , Hou S , Zhang Z , Chou Y H , Watanabe K , Taniguchi T , Forrest S R , Deng H . Van der Waals heterostructure polaritons with Moiré-induced nonlinearity. Nature, 2021, 591(7848): 61–65

DOI

158
Tong Q , Yu H , Zhu Q , Wang Y , Xu X , Yao W . Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nature Physics, 2017, 13(4): 356–362

DOI

159
Zhao S , Li Z , Huang X , Rupp A , Göser J , Vovk I A , Kruchinin S Y , Watanabe K , Taniguchi T , Bilgin I . . Excitons in mesoscopically reconstructed Moiré heterostructures. Nature Nanotechnology, 2023, 18(6): 572–579

DOI

160
Wilson N P , Yao W , Shan J , Xu X . Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature, 2021, 599(7885): 383–392

DOI

161
Chen D , Lian Z , Huang X , Su Y , Rashetnia M , Yan L , Blei M , Taniguchi T , Watanabe K , Tongay S . . Tuning Moiré excitons and correlated electronic states through layer degree of freedom. Nature Communications, 2022, 13(1): 4810

DOI

162
Sung J , Zhou Y , Scuri G , Zólyomi V , Andersen T I , Yoo H , Wild D S , Joe A Y , Gelly R J , Heo H . . Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nature Nanotechnology, 2020, 15(9): 750–754

DOI

163
Yu H , Yao W . Luminescence anomaly of dipolar valley excitons in homobilayer semiconductor Moiré superlattices. Physical Review X, 2021, 11(2): 021042

DOI

164
Brem S , Lin K Q , Gillen R , Bauer J M , Maultzsch J , Lupton J M , Malic E . Hybridized intervalley Moiré excitons and flat bands in twisted WSe2 bilayers. Nanoscale, 2020, 12(20): 11088–11094

DOI

165
Tang Y , Li L , Li T , Xu Y , Liu S , Barmak K , Watanabe K , Taniguchi T , MacDonald A H , Shan J . . Simulation of hubbard model physics in WSe2/WS2 Moiré superlattices. Nature, 2020, 579(7799): 353–358

DOI

166
Paik E Y , Zhang L , Burg G W , Gogna R , Tutuc E , Deng H . Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature, 2019, 576(7785): 80–84

DOI

167
Liu Y , Fang H , Rasmita A , Zhou Y , Li J , Yu T , Xiong Q , Zheludev N , Liu J , Gao W . Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Science Advances, 2019, 5(4): eaav4506

DOI

168
LinQFangHLiuYZhangYFischerMLiJHagelJBremSMalicEStengerN, . A room temperature Moiré interlayer exciton laser. 2023, arXiv: 2302.01266

169
Unuchek D , Ciarrocchi A , Avsar A , Watanabe K , Taniguchi T , Kis A . Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature, 2018, 560(7718): 340–344

DOI

170
Peng R , Ripin A , Ye Y , Zhu J , Wu C , Lee S , Li H , Taniguchi T , Watanabe K , Cao T . . Long-range transport of 2D excitons with acoustic waves. Nature Communications, 2022, 13(1): 1334

DOI

171
Long M , Liu E , Wang P , Gao A , Xia H , Luo W , Wang B , Zeng J , Fu Y , Xu K . . Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Letters, 2016, 16(4): 2254–2259

DOI

172
Lukman S , Ding L , Xu L , Tao Y , Riis-Jensen A C , Zhang G , Wu Q Y S , Yang M , Luo S , Hsu C . . High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nature Nanotechnology, 2020, 15(8): 675–682

DOI

173
Yan J , Yang X , Liu X , Du C , Qin F , Yang M , Zheng Z , Li J . Van der Waals heterostructures with built-in mie resonances for polarization-sensitive photodetection. Advanced Science, 2023, 10(9): 2207022

DOI

174
Schaibley J R , Yu H Y , Clark G , Rivera P , Ross J S , Seyler K L , Yao W , Xu X D . Valleytronics in 2D materials. Nature Reviews. Materials, 2016, 1(11): 16055

DOI

175
Lee J , Mak K F , Shan J . Electrical control of the valley hall effect in bilayer MoS2 transistors. Nature Nanotechnology, 2016, 11(5): 421–425

DOI

176
Ubrig N , Jo S , Philippi M , Costanzo D , Berger H , Kuzmenko A B , Morpurgo A F . Microscopic origin of the valley hall effect in transition metal dichalcogenides revealed by wavelength-dependent mapping. Nano Letters, 2017, 17(9): 5719–5725

DOI

177
Huang Z , Liu Y , Dini K , Tan Q , Liu Z , Fang H , Liu J , Liew T , Gao W . Robust room temperature valley hall effect of interlayer excitons. Nano Letters, 2020, 20(2): 1345–1351

DOI

178
Li L , Shao L , Liu X , Gao A , Wang H , Zheng B , Hou G , Shehzad K , Yu L , Miao F , Shi Y , Xu Y , Wang X . Room-temperature valleytronic transistor. Nature Nanotechnology, 2020, 15(9): 743–749

DOI

179
Jiang C , Rasmita A , Ma H , Tan Q , Zhang Z , Huang Z , Lai S , Wang N , Liu S , Liu X . . A room-temperature gate-tunable bipolar valley hall effect in molybdenum disulfide/tungsten diselenide heterostructures. Nature Electronics, 2022, 5(1): 23–27

DOI

180
Zhang L , Gogna R , Burg G W , Horng J , Paik E , Chou Y H , Kim K , Tutuc E , Deng H . Highly valley-polarized singlet and triplet interlayer excitons in van der Waals heterostructure. Physical Review. B, 2019, 100(4): 041402

DOI

181
Ye T , Li Y , Li J , Shen H , Ren J , Ning C Z , Li D . Nonvolatile electrical switching of optical and valleytronic properties of interlayer excitons. Light, Science & Applications, 2022, 11(1): 23

DOI

182
Hu Y , Wen X , Lin J , Yao W , Chen Y , Li J , Chen S , Wang L , Xu W , Li D . All-optical valley polarization switch via controlling spin-triplet and spin-singlet interlayer exciton emission in WS2/WSe2 heterostructure. Nano Letters, 2023, 23(14): 6581–6587

DOI

Outlines

/