Excitonic devices based on two-dimensional transition metal dichalcogenides van der Waals heterostructures

Yulun Liu, Yaojie Zhu, Zuowei Yan, Ruixue Bai, Xilin Zhang, Yanbo Ren, Xiaoyu Cheng, Hui Ma, Chongyun Jiang

PDF(8327 KB)
PDF(8327 KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (2) : 16. DOI: 10.1007/s11705-023-2382-0
REVIEW ARTICLE

Excitonic devices based on two-dimensional transition metal dichalcogenides van der Waals heterostructures

Author information +
History +

Abstract

Excitonic devices are an emerging class of technology that utilizes excitons as carriers for encoding, transmitting, and storing information. Van der Waals heterostructures based on transition metal dichalcogenides often exhibit a type II band alignment, which facilitates the generation of interlayer excitons. As a bonded pair of electrons and holes in the separation layer, interlayer excitons offer the chance to investigate exciton transport due to their intrinsic out-of-plane dipole moment and extended exciton lifetime. Furthermore, interlayer excitons can potentially analyze other encoding strategies for information processing beyond the conventional utilization of spin and charge. The review provided valuable insights and recommendations for researchers studying interlayer excitonic devices within van der Waals heterostructures based on transition metal dichalcogenides. Firstly, we provide an overview of the essential attributes of transition metal dichalcogenide materials, focusing on their fundamental properties, excitonic effects, and the distinctive features exhibited by interlayer excitons in van der Waals heterostructures. Subsequently, this discourse emphasizes the recent advancements in interlayer excitonic devices founded on van der Waals heterostructures, with specific attention is given to the utilization of valley electronics for information processing, employing the valley index. In conclusion, this paper examines the potential and current challenges associated with excitonic devices.

Graphical abstract

Keywords

excitonic devices / van der Waals heterostructures / transition metal dichalcogenides / interlayer excitons / valley-Hall effect / optoelectronics

Cite this article

Download citation ▾
Yulun Liu, Yaojie Zhu, Zuowei Yan, Ruixue Bai, Xilin Zhang, Yanbo Ren, Xiaoyu Cheng, Hui Ma, Chongyun Jiang. Excitonic devices based on two-dimensional transition metal dichalcogenides van der Waals heterostructures. Front. Chem. Sci. Eng., 2024, 18(2): 16 https://doi.org/10.1007/s11705-023-2382-0

References

[1]
Song Y , Jia C , Xiong H , Wang B , Jiang Z , Huang K , Hwang J , Li Z , Hwang C , Liu Z . . Signatures of the exciton gas phase and its condensation in monolayer 1T-ZrTe2. Nature Communications, 2023, 14(1): 1116
CrossRef Google scholar
[2]
Tagarelli F , Lopriore E , Erkensten D , Perea-Causín R , Brem S , Hagel J , Sun Z , Pasquale G , Watanabe K , Taniguchi T . . Electrical control of hybrid exciton transport in a van der Waals heterostructure. Nature Photonics, 2023, 17(7): 615–621
CrossRef Google scholar
[3]
Datta B , Khatoniar M , Deshmukh P , Thouin F , Bushati R , De Liberato S , Cohen S K , Menon V M . Highly nonlinear dipolar exciton-polaritons in bilayer MoS2. Nature Communications, 2022, 13(1): 6341
CrossRef Google scholar
[4]
Zhang Z , Regan E C , Wang D , Zhao W , Wang S , Sayyad M , Yumigeta K , Watanabe K , Taniguchi T , Tongay S . . Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and Moiré WS2/WSe2. Nature Physics, 2022, 18(10): 1214–1220
CrossRef Google scholar
[5]
Erkensten D , Brem S , Perea-Causin R , Malic E . Microscopic origin of anomalous interlayer exciton transport in van der Waals heterostructures. Physical Review Materials, 2022, 6(9): 094006
CrossRef Google scholar
[6]
Yuan H , Liu Z , Xu G , Zhou B , Wu S , Dumcenco D , Yan K , Zhang Y , Mo S K , Dudin P . . Evolution of the valley position in bulk transition-metal chalcogenides and their monolayer limit. Nano Letters, 2016, 16(8): 4738–4745
CrossRef Google scholar
[7]
Zhang Y , Chang T R , Zhou B , Cui Y T , Yan H , Liu Z , Schmitt F , Lee J , Moore R , Chen Y . . Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nature Nanotechnology, 2014, 9(2): 111–115
CrossRef Google scholar
[8]
Li Q , Song J H , Xu F , van de Groep J , Hong J , Daus A , Lee Y J , Johnson A C , Pop E , Liu F . . A purcell-enabled monolayer semiconductor free-space optical modulator. Nature Photonics, 2023, 17(10): 897–903
CrossRef Google scholar
[9]
Zhang Q , Sun H , Tang J , Dai X , Wang Z , Ning C Z . Prolonging valley polarization lifetime through gate-controlled exciton-to-trion conversion in monolayer molybdenum ditelluride. Nature Communications, 2022, 13(1): 4101
CrossRef Google scholar
[10]
Chen Y S , Chiu S K , Tsai D L , Liu C Y , Ting H A , Yao Y C , Son H , Haider G , Kalbáč M , Ting C C . . Mediator-assisted synthesis of WS2 with ultrahigh-optoelectronic performance at multi-wafer scale. npj 2D Materials and Applications, 2022, 6(1): 1–8
[11]
Xiao J , Zhang Y , Chen H , Xu N , Deng S . Enhanced performance of a monolayer MoS2/WSe2 heterojunction as a photoelectrochemical cathode. Nano-Micro Letters, 2018, 10(4): 60
CrossRef Google scholar
[12]
Jiang Y , Wang R , Li X , Ma Z , Li L , Su J , Yan Y , Song X , Xia C . Photovoltaic field-effect photodiodes based on double van der Waals heterojunctions. ACS Nano, 2021, 15(9): 14295–14304
CrossRef Google scholar
[13]
Yu X , Zhao G , Liu C , Wu C , Huang H , He J , Zhang N A . MoS2 and Graphene alternately stacking van der Waals heterostructure for Li+/Mg2+ co-intercalation. Advanced Functional Materials, 2021, 31(42): 2103214
CrossRef Google scholar
[14]
Liu X , Wang W , Yang F , Feng S , Hu Z , Lu J , Ni Z . Bi2O2Se/BP van der Waals heterojunction for high performance broadband photodetector. Science China. Information Sciences, 2021, 64(4): 140404
CrossRef Google scholar
[15]
Wu Y , Chen X , Cao J , Zhu Y , Yuan W , Hu Z , Ao Z , Brudvig G W , Tian F , Yu J C . . Photocatalytically recovering hydrogen energy from wastewater treatment using MoS2@TiO2 with sulfur/oxygen dual-defect. Applied Catalysis B: Environmental, 2022, 303(4): 120878
CrossRef Google scholar
[16]
Zeng Y , Dai W , Ma R , Li Z , Ou Z , Wang C , Yu Y , Zhu T , Liu X , Wang T . . Distinguishing ultrafast energy transfer in atomically thin MoS2/WS2 heterostructures. Small, 2022, 18(44): 2204317
CrossRef Google scholar
[17]
Zhou Y , Garoufalis C S , Baskoutas S , Zeng Z , Jia Y . Twisting enabled charge transfer excitons in epitaxially fused quantum dot molecules. Nano Letters, 2022, 22(12): 4912–4918
CrossRef Google scholar
[18]
Hu Z , Liu X , Hernandez-Martinez P L , Zhang S , Gu P , Du W , Xu W , Demir H V , Liu H , Xiong Q . Interfacial charge and energy transfer in van der Waals heterojunctions. InfoMat, 2022, 4(3): e12290
CrossRef Google scholar
[19]
Kiemle J , Sigger F , Lorke M , Miller B , Watanabe K , Taniguchi T , Holleitner A , Wurstbauer U . Control of the orbital character of indirect excitons in MoS2/WS2 heterobilayers. Physical Review. B, 2020, 101(12): 121404
CrossRef Google scholar
[20]
Kim H , Aino K , Shinokita K , Zhang W , Watanabe K , Taniguchi T , Matsuda K . Dynamics of Moiré exciton in a twisted MoSe2/WSe2 heterobilayer. Advanced Optical Materials, 2023, 11(14): 2300146
CrossRef Google scholar
[21]
Tan Q , Rasmita A , Li S , Liu S , Huang Z , Xiong Q , Yang S A , Novoselov K S , Gao W . Layer-engineered interlayer excitons. Science Advances, 2021, 7(30): eabh0863
CrossRef Google scholar
[22]
Kim J , Jin C , Chen B , Cai H , Zhao T , Lee P , Kahn S , Watanabe K , Taniguchi T , Tongay S . . Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Science Advances, 2017, 3(7): e1700518
CrossRef Google scholar
[23]
Jiang C , Xu W , Rasmita A , Huang Z , Li K , Xiong Q , Gao W . Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures. Nature Communications, 2018, 9(1): 753
CrossRef Google scholar
[24]
Shanks D N , Mahdikhanysarvejahany F , Stanfill T G , Koehler M R , Mandrus D G , Taniguchi T , Watanabe K , LeRoy B J , Schaibley J R . Interlayer exciton diode and transistor. Nano Letters, 2022, 22(16): 6599–6605
CrossRef Google scholar
[25]
Tang Y , Gu J , Liu S , Watanabe K , Taniguchi T , Hone J , Mak K F , Shan J . Tuning layer-hybridized Moiré excitons by the quantum-confined Stark effect. Nature Nanotechnology, 2021, 16(1): 52–57
CrossRef Google scholar
[26]
Meng Y , Wang T , Jin C , Li Z , Miao S , Lian Z , Taniguchi T , Watanabe K , Song F , Shi S F . Electrical switching between exciton dissociation to exciton funneling in MoSe2/WS2 heterostructure. Nature Communications, 2020, 11(1): 2640
CrossRef Google scholar
[27]
Joe A Y , Jauregui L A , Pistunova K , Mier Valdivia A M , Lu Z , Wild D S , Scuri G , De Greve K , Gelly R J , Zhou Y . . Electrically controlled emission from singlet and triplet exciton species in atomically thin light-emitting diodes. Physical Review. B, 2021, 103(16): L161411
CrossRef Google scholar
[28]
Hagel J , Brem S , Malic E . Electrical tuning of Moiré excitons in MoSe2 bilayers. 2D Materials, 2022, 10(1): 014013
[29]
Erkensten D , Brem S , Perea-Causín R , Hagel J , Tagarelli F , Lopriore E , Kis A , Malic E . Electrically tunable dipolar interactions between layer-hybridized excitons. Nanoscale, 2023, 15(26): 11064–11071
CrossRef Google scholar
[30]
Nagler P , Plechinger G , Ballottin M V , Mitioglu A , Meier S , Paradiso N , Strunk C , Chernikov A , Christianen P C M , Schüller C . . Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure. 2D Materials, 2017, 4(2): 025112
[31]
Karni O , Barré E , Lau S C , Gillen R , Ma E Y , Kim B , Watanabe K , Taniguchi T , Maultzsch J , Barmak K . . Infrared interlayer exciton emission in MoS2/WSe2 heterostructures. Physical Review Letters, 2019, 123(24): 247402
CrossRef Google scholar
[32]
Rivera P , Yu H , Seyler K L , Wilson N P , Yao W , Xu X . Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nature Nanotechnology, 2018, 13(11): 1004–1015
CrossRef Google scholar
[33]
Jauregui L A , Joe A Y , Pistunova K , Wild D S , High A A , Zhou Y , Scuri G , De Greve K , Sushko A , Yu C H . . Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science, 2019, 366(6467): 870–875
CrossRef Google scholar
[34]
Kamban H C , Pedersen T G . Interlayer excitons in van der Waals heterostructures: binding energy, stark shift, and field-induced dissociation. Scientific Reports, 2020, 10(1): 5537
CrossRef Google scholar
[35]
Merkl P , Mooshammer F , Steinleitner P , Girnghuber A , Lin K Q , Nagler P , Holler J , Schueller C , Lupton J M , Korn T . . Ultrafast transition between exciton phases in van der Waals heterostructures. Nature Materials, 2019, 18(7): 691–696
CrossRef Google scholar
[36]
Dong X Y , Li R Z , Deng J P , Wang Z W . Interlayer exciton-polaron effect in transition metal dichalcogenides van der Waals heterostructures. Journal of Physics and Chemistry of Solids, 2019, 134(1): 1–4
CrossRef Google scholar
[37]
Ponomarev E , Ubrig N , Gutiérrez-Lezama I , Berger H , Morpurgo A F . Semiconducting van der Waals interfaces as artificial semiconductors. Nano Letters, 2018, 18(8): 5146–5152
CrossRef Google scholar
[38]
Brotons-Gisbert M , Baek H , Campbell A , Watanabe K , Taniguchi T , Gerardot B D . Moiré-trapped interlayer trions in a charge-tunable WSe2/MoSe2 heterobilayer. Physical Review X, 2021, 11(3): 031033
CrossRef Google scholar
[39]
Brotons-Gisbert M , Baek H , Molina-Sánchez A , Campbell A , Scerri E , White D , Watanabe K , Taniguchi T , Bonato C , Gerardot B D . Spin-layer locking of interlayer excitons trapped in Moiré potentials. Nature Materials, 2020, 19(6): 630–636
CrossRef Google scholar
[40]
Yu H , Liu G B , Tang J , Xu X , Yao W . Moiré excitons: from programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. Science Advances, 2017, 3(11): e1701696
CrossRef Google scholar
[41]
Rasmussen F A , Thygesen K S . Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. Journal of Physical Chemistry C, 2015, 119(23): 13169–13183
CrossRef Google scholar
[42]
Yin X , Tang C S , Zheng Y , Gao J , Wu J , Zhang H , Chhowalla M , Chen W , Wee A T S . Recent developments in 2D transition metal dichalcogenides: phase transition and applications of the (quasi-)metallic phases. Chemical Society Reviews, 2021, 50(18): 10087–10115
CrossRef Google scholar
[43]
Li Y , Su L , Lu Y , Luo Q , Liang P , Shu H , Chen X . High-throughput screening of phase-engineered atomically thin transition-metal dichalcogenides for van der Waals contacts at the schottky-mott limit. InfoMat, 2023, 5(7): e12407
CrossRef Google scholar
[44]
Manzeli S , Ovchinnikov D , Pasquier D , Yazyev O V , Kis A . 2D transition metal dichalcogenides. Nature Reviews. Materials, 2017, 2(8): 17033
CrossRef Google scholar
[45]
Mak K F , Lee C , Hone J , Shan J , Heinz T F . Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters, 2010, 105(13): 136805
CrossRef Google scholar
[46]
Splendiani A , Sun L , Zhang Y , Li T , Kim J , Chim C Y , Galli G , Wang F . Emerging photoluminescence in monolayer MoS2. Nano Letters, 2010, 10(4): 1271–1275
CrossRef Google scholar
[47]
Xiao D , Liu G B , Feng W , Xu X , Yao W . Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Physical Review Letters, 2012, 108(19): 196802
CrossRef Google scholar
[48]
Mak K F , He K , Shan J , Heinz T F . Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotechnology, 2012, 7(8): 494–498
CrossRef Google scholar
[49]
Koperski M , Molas M R , Arora A , Nogajewski K , Bartos M , Wyzula J , Vaclavkova D , Kossacki P , Potemski M . Orbital, spin and valley contributions to zeeman splitting of excitonic resonances in MoSe2, WSe2 and WS2 monolayers. 2D Materials, 2018, 6(1): 015001
[50]
Zhang X X , You Y , Zhao S Y F , Heinz T F . Experimental evidence for dark excitons in monolayer WSe2. Physical Review Letters, 2015, 115(25): 257403
CrossRef Google scholar
[51]
Ye Z , Cao T , OʼBrien K , Zhu H , Yin X , Wang Y , Louie S G , Zhang X . Probing excitonic dark states in single-layer tungsten disulphide. Nature, 2014, 513(7517): 214–218
CrossRef Google scholar
[52]
Molas M R , Faugeras C , Slobodeniuk A O , Nogajewski K , Bartos M , Basko D M , Potemski M . Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides. 2D Materials, 2017, 4(2): 021003
[53]
Arora A , Nogajewski K , Molas M , Koperski M , Potemski M . Exciton band structure in layered MoSe2: from a monolayer to the bulk limit. Nanoscale, 2015, 7(48): 20769–20775
CrossRef Google scholar
[54]
Hao K , Shreiner R , Kindseth A , High A A . Optically controllable magnetism in atomically thin semiconductors. Science Advances, 2022, 8(39): eabq7650
CrossRef Google scholar
[55]
Li Z , Xiao Y , Gong Y , Wang Z , Kang Y , Zu S , Ajayan P M , Nordlander P , Fang Z . Active light control of the MoS2 monolayer exciton binding energy. ACS Nano, 2015, 9(10): 10158–10164
CrossRef Google scholar
[56]
Chernikov A , Berkelbach T C , Hill H M , Rigosi A , Li Y , Aslan B , Reichman D R , Hybertsen M S , Heinz T F . Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2. Physical Review Letters, 2014, 113(7): 076802
CrossRef Google scholar
[57]
Sie E J , McIver J W , Lee Y H , Fu L , Kong J , Gedik N . Valley-selective optical stark effect in monolayer WS2. Nature Materials, 2015, 14(3): 290–294
CrossRef Google scholar
[58]
Shreiner R , Hao K , Butcher A , High A A . Electrically controllable chirality in a nanophotonic interface with a two-dimensional semiconductor. Nature Photonics, 2022, 16(4): 330–336
CrossRef Google scholar
[59]
Aivazian G , Gong Z , Jones A M , Chu R L , Yan J , Mandrus D G , Zhang C , Cobden D , Yao W , Xu X . Magnetic control of valley pseudospin in monolayer WSe2. Nature Physics, 2015, 11(2): 148–152
CrossRef Google scholar
[60]
Zeng H , Dai J , Yao W , Xiao D , Cui X . Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotechnology, 2012, 7(8): 490–493
CrossRef Google scholar
[61]
Cao T , Wang G , Han W , Ye H , Zhu C , Shi J , Niu Q , Tan P , Wang E , Liu B . . Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Communications, 2012, 3(1): 887
CrossRef Google scholar
[62]
Jones A M , Yu H , Ghimire N J , Wu S , Aivazian G , Ross J S , Zhao B , Yan J , Mandrus D G , Xiao D . . Optical generation of excitonic valley coherence in monolayer WSe2. Nature Nanotechnology, 2013, 8(9): 634–638
CrossRef Google scholar
[63]
Mujeeb F , Chakrabarti P , Mahamiya V , Shukla A , Dhar S . Influence of defects on the valley polarization properties of monolayer MoS2 grown by chemical vapor deposition. Physical Review. B, 2023, 107(11): 115429
CrossRef Google scholar
[64]
Mai C , Barrette A , Yu Y , Semenov Y G , Kim K W , Cao L , Gundogdu K . Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. Nano Letters, 2014, 14(1): 202–206
CrossRef Google scholar
[65]
Sie E J , Lui C H , Lee Y H , Fu L , Kong J , Gedik N . Large, valley-exclusive bloch-siegert shift in monolayer WS2. Science, 2017, 355(6329): 1066–1069
CrossRef Google scholar
[66]
Scuri G , Andersen T I , Zhou Y , Wild D S , Sung J , Gelly R J , Bérubé D , Heo H , Shao L , Joe A Y . . Electrically tunable valley dynamics in twisted WSe2/WSe2 bilayers. Physical Review Letters, 2020, 124(21): 217403
CrossRef Google scholar
[67]
Srivastava A , Sidler M , Allain A V , Lembke D S , Kis A , Imamoğlu A . Valley zeeman effect in elementary optical excitations of monolayer WSe2. Nature Physics, 2015, 11(2): 141–147
CrossRef Google scholar
[68]
Arora A , Deilmann T , Marauhn P , Drüppel M , Schneider R , Molas M R , Vaclavkova D , Vasconcellos S . Valley-contrasting optics of interlayer excitons in Mo- and W-based bulk transition metal dichalcogenides. Nanoscale, 2018, 10(33): 15571–15577
CrossRef Google scholar
[69]
Fortin-Deschenes M , Watanabe K , Taniguchi T , Xia F . Van der Waals epitaxy of tunable Moiré enabled by alloying. Nature Materials, 2023, 22(10): 1–8
CrossRef Google scholar
[70]
Conti S , Chaves A , Pandey T , Covaci L , Peeters F M , Neilson D , Milosevic M V . Flattening conduction and valence bands for interlayer excitons in a Moiré MoS2/WSe2 heterobilayer. Nanoscale, 2023, 15(34): 14032–14042
CrossRef Google scholar
[71]
Ge C , Zhang D , Xiao F , Zhao H , He M , Huang L , Hou S , Tong Q , Pan A , Wang X . Observation and modulation of high-temperature Moiré-locale excitons in van der Waals heterobilayers. ACS Nano, 2023, 17(16): 16115–16122
CrossRef Google scholar
[72]
Li F , Wang Y , Liang Y , Dai Y , Huang B , Wei W . Direct formation of interlayer excitons in MoSSe/WSSe van der Waals heterobilayer. Journal of Physics Condensed Matter, 2023, 35(30): 304005
CrossRef Google scholar
[73]
Lim S Y , Kim H G , Choi Y W , Taniguchi T , Watanabe K , Choi H J , Cheong H . Modulation of phonons and excitons due to Moiré potentials in twisted bilayer of WSe2/MoSe2. ACS Nano, 2023, 17(14): 13938–13947
CrossRef Google scholar
[74]
Louca C , Genco A , Chiavazzo S , Lyons T P , Randerson S , Trovatello C , Claronino P , Jayaprakash R , Hu X , Howarth J . . Interspecies exciton interactions lead to enhanced nonlinearity of dipolar excitons and polaritons in MoS2 homobilayers. Nature Communications, 2023, 14(1): 3818
CrossRef Google scholar
[75]
Özçelik V O , Azadani J G , Yang C , Koester S J , Low T . Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Physical Review. B, 2016, 94(3): 035125
CrossRef Google scholar
[76]
Kim Y S , Kang S , So J P , Kim J C , Kim K , Yang S , Jung Y , Shin Y , Lee S , Lee D . . Atomic-layer-confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides. Science Advances, 2021, 7(13): eabd7921
CrossRef Google scholar
[77]
Zhang C , Gong C , Nie Y , Min K-A , Liang C , Oh Y J , Zhang H , Wang W , Hong S , Colombo L . . Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in van der Waals heterostructures. 2D Materials, 2016, 4(1): 015026
[78]
Xu K , Xu Y , Zhang H , Peng B , Shao H , Ni G , Li J , Yao M , Lu H , Zhu H . . The role of Andersonʼs rule in determining electronic, optical and transport properties of transition metal dichalcogenide heterostructures. Physical Chemistry Chemical Physics, 2018, 20(48): 30351–30364
CrossRef Google scholar
[79]
Guo Y , Robertson J . Band engineering in transition metal dichalcogenides: stacked versus lateral heterostructures. Applied Physics Letters, 2016, 108(23): 233104
CrossRef Google scholar
[80]
Wilson N R , Nguyen P V , Seyler K , Rivera P , Marsden A J , Laker Z P L , Constantinescu G C , Kandyba V , Barinov A , Hine N D M . . Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Science Advances, 2017, 3(2): e1601832
CrossRef Google scholar
[81]
Chiu M H , Zhang C , Shiu H W , Chuu C P , Chen C H , Chang C Y S , Chen C H , Chou M Y , Shih C K , Li L J . Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nature Communications, 2015, 6(1): 7666
CrossRef Google scholar
[82]
Zeng H , Liu X , Zhang H , Cheng X . New theoretical insights into the photoinduced carrier transfer dynamics in WS2/WSe2 van der Waals heterostructures. Physical Chemistry Chemical Physics, 2021, 23(1): 694–701
CrossRef Google scholar
[83]
Wu L , Cong C , Shang J , Yang W , Chen Y , Zhou J , Ai W , Wang Y , Feng S , Zhang H . . Raman scattering investigation of twisted WS2/MoS2 heterostructures: interlayer mechanical coupling versus charge transfer. Nano Research, 2021, 14(7): 2215–2223
CrossRef Google scholar
[84]
Zheng T , Lin Y C , Rafizadeh N , Geohegan D B , Ni Z , Xiao K , Zhao H . Janus monolayers for ultrafast and directional charge transfer in transition metal dichalcogenide heterostructures. ACS Nano, 2022, 16(3): 4197–4205
CrossRef Google scholar
[85]
Kafle T R , Kattel B , Lane S D , Wang T , Zhao H , Chan W L . Charge transfer exciton and spin flipping at organic transition-metal dichalcogenide interfaces. ACS Nano, 2017, 11(10): 10184–10192
CrossRef Google scholar
[86]
Froehlicher G , Lorchat E , Berciaud S . Charge versus energy transfer in atomically thin graphene-transition metal dichalcogenide van der Waals heterostructures. Physical Review X, 2018, 8(1): 011007
CrossRef Google scholar
[87]
Policht V R , Russo M , Liu F , Trovatello C , Maiuri M , Bai Y , Zhu X , Dal Conte S , Cerullo G . Dissecting interlayer hole and electron transfer in transition metal dichalcogenide heterostructures via two-dimensional electronic spectroscopy. Nano Letters, 2021, 21(11): 4738–4743
CrossRef Google scholar
[88]
Hong X , Kim J , Shi S F , Zhang Y , Jin C , Sun Y , Tongay S , Wu J , Zhang Y , Wang F . Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nature Nanotechnology, 2014, 9(9): 682–686
CrossRef Google scholar
[89]
Tran K , Moody G , Wu F , Lu X , Choi J , Kim K , Rai A , Sanchez D A , Quan J , Singh A . . Evidence for Moiré excitons in van der waals heterostructures. Nature, 2019, 567(7746): 71–75
CrossRef Google scholar
[90]
Liu E , Barré E , van Baren J , Wilson M , Taniguchi T , Watanabe K , Cui Y T , Gabor N M , Heinz T F , Chang Y C , Lui C H . Signatures of Moiré trions in WSe2/MoSe2 heterobilayers. Nature, 2021, 594(7861): 46–50
CrossRef Google scholar
[91]
Rivera P , Schaibley J R , Jones A M , Ross J S , Wu S , Aivazian G , Klement P , Seyler K , Clark G , Ghimire N J . . Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nature Communications, 2015, 6(1): 6242
CrossRef Google scholar
[92]
Baranowski M , Surrente A , Klopotowski L , Urban J M , Zhang N , Maude D K , Wiwatowski K , Mackowski S , Kung Y C , Dumcenco D . . Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der Waals heterostructure. Nano Letters, 2017, 17(10): 6360–6365
CrossRef Google scholar
[93]
Shinokita K , Watanabe K , Taniguchi T , Matsuda K . Valley relaxation of the Moiré excitons in a WSe2/MoSe2 heterobilayer. ACS Nano, 2022, 16(10): 16862–16868
CrossRef Google scholar
[94]
Li W , Lu X , Wu J , Srivastava A . Optical control of the valley zeeman effect through many-exciton interactions. Nature Nanotechnology, 2021, 16(2): 148–152
CrossRef Google scholar
[95]
Alexeev E M , Catanzaro A , Skrypka O V , Nayak P K , Ahn S , Pak S , Lee J , Sohn J I , Novoselov K S , Shin H S . . Imaging of interlayer coupling in van der waals heterostructures using a bright-field optical microscope. Nano Letters, 2017, 17(9): 5342–5349
CrossRef Google scholar
[96]
Luong D H , Lee H S , Neupane G P , Roy S , Ghimire G , Lee J H , Vu Q A , Lee Y H . Tunneling photocurrent assisted by interlayer excitons in staggered van der Waals hetero-bilayers. Advanced Materials, 2017, 29(33): 1701512
CrossRef Google scholar
[97]
Sun Z , Ciarrocchi A , Tagarelli F , Gonzalez Marin J F , Watanabe K , Taniguchi T , Kis A . Excitonic transport driven by repulsive dipolar interaction in a van der Waals heterostructure. Nature Photonics, 2022, 16(1): 79–85
CrossRef Google scholar
[98]
Schwartz I , Shimazaki Y , Kuhlenkamp C , Watanabe K , Taniguchi T , Kroner M , Imamoğlu A . Electrically tunable feshbach resonances in twisted bilayer semiconductors. Science, 2021, 374(6565): 336–340
CrossRef Google scholar
[99]
Kezerashvili R Ya , Spiridonova A . Magnetoexcitons in transition metal dichalcogenides monolayers, bilayers, and van der Waals heterostructures. Physical Review Research, 2021, 3(3): 033078
CrossRef Google scholar
[100]
Latini S , Winther K T , Olsen T , Thygesen K S . Interlayer excitons and band alignment in MoS2/hBN/WSe2 van der Waals heterostructures. Nano Letters, 2017, 17(2): 938–945
CrossRef Google scholar
[101]
Zhou H , Zhao Y , Tao W , Li Y , Zhou Q , Zhu H . Controlling exciton and valley dynamics in two-dimensional heterostructures with atomically precise interlayer proximity. ACS Nano, 2020, 14(4): 4618–4625
CrossRef Google scholar
[102]
Shimazaki Y , Schwartz I , Watanabe K , Taniguchi T , Kroner M , Imamoğlu A . Strongly correlated electrons and hybrid excitons in a Moiré heterostructure. Nature, 2020, 580(7804): 472–477
CrossRef Google scholar
[103]
Ma L , Nguyen P X , Wang Z , Zeng Y , Watanabe K , Taniguchi T , MacDonald A H , Mak K F , Shan J . Strongly correlated excitonic insulator in atomic double layers. Nature, 2021, 598(7882): 585–589
CrossRef Google scholar
[104]
Ruiz-Tijerina D A , FalʼKo V . Interlayer hybridization and Moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Physical Review. B, 2019, 99(12): 125424
CrossRef Google scholar
[105]
Seyler K L , Rivera P , Yu H , Wilson N P , Ray E L , Mandrus D G , Yan J , Yao W , Xu X . Signatures of Moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567(7746): 66–70
CrossRef Google scholar
[106]
Wu K , Zhong H , Guo Q , Tang J , Zhang J , Qian L , Shi Z , Zhang C , Yuan S , Zhang S . . Identification of twist-angle-dependent excitons in WS2/WSe2 heterobilayers. National Science Review, 2022, 9(6): nwab135
CrossRef Google scholar
[107]
Marcellina E , Liu X , Hu Z , Fieramosca A , Huang Y , Du W , Liu S , Zhao J , Watanabe K , Taniguchi T . . Evidence for Moiré trions in twisted MoSe2 homobilayers. Nano Letters, 2021, 21(10): 4461–4468
CrossRef Google scholar
[108]
Sokolowski N , Palai S , Dyksik M , Posmyk K , Baranowski M , Surrente A , Maude D , Carrascoso F , Cakiroglu O , Sanchez E . . Twist-angle dependent dehybridization of momentum-indirect excitons in MoSe2/MoS2 heterostructures. 2D Materials, 2023, 10(3): 034003
[109]
Yoon Y , Zhang Z , Qi R , Joe A Y , Sailus R , Watanabe K , Taniguchi T , Tongay S , Wang F . Charge transfer dynamics in MoSe2/hBN/WSe2 heterostructures. Nano Letters, 2022, 22(24): 10140–10146
CrossRef Google scholar
[110]
Bernardi M , Ataca C , Palummo M , Grossman J C . Optical and electronic properties of two-dimensional layered materials. Nanophotonics, 2017, 6(2): 479–493
CrossRef Google scholar
[111]
Zhang X , Tan Q H , Wu J B , Shi W , Tan P H . Review on the raman spectroscopy of different types of layered materials. Nanoscale, 2016, 8(12): 6435–6450
CrossRef Google scholar
[112]
Gong Y , Lin J , Wang X , Shi G , Lei S , Lin Z , Zou X , Ye G , Vajtai R , Yakobson B I . . Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Materials, 2014, 13(12): 1135–1142
CrossRef Google scholar
[113]
Hsu W T , Lu L S , Wu P H , Lee M H , Chen P J , Wu P Y , Chou Y C , Jeng H T , Li L J , Chu M W . . Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers. Nature Communications, 2018, 9(1): 1356
CrossRef Google scholar
[114]
Zhang C , Chuu C P , Ren X , Li M Y , Li L J , Jin C , Chou M Y , Shih C K . Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Science Advances, 2017, 3(1): e1601459
CrossRef Google scholar
[115]
Hong J , Hu Z , Probert M , Li K , Lv D , Yang X , Gu L , Mao N , Feng Q , Xie L . . Exploring atomic defects in molybdenum disulphide monolayers. Nature Communications, 2015, 6(1): 6293
CrossRef Google scholar
[116]
Rhodes D , Chae S H , Ribeiro-Palau R , Hone J . Disorder in van der waals heterostructures of 2D materials. Nature Materials, 2019, 18(6): 541–549
CrossRef Google scholar
[117]
Dean C R , Young A F , Meric I , Lee C , Wang L , Sorgenfrei S , Watanabe K , Taniguchi T , Kim P , Shepard K L . . Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology, 2010, 5(10): 722–726
CrossRef Google scholar
[118]
Pizzocchero F , Gammelgaard L , Jessen B S , Caridad J M , Wang L , Hone J , Bøggild P , Booth T J . The hot pick-up technique for batch assembly of van der Waals heterostructures. Nature Communications, 2016, 7(1): 1–10
CrossRef Google scholar
[119]
Kretinin A V , Cao Y , Tu J S , Yu G L , Jalil R , Novoselov K S , Haigh S J , Gholinia A , Mishchenko A , Lozada M . . Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Letters, 2014, 14(6): 3270–3276
CrossRef Google scholar
[120]
Lui C H , Ye Z , Ji C , Chiu K C , Chou C T , Andersen T I , Means-Shively C , Anderson H , Wu J M , Kidd T . . Observation of interlayer phonon modes in van der Waals heterostructures. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(16): 165403
CrossRef Google scholar
[121]
Liu F , Wu W , Bai Y , Chae S H , Li Q , Wang J , Hone J , Zhu X Y . Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science, 2020, 367(6480): 903–906
CrossRef Google scholar
[122]
Huang Y , Pan Y H , Yang R , Bao L H , Meng L , Luo H L , Cai Y Q , Liu G D , Zhao W J , Zhou Z . . Universal mechanical exfoliation of large-area 2D crystals. Nature Communications, 2020, 11(1): 2453
CrossRef Google scholar
[123]
Shim J , Bae S H , Kong W , Lee D , Qiao K , Nezich D , Park Y J , Zhao R , Sundaram S , Li X . . Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science, 2018, 362(6415): 665–670
CrossRef Google scholar
[124]
Ciarrocchi A , Tagarelli F , Avsar A , Kis A . Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics. Nature Reviews. Materials, 2022, 7(6): 449–464
CrossRef Google scholar
[125]
Ciarrocchi A , Unuchek D , Avsar A , Watanabe K , Taniguchi T , Kis A . Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nature Photonics, 2019, 13(2): 131–136
CrossRef Google scholar
[126]
Ripin A , Peng R , Zhang X , Chakravarthi S , He M , Xu X , Fu K M , Cao T , Li M . Tunable phononic coupling in excitonic quantum emitters. Nature Nanotechnology, 2023, 18(6): 1020–1026
CrossRef Google scholar
[127]
Chen Y , Liu Z , Li J , Cheng X , Ma J , Wang H , Li D . Robust interlayer coupling in two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(8): 10258–10264
CrossRef Google scholar
[128]
Kremser M , Brotons-Gisbert M , Knörzer J , Gückelhorn J , Meyer M , Barbone M , Stier A V , Gerardot B D , Müller K , Finley J J . Discrete interactions between a few interlayer excitons trapped at a MoSe2-WSe2 heterointerface. npj 2D Materials and Applications, 2020, 4(1): 1–6
[129]
Sun X , Zhu Y , Qin H , Liu B , Tang Y , Lü T , Rahman S , Yildirim T , Lu Y . Enhanced interactions of interlayer excitons in free-standing heterobilayers. Nature, 2022, 610(7932): 478–484
CrossRef Google scholar
[130]
Wu F , Lovorn T , MacDonald A H . Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Physical Review. B, 2018, 97(3): 035306
CrossRef Google scholar
[131]
Yu H , Wang Y , Tong Q , Xu X , Yao W . Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Physical Review Letters, 2015, 115(18): 187002
CrossRef Google scholar
[132]
Alexeev E M , Ruiz-Tijerina D A , Danovich M , Hamer M J , Terry D J , Nayak P K , Ahn S , Pak S , Lee J , Sohn J I . . Resonantly hybridized excitons in Moiré superlattices in van der Waals heterostructures. Nature, 2019, 567(7746): 81–86
CrossRef Google scholar
[133]
Zhang L , Zhang Z , Wu F , Wang D , Gogna R , Hou S , Watanabe K , Taniguchi T , Kulkarni K , Kuo T . Twist-angle dependence of Moiré excitons in WS2/MoSe2 heterobilayers. Nature Communications, 2020, 11(1): 5888
CrossRef Google scholar
[134]
Rivera P , Seyler K L , Yu H , Schaibley J R , Yan J , Mandrus D G , Yao W , Xu X . Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science, 2016, 351(6274): 688–691
CrossRef Google scholar
[135]
Förste J , Tepliakov N V , Kruchinin S Y , Lindlau J , Funk V , Förg M , Watanabe K , Taniguchi T , Baimuratov A S , Högele A . Exciton g-factors in monolayer and bilayer WSe2 from experiment and theory. Nature Communications, 2020, 11(1): 4539
CrossRef Google scholar
[136]
Li Z , Förste J , Watanabe K , Taniguchi T , Urbaszek B , Baimuratov A S , Gerber I C , Högele A , Bilgin I . Stacking-dependent exciton multiplicity in WSe2 bilayers. Physical Review. B, 2022, 106(4): 045411
CrossRef Google scholar
[137]
Li Z , Wang T , Miao S , Li Y , Lu Z , Jin C , Lian Z , Meng Y , Blei M , Taniguchi T . . Phonon-exciton interactions in WSe2 under a quantizing magnetic field. Nature Communications, 2020, 11(1): 3104
CrossRef Google scholar
[138]
Liu E , van Baren J , Taniguchi T , Watanabe K , Chang Y C , Lui C H . Landau-quantized excitonic absorption and luminescence in a monolayer valley semiconductor. Physical Review Letters, 2020, 124(9): 097401
CrossRef Google scholar
[139]
He M , Rivera P , Van Tuan D , Wilson N P , Yang M , Taniguchi T , Watanabe K , Yan J , Mandrus D G , Yu H . . Valley phonons and exciton complexes in a monolayer semiconductor. Nature Communications, 2020, 11(1): 618
CrossRef Google scholar
[140]
Faria P E Junior , Fabian J . Signatures of electric field and layer separation effects on the spin-valley physics of MoSe2/WSe2 heterobilayers: from energy bands to dipolar excitons. Nanomaterials, 2023, 13(7): 1187
CrossRef Google scholar
[141]
Smirnov D S , Holler J , Kempf M , Zipfel J , Nagler P , Ballottin M , Mitioglu A A , Chernikov A , Christianen P C M , Schueller C . . Valley-magnetophonon resonance for interlayer excitons. 2D Materials, 2022, 9(4): 045016
[142]
Nagler P , Ballottin M V , Mitioglu A A , Mooshammer F , Paradiso N , Strunk C , Huber R , Chernikov A , Christianen P C M , Schüller C . . Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nature Communications, 2017, 8(1): 1551
CrossRef Google scholar
[143]
Wang T , Miao S , Li Z , Meng Y , Lu Z , Lian Z , Blei M , Taniguchi T , Watanabe K , Tongay S . . Giant valley-zeeman splitting from spin-singlet and spin-triplet interlayer excitons in WSe2/MoSe2 heterostructure. Nano Letters, 2020, 20(1): 694–700
CrossRef Google scholar
[144]
Baek H , Brotons-Gisbert M , Koong Z X , Campbell A , Rambach M , Watanabe K , Taniguchi T , Gerardot B D . Highly energy-tunable quantum light from Moiré-trapped excitons. Science Advances, 2020, 6(37): eaba8526
CrossRef Google scholar
[145]
Woźniak T , Faria P E Junior , Seifert G , Chaves A , Kunstmann J . Exciton g factors of van der Waals heterostructures from first-principles calculations. Physical Review. B, 2020, 101(23): 235408
CrossRef Google scholar
[146]
Li W , Lu X , Dubey S , Devenica L , Srivastava A . Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nature Materials, 2020, 19(6): 624–629
CrossRef Google scholar
[147]
Miller B , Steinhoff A , Pano B , Klein J , Jahnke F , Holleitner A , Wurstbauer U . Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Letters, 2017, 17(9): 5229–5237
CrossRef Google scholar
[148]
Xia J , Yan J , Wang Z , He Y , Gong Y , Chen W , Sum T C , Liu Z , Ajayan P M , Shen Z . Strong coupling and pressure engineering in WSe2-MoSe2 heterobilayers. Nature Physics, 2021, 17(1): 92–98
CrossRef Google scholar
[149]
Moon H , Grosso G , Chakraborty C , Peng C , Taniguchi T , Watanabe K , Englund D . Dynamic exciton funneling by local strain control in a monolayer semiconductor. Nano Letters, 2020, 20(9): 6791–6797
CrossRef Google scholar
[150]
He Y , Yang Y , Zhang Z , Gong Y , Zhou W , Hu Z , Ye G , Zhang X , Bianco E , Lei S . . Strain-induced electronic structure changes in stacked van der Waals heterostructures. Nano Letters, 2016, 16(5): 3314–3320
CrossRef Google scholar
[151]
Lu X B , Li X Q , Yang L . Modulated interlayer exciton properties in a two-dimensional Moiré crystal. Physical Review. B, 2019, 100(15): 155416
CrossRef Google scholar
[152]
Geng W T , Wang V , Liu Y C , Ohno T , Nara J . Moiré potential, lattice corrugation, and band gap spatial variation in a twist-free MoTe2/MoS2 heterobilayer. Journal of Physical Chemistry Letters, 2020, 11(7): 2637–2646
CrossRef Google scholar
[153]
Jin C , Regan E C , Yan A , Iqbal Bakti Utama M , Wang D , Zhao S , Qin Y , Yang S , Zheng Z , Shi S . . Observation of Moiré excitons in WSe2/WS2 heterostructure superlattices. Nature, 2019, 567(7746): 76–80
CrossRef Google scholar
[154]
Wu B , Zheng H , Li S , Ding J , He J , Zeng Y , Chen K , Liu Z , Chen S , Pan A . . Evidence for Moiré intralayer excitons in twisted WSe2/WSe2 homobilayer superlattices. Light, Science & Applications, 2022, 11(1): 166
CrossRef Google scholar
[155]
Li Z , Lu X , Cordovilla Leon D F , Lyu Z , Xie H , Hou J , Lu Y , Guo X , Kaczmarek A , Taniguchi T . . Interlayer exciton transport in MoSe2/WSe2 heterostructures. ACS Nano, 2021, 15(1): 1539–1547
CrossRef Google scholar
[156]
Wang J , Shi Q , Shih E M , Zhou L , Wu W , Bai Y , Rhodes D , Barmak K , Hone J , Dean C R . . Diffusivity reveals three distinct phases of interlayer excitons in MoSe2/WSe2 heterobilayers. Physical Review Letters, 2021, 126(10): 106804
CrossRef Google scholar
[157]
Zhang L , Wu F , Hou S , Zhang Z , Chou Y H , Watanabe K , Taniguchi T , Forrest S R , Deng H . Van der Waals heterostructure polaritons with Moiré-induced nonlinearity. Nature, 2021, 591(7848): 61–65
CrossRef Google scholar
[158]
Tong Q , Yu H , Zhu Q , Wang Y , Xu X , Yao W . Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nature Physics, 2017, 13(4): 356–362
CrossRef Google scholar
[159]
Zhao S , Li Z , Huang X , Rupp A , Göser J , Vovk I A , Kruchinin S Y , Watanabe K , Taniguchi T , Bilgin I . . Excitons in mesoscopically reconstructed Moiré heterostructures. Nature Nanotechnology, 2023, 18(6): 572–579
CrossRef Google scholar
[160]
Wilson N P , Yao W , Shan J , Xu X . Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature, 2021, 599(7885): 383–392
CrossRef Google scholar
[161]
Chen D , Lian Z , Huang X , Su Y , Rashetnia M , Yan L , Blei M , Taniguchi T , Watanabe K , Tongay S . . Tuning Moiré excitons and correlated electronic states through layer degree of freedom. Nature Communications, 2022, 13(1): 4810
CrossRef Google scholar
[162]
Sung J , Zhou Y , Scuri G , Zólyomi V , Andersen T I , Yoo H , Wild D S , Joe A Y , Gelly R J , Heo H . . Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nature Nanotechnology, 2020, 15(9): 750–754
CrossRef Google scholar
[163]
Yu H , Yao W . Luminescence anomaly of dipolar valley excitons in homobilayer semiconductor Moiré superlattices. Physical Review X, 2021, 11(2): 021042
CrossRef Google scholar
[164]
Brem S , Lin K Q , Gillen R , Bauer J M , Maultzsch J , Lupton J M , Malic E . Hybridized intervalley Moiré excitons and flat bands in twisted WSe2 bilayers. Nanoscale, 2020, 12(20): 11088–11094
CrossRef Google scholar
[165]
Tang Y , Li L , Li T , Xu Y , Liu S , Barmak K , Watanabe K , Taniguchi T , MacDonald A H , Shan J . . Simulation of hubbard model physics in WSe2/WS2 Moiré superlattices. Nature, 2020, 579(7799): 353–358
CrossRef Google scholar
[166]
Paik E Y , Zhang L , Burg G W , Gogna R , Tutuc E , Deng H . Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature, 2019, 576(7785): 80–84
CrossRef Google scholar
[167]
Liu Y , Fang H , Rasmita A , Zhou Y , Li J , Yu T , Xiong Q , Zheludev N , Liu J , Gao W . Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Science Advances, 2019, 5(4): eaav4506
CrossRef Google scholar
[168]
LinQFangHLiuYZhangYFischerMLiJHagelJBremSMalicEStengerN, . A room temperature Moiré interlayer exciton laser. 2023, arXiv: 2302.01266
[169]
Unuchek D , Ciarrocchi A , Avsar A , Watanabe K , Taniguchi T , Kis A . Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature, 2018, 560(7718): 340–344
CrossRef Google scholar
[170]
Peng R , Ripin A , Ye Y , Zhu J , Wu C , Lee S , Li H , Taniguchi T , Watanabe K , Cao T . . Long-range transport of 2D excitons with acoustic waves. Nature Communications, 2022, 13(1): 1334
CrossRef Google scholar
[171]
Long M , Liu E , Wang P , Gao A , Xia H , Luo W , Wang B , Zeng J , Fu Y , Xu K . . Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Letters, 2016, 16(4): 2254–2259
CrossRef Google scholar
[172]
Lukman S , Ding L , Xu L , Tao Y , Riis-Jensen A C , Zhang G , Wu Q Y S , Yang M , Luo S , Hsu C . . High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nature Nanotechnology, 2020, 15(8): 675–682
CrossRef Google scholar
[173]
Yan J , Yang X , Liu X , Du C , Qin F , Yang M , Zheng Z , Li J . Van der Waals heterostructures with built-in mie resonances for polarization-sensitive photodetection. Advanced Science, 2023, 10(9): 2207022
CrossRef Google scholar
[174]
Schaibley J R , Yu H Y , Clark G , Rivera P , Ross J S , Seyler K L , Yao W , Xu X D . Valleytronics in 2D materials. Nature Reviews. Materials, 2016, 1(11): 16055
CrossRef Google scholar
[175]
Lee J , Mak K F , Shan J . Electrical control of the valley hall effect in bilayer MoS2 transistors. Nature Nanotechnology, 2016, 11(5): 421–425
CrossRef Google scholar
[176]
Ubrig N , Jo S , Philippi M , Costanzo D , Berger H , Kuzmenko A B , Morpurgo A F . Microscopic origin of the valley hall effect in transition metal dichalcogenides revealed by wavelength-dependent mapping. Nano Letters, 2017, 17(9): 5719–5725
CrossRef Google scholar
[177]
Huang Z , Liu Y , Dini K , Tan Q , Liu Z , Fang H , Liu J , Liew T , Gao W . Robust room temperature valley hall effect of interlayer excitons. Nano Letters, 2020, 20(2): 1345–1351
CrossRef Google scholar
[178]
Li L , Shao L , Liu X , Gao A , Wang H , Zheng B , Hou G , Shehzad K , Yu L , Miao F , Shi Y , Xu Y , Wang X . Room-temperature valleytronic transistor. Nature Nanotechnology, 2020, 15(9): 743–749
CrossRef Google scholar
[179]
Jiang C , Rasmita A , Ma H , Tan Q , Zhang Z , Huang Z , Lai S , Wang N , Liu S , Liu X . . A room-temperature gate-tunable bipolar valley hall effect in molybdenum disulfide/tungsten diselenide heterostructures. Nature Electronics, 2022, 5(1): 23–27
CrossRef Google scholar
[180]
Zhang L , Gogna R , Burg G W , Horng J , Paik E , Chou Y H , Kim K , Tutuc E , Deng H . Highly valley-polarized singlet and triplet interlayer excitons in van der Waals heterostructure. Physical Review. B, 2019, 100(4): 041402
CrossRef Google scholar
[181]
Ye T , Li Y , Li J , Shen H , Ren J , Ning C Z , Li D . Nonvolatile electrical switching of optical and valleytronic properties of interlayer excitons. Light, Science & Applications, 2022, 11(1): 23
CrossRef Google scholar
[182]
Hu Y , Wen X , Lin J , Yao W , Chen Y , Li J , Chen S , Wang L , Xu W , Li D . All-optical valley polarization switch via controlling spin-triplet and spin-singlet interlayer exciton emission in WS2/WSe2 heterostructure. Nano Letters, 2023, 23(14): 6581–6587
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFB2803900), National Natural Science Foundation of China (Grant Nos. 61704121, 61974075), the Natural Science Foundation of Tianjin City (Grant Nos. 19JCQNJC00700, 22JCZDJC00460), the Scientific Research Project of Tianjin Municipal Education Commission (Grant No. 2019KJ028), Fundamental Research Funds for the Central Universities of Nankai University (Grant No. 22JCZDJC00460). C.Y.J. acknowledges the Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin and the Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education of China.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(8327 KB)

Accesses

Citations

Detail

Sections
Recommended

/