Excitonic devices based on two-dimensional transition metal dichalcogenides van der Waals heterostructures
Yulun Liu, Yaojie Zhu, Zuowei Yan, Ruixue Bai, Xilin Zhang, Yanbo Ren, Xiaoyu Cheng, Hui Ma, Chongyun Jiang
Excitonic devices based on two-dimensional transition metal dichalcogenides van der Waals heterostructures
Excitonic devices are an emerging class of technology that utilizes excitons as carriers for encoding, transmitting, and storing information. Van der Waals heterostructures based on transition metal dichalcogenides often exhibit a type II band alignment, which facilitates the generation of interlayer excitons. As a bonded pair of electrons and holes in the separation layer, interlayer excitons offer the chance to investigate exciton transport due to their intrinsic out-of-plane dipole moment and extended exciton lifetime. Furthermore, interlayer excitons can potentially analyze other encoding strategies for information processing beyond the conventional utilization of spin and charge. The review provided valuable insights and recommendations for researchers studying interlayer excitonic devices within van der Waals heterostructures based on transition metal dichalcogenides. Firstly, we provide an overview of the essential attributes of transition metal dichalcogenide materials, focusing on their fundamental properties, excitonic effects, and the distinctive features exhibited by interlayer excitons in van der Waals heterostructures. Subsequently, this discourse emphasizes the recent advancements in interlayer excitonic devices founded on van der Waals heterostructures, with specific attention is given to the utilization of valley electronics for information processing, employing the valley index. In conclusion, this paper examines the potential and current challenges associated with excitonic devices.
excitonic devices / van der Waals heterostructures / transition metal dichalcogenides / interlayer excitons / valley-Hall effect / optoelectronics
[1] |
Song Y , Jia C , Xiong H , Wang B , Jiang Z , Huang K , Hwang J , Li Z , Hwang C , Liu Z .
CrossRef
Google scholar
|
[2] |
Tagarelli F , Lopriore E , Erkensten D , Perea-Causín R , Brem S , Hagel J , Sun Z , Pasquale G , Watanabe K , Taniguchi T .
CrossRef
Google scholar
|
[3] |
Datta B , Khatoniar M , Deshmukh P , Thouin F , Bushati R , De Liberato S , Cohen S K , Menon V M . Highly nonlinear dipolar exciton-polaritons in bilayer MoS2. Nature Communications, 2022, 13(1): 6341
CrossRef
Google scholar
|
[4] |
Zhang Z , Regan E C , Wang D , Zhao W , Wang S , Sayyad M , Yumigeta K , Watanabe K , Taniguchi T , Tongay S .
CrossRef
Google scholar
|
[5] |
Erkensten D , Brem S , Perea-Causin R , Malic E . Microscopic origin of anomalous interlayer exciton transport in van der Waals heterostructures. Physical Review Materials, 2022, 6(9): 094006
CrossRef
Google scholar
|
[6] |
Yuan H , Liu Z , Xu G , Zhou B , Wu S , Dumcenco D , Yan K , Zhang Y , Mo S K , Dudin P .
CrossRef
Google scholar
|
[7] |
Zhang Y , Chang T R , Zhou B , Cui Y T , Yan H , Liu Z , Schmitt F , Lee J , Moore R , Chen Y .
CrossRef
Google scholar
|
[8] |
Li Q , Song J H , Xu F , van de Groep J , Hong J , Daus A , Lee Y J , Johnson A C , Pop E , Liu F .
CrossRef
Google scholar
|
[9] |
Zhang Q , Sun H , Tang J , Dai X , Wang Z , Ning C Z . Prolonging valley polarization lifetime through gate-controlled exciton-to-trion conversion in monolayer molybdenum ditelluride. Nature Communications, 2022, 13(1): 4101
CrossRef
Google scholar
|
[10] |
Chen Y S , Chiu S K , Tsai D L , Liu C Y , Ting H A , Yao Y C , Son H , Haider G , Kalbáč M , Ting C C .
|
[11] |
Xiao J , Zhang Y , Chen H , Xu N , Deng S . Enhanced performance of a monolayer MoS2/WSe2 heterojunction as a photoelectrochemical cathode. Nano-Micro Letters, 2018, 10(4): 60
CrossRef
Google scholar
|
[12] |
Jiang Y , Wang R , Li X , Ma Z , Li L , Su J , Yan Y , Song X , Xia C . Photovoltaic field-effect photodiodes based on double van der Waals heterojunctions. ACS Nano, 2021, 15(9): 14295–14304
CrossRef
Google scholar
|
[13] |
Yu X , Zhao G , Liu C , Wu C , Huang H , He J , Zhang N A . MoS2 and Graphene alternately stacking van der Waals heterostructure for Li+/Mg2+ co-intercalation. Advanced Functional Materials, 2021, 31(42): 2103214
CrossRef
Google scholar
|
[14] |
Liu X , Wang W , Yang F , Feng S , Hu Z , Lu J , Ni Z . Bi2O2Se/BP van der Waals heterojunction for high performance broadband photodetector. Science China. Information Sciences, 2021, 64(4): 140404
CrossRef
Google scholar
|
[15] |
Wu Y , Chen X , Cao J , Zhu Y , Yuan W , Hu Z , Ao Z , Brudvig G W , Tian F , Yu J C .
CrossRef
Google scholar
|
[16] |
Zeng Y , Dai W , Ma R , Li Z , Ou Z , Wang C , Yu Y , Zhu T , Liu X , Wang T .
CrossRef
Google scholar
|
[17] |
Zhou Y , Garoufalis C S , Baskoutas S , Zeng Z , Jia Y . Twisting enabled charge transfer excitons in epitaxially fused quantum dot molecules. Nano Letters, 2022, 22(12): 4912–4918
CrossRef
Google scholar
|
[18] |
Hu Z , Liu X , Hernandez-Martinez P L , Zhang S , Gu P , Du W , Xu W , Demir H V , Liu H , Xiong Q . Interfacial charge and energy transfer in van der Waals heterojunctions. InfoMat, 2022, 4(3): e12290
CrossRef
Google scholar
|
[19] |
Kiemle J , Sigger F , Lorke M , Miller B , Watanabe K , Taniguchi T , Holleitner A , Wurstbauer U . Control of the orbital character of indirect excitons in MoS2/WS2 heterobilayers. Physical Review. B, 2020, 101(12): 121404
CrossRef
Google scholar
|
[20] |
Kim H , Aino K , Shinokita K , Zhang W , Watanabe K , Taniguchi T , Matsuda K . Dynamics of Moiré exciton in a twisted MoSe2/WSe2 heterobilayer. Advanced Optical Materials, 2023, 11(14): 2300146
CrossRef
Google scholar
|
[21] |
Tan Q , Rasmita A , Li S , Liu S , Huang Z , Xiong Q , Yang S A , Novoselov K S , Gao W . Layer-engineered interlayer excitons. Science Advances, 2021, 7(30): eabh0863
CrossRef
Google scholar
|
[22] |
Kim J , Jin C , Chen B , Cai H , Zhao T , Lee P , Kahn S , Watanabe K , Taniguchi T , Tongay S .
CrossRef
Google scholar
|
[23] |
Jiang C , Xu W , Rasmita A , Huang Z , Li K , Xiong Q , Gao W . Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures. Nature Communications, 2018, 9(1): 753
CrossRef
Google scholar
|
[24] |
Shanks D N , Mahdikhanysarvejahany F , Stanfill T G , Koehler M R , Mandrus D G , Taniguchi T , Watanabe K , LeRoy B J , Schaibley J R . Interlayer exciton diode and transistor. Nano Letters, 2022, 22(16): 6599–6605
CrossRef
Google scholar
|
[25] |
Tang Y , Gu J , Liu S , Watanabe K , Taniguchi T , Hone J , Mak K F , Shan J . Tuning layer-hybridized Moiré excitons by the quantum-confined Stark effect. Nature Nanotechnology, 2021, 16(1): 52–57
CrossRef
Google scholar
|
[26] |
Meng Y , Wang T , Jin C , Li Z , Miao S , Lian Z , Taniguchi T , Watanabe K , Song F , Shi S F . Electrical switching between exciton dissociation to exciton funneling in MoSe2/WS2 heterostructure. Nature Communications, 2020, 11(1): 2640
CrossRef
Google scholar
|
[27] |
Joe A Y , Jauregui L A , Pistunova K , Mier Valdivia A M , Lu Z , Wild D S , Scuri G , De Greve K , Gelly R J , Zhou Y .
CrossRef
Google scholar
|
[28] |
Hagel J , Brem S , Malic E . Electrical tuning of Moiré excitons in MoSe2 bilayers. 2D Materials, 2022, 10(1): 014013
|
[29] |
Erkensten D , Brem S , Perea-Causín R , Hagel J , Tagarelli F , Lopriore E , Kis A , Malic E . Electrically tunable dipolar interactions between layer-hybridized excitons. Nanoscale, 2023, 15(26): 11064–11071
CrossRef
Google scholar
|
[30] |
Nagler P , Plechinger G , Ballottin M V , Mitioglu A , Meier S , Paradiso N , Strunk C , Chernikov A , Christianen P C M , Schüller C .
|
[31] |
Karni O , Barré E , Lau S C , Gillen R , Ma E Y , Kim B , Watanabe K , Taniguchi T , Maultzsch J , Barmak K .
CrossRef
Google scholar
|
[32] |
Rivera P , Yu H , Seyler K L , Wilson N P , Yao W , Xu X . Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nature Nanotechnology, 2018, 13(11): 1004–1015
CrossRef
Google scholar
|
[33] |
Jauregui L A , Joe A Y , Pistunova K , Wild D S , High A A , Zhou Y , Scuri G , De Greve K , Sushko A , Yu C H .
CrossRef
Google scholar
|
[34] |
Kamban H C , Pedersen T G . Interlayer excitons in van der Waals heterostructures: binding energy, stark shift, and field-induced dissociation. Scientific Reports, 2020, 10(1): 5537
CrossRef
Google scholar
|
[35] |
Merkl P , Mooshammer F , Steinleitner P , Girnghuber A , Lin K Q , Nagler P , Holler J , Schueller C , Lupton J M , Korn T .
CrossRef
Google scholar
|
[36] |
Dong X Y , Li R Z , Deng J P , Wang Z W . Interlayer exciton-polaron effect in transition metal dichalcogenides van der Waals heterostructures. Journal of Physics and Chemistry of Solids, 2019, 134(1): 1–4
CrossRef
Google scholar
|
[37] |
Ponomarev E , Ubrig N , Gutiérrez-Lezama I , Berger H , Morpurgo A F . Semiconducting van der Waals interfaces as artificial semiconductors. Nano Letters, 2018, 18(8): 5146–5152
CrossRef
Google scholar
|
[38] |
Brotons-Gisbert M , Baek H , Campbell A , Watanabe K , Taniguchi T , Gerardot B D . Moiré-trapped interlayer trions in a charge-tunable WSe2/MoSe2 heterobilayer. Physical Review X, 2021, 11(3): 031033
CrossRef
Google scholar
|
[39] |
Brotons-Gisbert M , Baek H , Molina-Sánchez A , Campbell A , Scerri E , White D , Watanabe K , Taniguchi T , Bonato C , Gerardot B D . Spin-layer locking of interlayer excitons trapped in Moiré potentials. Nature Materials, 2020, 19(6): 630–636
CrossRef
Google scholar
|
[40] |
Yu H , Liu G B , Tang J , Xu X , Yao W . Moiré excitons: from programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. Science Advances, 2017, 3(11): e1701696
CrossRef
Google scholar
|
[41] |
Rasmussen F A , Thygesen K S . Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. Journal of Physical Chemistry C, 2015, 119(23): 13169–13183
CrossRef
Google scholar
|
[42] |
Yin X , Tang C S , Zheng Y , Gao J , Wu J , Zhang H , Chhowalla M , Chen W , Wee A T S . Recent developments in 2D transition metal dichalcogenides: phase transition and applications of the (quasi-)metallic phases. Chemical Society Reviews, 2021, 50(18): 10087–10115
CrossRef
Google scholar
|
[43] |
Li Y , Su L , Lu Y , Luo Q , Liang P , Shu H , Chen X . High-throughput screening of phase-engineered atomically thin transition-metal dichalcogenides for van der Waals contacts at the schottky-mott limit. InfoMat, 2023, 5(7): e12407
CrossRef
Google scholar
|
[44] |
Manzeli S , Ovchinnikov D , Pasquier D , Yazyev O V , Kis A . 2D transition metal dichalcogenides. Nature Reviews. Materials, 2017, 2(8): 17033
CrossRef
Google scholar
|
[45] |
Mak K F , Lee C , Hone J , Shan J , Heinz T F . Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters, 2010, 105(13): 136805
CrossRef
Google scholar
|
[46] |
Splendiani A , Sun L , Zhang Y , Li T , Kim J , Chim C Y , Galli G , Wang F . Emerging photoluminescence in monolayer MoS2. Nano Letters, 2010, 10(4): 1271–1275
CrossRef
Google scholar
|
[47] |
Xiao D , Liu G B , Feng W , Xu X , Yao W . Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Physical Review Letters, 2012, 108(19): 196802
CrossRef
Google scholar
|
[48] |
Mak K F , He K , Shan J , Heinz T F . Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotechnology, 2012, 7(8): 494–498
CrossRef
Google scholar
|
[49] |
Koperski M , Molas M R , Arora A , Nogajewski K , Bartos M , Wyzula J , Vaclavkova D , Kossacki P , Potemski M . Orbital, spin and valley contributions to zeeman splitting of excitonic resonances in MoSe2, WSe2 and WS2 monolayers. 2D Materials, 2018, 6(1): 015001
|
[50] |
Zhang X X , You Y , Zhao S Y F , Heinz T F . Experimental evidence for dark excitons in monolayer WSe2. Physical Review Letters, 2015, 115(25): 257403
CrossRef
Google scholar
|
[51] |
Ye Z , Cao T , OʼBrien K , Zhu H , Yin X , Wang Y , Louie S G , Zhang X . Probing excitonic dark states in single-layer tungsten disulphide. Nature, 2014, 513(7517): 214–218
CrossRef
Google scholar
|
[52] |
Molas M R , Faugeras C , Slobodeniuk A O , Nogajewski K , Bartos M , Basko D M , Potemski M . Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides. 2D Materials, 2017, 4(2): 021003
|
[53] |
Arora A , Nogajewski K , Molas M , Koperski M , Potemski M . Exciton band structure in layered MoSe2: from a monolayer to the bulk limit. Nanoscale, 2015, 7(48): 20769–20775
CrossRef
Google scholar
|
[54] |
Hao K , Shreiner R , Kindseth A , High A A . Optically controllable magnetism in atomically thin semiconductors. Science Advances, 2022, 8(39): eabq7650
CrossRef
Google scholar
|
[55] |
Li Z , Xiao Y , Gong Y , Wang Z , Kang Y , Zu S , Ajayan P M , Nordlander P , Fang Z . Active light control of the MoS2 monolayer exciton binding energy. ACS Nano, 2015, 9(10): 10158–10164
CrossRef
Google scholar
|
[56] |
Chernikov A , Berkelbach T C , Hill H M , Rigosi A , Li Y , Aslan B , Reichman D R , Hybertsen M S , Heinz T F . Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2. Physical Review Letters, 2014, 113(7): 076802
CrossRef
Google scholar
|
[57] |
Sie E J , McIver J W , Lee Y H , Fu L , Kong J , Gedik N . Valley-selective optical stark effect in monolayer WS2. Nature Materials, 2015, 14(3): 290–294
CrossRef
Google scholar
|
[58] |
Shreiner R , Hao K , Butcher A , High A A . Electrically controllable chirality in a nanophotonic interface with a two-dimensional semiconductor. Nature Photonics, 2022, 16(4): 330–336
CrossRef
Google scholar
|
[59] |
Aivazian G , Gong Z , Jones A M , Chu R L , Yan J , Mandrus D G , Zhang C , Cobden D , Yao W , Xu X . Magnetic control of valley pseudospin in monolayer WSe2. Nature Physics, 2015, 11(2): 148–152
CrossRef
Google scholar
|
[60] |
Zeng H , Dai J , Yao W , Xiao D , Cui X . Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotechnology, 2012, 7(8): 490–493
CrossRef
Google scholar
|
[61] |
Cao T , Wang G , Han W , Ye H , Zhu C , Shi J , Niu Q , Tan P , Wang E , Liu B .
CrossRef
Google scholar
|
[62] |
Jones A M , Yu H , Ghimire N J , Wu S , Aivazian G , Ross J S , Zhao B , Yan J , Mandrus D G , Xiao D .
CrossRef
Google scholar
|
[63] |
Mujeeb F , Chakrabarti P , Mahamiya V , Shukla A , Dhar S . Influence of defects on the valley polarization properties of monolayer MoS2 grown by chemical vapor deposition. Physical Review. B, 2023, 107(11): 115429
CrossRef
Google scholar
|
[64] |
Mai C , Barrette A , Yu Y , Semenov Y G , Kim K W , Cao L , Gundogdu K . Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. Nano Letters, 2014, 14(1): 202–206
CrossRef
Google scholar
|
[65] |
Sie E J , Lui C H , Lee Y H , Fu L , Kong J , Gedik N . Large, valley-exclusive bloch-siegert shift in monolayer WS2. Science, 2017, 355(6329): 1066–1069
CrossRef
Google scholar
|
[66] |
Scuri G , Andersen T I , Zhou Y , Wild D S , Sung J , Gelly R J , Bérubé D , Heo H , Shao L , Joe A Y .
CrossRef
Google scholar
|
[67] |
Srivastava A , Sidler M , Allain A V , Lembke D S , Kis A , Imamoğlu A . Valley zeeman effect in elementary optical excitations of monolayer WSe2. Nature Physics, 2015, 11(2): 141–147
CrossRef
Google scholar
|
[68] |
Arora A , Deilmann T , Marauhn P , Drüppel M , Schneider R , Molas M R , Vaclavkova D , Vasconcellos S . Valley-contrasting optics of interlayer excitons in Mo- and W-based bulk transition metal dichalcogenides. Nanoscale, 2018, 10(33): 15571–15577
CrossRef
Google scholar
|
[69] |
Fortin-Deschenes M , Watanabe K , Taniguchi T , Xia F . Van der Waals epitaxy of tunable Moiré enabled by alloying. Nature Materials, 2023, 22(10): 1–8
CrossRef
Google scholar
|
[70] |
Conti S , Chaves A , Pandey T , Covaci L , Peeters F M , Neilson D , Milosevic M V . Flattening conduction and valence bands for interlayer excitons in a Moiré MoS2/WSe2 heterobilayer. Nanoscale, 2023, 15(34): 14032–14042
CrossRef
Google scholar
|
[71] |
Ge C , Zhang D , Xiao F , Zhao H , He M , Huang L , Hou S , Tong Q , Pan A , Wang X . Observation and modulation of high-temperature Moiré-locale excitons in van der Waals heterobilayers. ACS Nano, 2023, 17(16): 16115–16122
CrossRef
Google scholar
|
[72] |
Li F , Wang Y , Liang Y , Dai Y , Huang B , Wei W . Direct formation of interlayer excitons in MoSSe/WSSe van der Waals heterobilayer. Journal of Physics Condensed Matter, 2023, 35(30): 304005
CrossRef
Google scholar
|
[73] |
Lim S Y , Kim H G , Choi Y W , Taniguchi T , Watanabe K , Choi H J , Cheong H . Modulation of phonons and excitons due to Moiré potentials in twisted bilayer of WSe2/MoSe2. ACS Nano, 2023, 17(14): 13938–13947
CrossRef
Google scholar
|
[74] |
Louca C , Genco A , Chiavazzo S , Lyons T P , Randerson S , Trovatello C , Claronino P , Jayaprakash R , Hu X , Howarth J .
CrossRef
Google scholar
|
[75] |
Özçelik V O , Azadani J G , Yang C , Koester S J , Low T . Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Physical Review. B, 2016, 94(3): 035125
CrossRef
Google scholar
|
[76] |
Kim Y S , Kang S , So J P , Kim J C , Kim K , Yang S , Jung Y , Shin Y , Lee S , Lee D .
CrossRef
Google scholar
|
[77] |
Zhang C , Gong C , Nie Y , Min K-A , Liang C , Oh Y J , Zhang H , Wang W , Hong S , Colombo L .
|
[78] |
Xu K , Xu Y , Zhang H , Peng B , Shao H , Ni G , Li J , Yao M , Lu H , Zhu H .
CrossRef
Google scholar
|
[79] |
Guo Y , Robertson J . Band engineering in transition metal dichalcogenides: stacked versus lateral heterostructures. Applied Physics Letters, 2016, 108(23): 233104
CrossRef
Google scholar
|
[80] |
Wilson N R , Nguyen P V , Seyler K , Rivera P , Marsden A J , Laker Z P L , Constantinescu G C , Kandyba V , Barinov A , Hine N D M .
CrossRef
Google scholar
|
[81] |
Chiu M H , Zhang C , Shiu H W , Chuu C P , Chen C H , Chang C Y S , Chen C H , Chou M Y , Shih C K , Li L J . Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nature Communications, 2015, 6(1): 7666
CrossRef
Google scholar
|
[82] |
Zeng H , Liu X , Zhang H , Cheng X . New theoretical insights into the photoinduced carrier transfer dynamics in WS2/WSe2 van der Waals heterostructures. Physical Chemistry Chemical Physics, 2021, 23(1): 694–701
CrossRef
Google scholar
|
[83] |
Wu L , Cong C , Shang J , Yang W , Chen Y , Zhou J , Ai W , Wang Y , Feng S , Zhang H .
CrossRef
Google scholar
|
[84] |
Zheng T , Lin Y C , Rafizadeh N , Geohegan D B , Ni Z , Xiao K , Zhao H . Janus monolayers for ultrafast and directional charge transfer in transition metal dichalcogenide heterostructures. ACS Nano, 2022, 16(3): 4197–4205
CrossRef
Google scholar
|
[85] |
Kafle T R , Kattel B , Lane S D , Wang T , Zhao H , Chan W L . Charge transfer exciton and spin flipping at organic transition-metal dichalcogenide interfaces. ACS Nano, 2017, 11(10): 10184–10192
CrossRef
Google scholar
|
[86] |
Froehlicher G , Lorchat E , Berciaud S . Charge versus energy transfer in atomically thin graphene-transition metal dichalcogenide van der Waals heterostructures. Physical Review X, 2018, 8(1): 011007
CrossRef
Google scholar
|
[87] |
Policht V R , Russo M , Liu F , Trovatello C , Maiuri M , Bai Y , Zhu X , Dal Conte S , Cerullo G . Dissecting interlayer hole and electron transfer in transition metal dichalcogenide heterostructures via two-dimensional electronic spectroscopy. Nano Letters, 2021, 21(11): 4738–4743
CrossRef
Google scholar
|
[88] |
Hong X , Kim J , Shi S F , Zhang Y , Jin C , Sun Y , Tongay S , Wu J , Zhang Y , Wang F . Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nature Nanotechnology, 2014, 9(9): 682–686
CrossRef
Google scholar
|
[89] |
Tran K , Moody G , Wu F , Lu X , Choi J , Kim K , Rai A , Sanchez D A , Quan J , Singh A .
CrossRef
Google scholar
|
[90] |
Liu E , Barré E , van Baren J , Wilson M , Taniguchi T , Watanabe K , Cui Y T , Gabor N M , Heinz T F , Chang Y C , Lui C H . Signatures of Moiré trions in WSe2/MoSe2 heterobilayers. Nature, 2021, 594(7861): 46–50
CrossRef
Google scholar
|
[91] |
Rivera P , Schaibley J R , Jones A M , Ross J S , Wu S , Aivazian G , Klement P , Seyler K , Clark G , Ghimire N J .
CrossRef
Google scholar
|
[92] |
Baranowski M , Surrente A , Klopotowski L , Urban J M , Zhang N , Maude D K , Wiwatowski K , Mackowski S , Kung Y C , Dumcenco D .
CrossRef
Google scholar
|
[93] |
Shinokita K , Watanabe K , Taniguchi T , Matsuda K . Valley relaxation of the Moiré excitons in a WSe2/MoSe2 heterobilayer. ACS Nano, 2022, 16(10): 16862–16868
CrossRef
Google scholar
|
[94] |
Li W , Lu X , Wu J , Srivastava A . Optical control of the valley zeeman effect through many-exciton interactions. Nature Nanotechnology, 2021, 16(2): 148–152
CrossRef
Google scholar
|
[95] |
Alexeev E M , Catanzaro A , Skrypka O V , Nayak P K , Ahn S , Pak S , Lee J , Sohn J I , Novoselov K S , Shin H S .
CrossRef
Google scholar
|
[96] |
Luong D H , Lee H S , Neupane G P , Roy S , Ghimire G , Lee J H , Vu Q A , Lee Y H . Tunneling photocurrent assisted by interlayer excitons in staggered van der Waals hetero-bilayers. Advanced Materials, 2017, 29(33): 1701512
CrossRef
Google scholar
|
[97] |
Sun Z , Ciarrocchi A , Tagarelli F , Gonzalez Marin J F , Watanabe K , Taniguchi T , Kis A . Excitonic transport driven by repulsive dipolar interaction in a van der Waals heterostructure. Nature Photonics, 2022, 16(1): 79–85
CrossRef
Google scholar
|
[98] |
Schwartz I , Shimazaki Y , Kuhlenkamp C , Watanabe K , Taniguchi T , Kroner M , Imamoğlu A . Electrically tunable feshbach resonances in twisted bilayer semiconductors. Science, 2021, 374(6565): 336–340
CrossRef
Google scholar
|
[99] |
Kezerashvili R Ya , Spiridonova A . Magnetoexcitons in transition metal dichalcogenides monolayers, bilayers, and van der Waals heterostructures. Physical Review Research, 2021, 3(3): 033078
CrossRef
Google scholar
|
[100] |
Latini S , Winther K T , Olsen T , Thygesen K S . Interlayer excitons and band alignment in MoS2/hBN/WSe2 van der Waals heterostructures. Nano Letters, 2017, 17(2): 938–945
CrossRef
Google scholar
|
[101] |
Zhou H , Zhao Y , Tao W , Li Y , Zhou Q , Zhu H . Controlling exciton and valley dynamics in two-dimensional heterostructures with atomically precise interlayer proximity. ACS Nano, 2020, 14(4): 4618–4625
CrossRef
Google scholar
|
[102] |
Shimazaki Y , Schwartz I , Watanabe K , Taniguchi T , Kroner M , Imamoğlu A . Strongly correlated electrons and hybrid excitons in a Moiré heterostructure. Nature, 2020, 580(7804): 472–477
CrossRef
Google scholar
|
[103] |
Ma L , Nguyen P X , Wang Z , Zeng Y , Watanabe K , Taniguchi T , MacDonald A H , Mak K F , Shan J . Strongly correlated excitonic insulator in atomic double layers. Nature, 2021, 598(7882): 585–589
CrossRef
Google scholar
|
[104] |
Ruiz-Tijerina D A , FalʼKo V . Interlayer hybridization and Moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Physical Review. B, 2019, 99(12): 125424
CrossRef
Google scholar
|
[105] |
Seyler K L , Rivera P , Yu H , Wilson N P , Ray E L , Mandrus D G , Yan J , Yao W , Xu X . Signatures of Moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567(7746): 66–70
CrossRef
Google scholar
|
[106] |
Wu K , Zhong H , Guo Q , Tang J , Zhang J , Qian L , Shi Z , Zhang C , Yuan S , Zhang S .
CrossRef
Google scholar
|
[107] |
Marcellina E , Liu X , Hu Z , Fieramosca A , Huang Y , Du W , Liu S , Zhao J , Watanabe K , Taniguchi T .
CrossRef
Google scholar
|
[108] |
Sokolowski N , Palai S , Dyksik M , Posmyk K , Baranowski M , Surrente A , Maude D , Carrascoso F , Cakiroglu O , Sanchez E .
|
[109] |
Yoon Y , Zhang Z , Qi R , Joe A Y , Sailus R , Watanabe K , Taniguchi T , Tongay S , Wang F . Charge transfer dynamics in MoSe2/hBN/WSe2 heterostructures. Nano Letters, 2022, 22(24): 10140–10146
CrossRef
Google scholar
|
[110] |
Bernardi M , Ataca C , Palummo M , Grossman J C . Optical and electronic properties of two-dimensional layered materials. Nanophotonics, 2017, 6(2): 479–493
CrossRef
Google scholar
|
[111] |
Zhang X , Tan Q H , Wu J B , Shi W , Tan P H . Review on the raman spectroscopy of different types of layered materials. Nanoscale, 2016, 8(12): 6435–6450
CrossRef
Google scholar
|
[112] |
Gong Y , Lin J , Wang X , Shi G , Lei S , Lin Z , Zou X , Ye G , Vajtai R , Yakobson B I .
CrossRef
Google scholar
|
[113] |
Hsu W T , Lu L S , Wu P H , Lee M H , Chen P J , Wu P Y , Chou Y C , Jeng H T , Li L J , Chu M W .
CrossRef
Google scholar
|
[114] |
Zhang C , Chuu C P , Ren X , Li M Y , Li L J , Jin C , Chou M Y , Shih C K . Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Science Advances, 2017, 3(1): e1601459
CrossRef
Google scholar
|
[115] |
Hong J , Hu Z , Probert M , Li K , Lv D , Yang X , Gu L , Mao N , Feng Q , Xie L .
CrossRef
Google scholar
|
[116] |
Rhodes D , Chae S H , Ribeiro-Palau R , Hone J . Disorder in van der waals heterostructures of 2D materials. Nature Materials, 2019, 18(6): 541–549
CrossRef
Google scholar
|
[117] |
Dean C R , Young A F , Meric I , Lee C , Wang L , Sorgenfrei S , Watanabe K , Taniguchi T , Kim P , Shepard K L .
CrossRef
Google scholar
|
[118] |
Pizzocchero F , Gammelgaard L , Jessen B S , Caridad J M , Wang L , Hone J , Bøggild P , Booth T J . The hot pick-up technique for batch assembly of van der Waals heterostructures. Nature Communications, 2016, 7(1): 1–10
CrossRef
Google scholar
|
[119] |
Kretinin A V , Cao Y , Tu J S , Yu G L , Jalil R , Novoselov K S , Haigh S J , Gholinia A , Mishchenko A , Lozada M .
CrossRef
Google scholar
|
[120] |
Lui C H , Ye Z , Ji C , Chiu K C , Chou C T , Andersen T I , Means-Shively C , Anderson H , Wu J M , Kidd T .
CrossRef
Google scholar
|
[121] |
Liu F , Wu W , Bai Y , Chae S H , Li Q , Wang J , Hone J , Zhu X Y . Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science, 2020, 367(6480): 903–906
CrossRef
Google scholar
|
[122] |
Huang Y , Pan Y H , Yang R , Bao L H , Meng L , Luo H L , Cai Y Q , Liu G D , Zhao W J , Zhou Z .
CrossRef
Google scholar
|
[123] |
Shim J , Bae S H , Kong W , Lee D , Qiao K , Nezich D , Park Y J , Zhao R , Sundaram S , Li X .
CrossRef
Google scholar
|
[124] |
Ciarrocchi A , Tagarelli F , Avsar A , Kis A . Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics. Nature Reviews. Materials, 2022, 7(6): 449–464
CrossRef
Google scholar
|
[125] |
Ciarrocchi A , Unuchek D , Avsar A , Watanabe K , Taniguchi T , Kis A . Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nature Photonics, 2019, 13(2): 131–136
CrossRef
Google scholar
|
[126] |
Ripin A , Peng R , Zhang X , Chakravarthi S , He M , Xu X , Fu K M , Cao T , Li M . Tunable phononic coupling in excitonic quantum emitters. Nature Nanotechnology, 2023, 18(6): 1020–1026
CrossRef
Google scholar
|
[127] |
Chen Y , Liu Z , Li J , Cheng X , Ma J , Wang H , Li D . Robust interlayer coupling in two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(8): 10258–10264
CrossRef
Google scholar
|
[128] |
Kremser M , Brotons-Gisbert M , Knörzer J , Gückelhorn J , Meyer M , Barbone M , Stier A V , Gerardot B D , Müller K , Finley J J . Discrete interactions between a few interlayer excitons trapped at a MoSe2-WSe2 heterointerface. npj 2D Materials and Applications, 2020, 4(1): 1–6
|
[129] |
Sun X , Zhu Y , Qin H , Liu B , Tang Y , Lü T , Rahman S , Yildirim T , Lu Y . Enhanced interactions of interlayer excitons in free-standing heterobilayers. Nature, 2022, 610(7932): 478–484
CrossRef
Google scholar
|
[130] |
Wu F , Lovorn T , MacDonald A H . Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Physical Review. B, 2018, 97(3): 035306
CrossRef
Google scholar
|
[131] |
Yu H , Wang Y , Tong Q , Xu X , Yao W . Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Physical Review Letters, 2015, 115(18): 187002
CrossRef
Google scholar
|
[132] |
Alexeev E M , Ruiz-Tijerina D A , Danovich M , Hamer M J , Terry D J , Nayak P K , Ahn S , Pak S , Lee J , Sohn J I .
CrossRef
Google scholar
|
[133] |
Zhang L , Zhang Z , Wu F , Wang D , Gogna R , Hou S , Watanabe K , Taniguchi T , Kulkarni K , Kuo T . Twist-angle dependence of Moiré excitons in WS2/MoSe2 heterobilayers. Nature Communications, 2020, 11(1): 5888
CrossRef
Google scholar
|
[134] |
Rivera P , Seyler K L , Yu H , Schaibley J R , Yan J , Mandrus D G , Yao W , Xu X . Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science, 2016, 351(6274): 688–691
CrossRef
Google scholar
|
[135] |
Förste J , Tepliakov N V , Kruchinin S Y , Lindlau J , Funk V , Förg M , Watanabe K , Taniguchi T , Baimuratov A S , Högele A . Exciton g-factors in monolayer and bilayer WSe2 from experiment and theory. Nature Communications, 2020, 11(1): 4539
CrossRef
Google scholar
|
[136] |
Li Z , Förste J , Watanabe K , Taniguchi T , Urbaszek B , Baimuratov A S , Gerber I C , Högele A , Bilgin I . Stacking-dependent exciton multiplicity in WSe2 bilayers. Physical Review. B, 2022, 106(4): 045411
CrossRef
Google scholar
|
[137] |
Li Z , Wang T , Miao S , Li Y , Lu Z , Jin C , Lian Z , Meng Y , Blei M , Taniguchi T .
CrossRef
Google scholar
|
[138] |
Liu E , van Baren J , Taniguchi T , Watanabe K , Chang Y C , Lui C H . Landau-quantized excitonic absorption and luminescence in a monolayer valley semiconductor. Physical Review Letters, 2020, 124(9): 097401
CrossRef
Google scholar
|
[139] |
He M , Rivera P , Van Tuan D , Wilson N P , Yang M , Taniguchi T , Watanabe K , Yan J , Mandrus D G , Yu H .
CrossRef
Google scholar
|
[140] |
Faria P E Junior , Fabian J . Signatures of electric field and layer separation effects on the spin-valley physics of MoSe2/WSe2 heterobilayers: from energy bands to dipolar excitons. Nanomaterials, 2023, 13(7): 1187
CrossRef
Google scholar
|
[141] |
Smirnov D S , Holler J , Kempf M , Zipfel J , Nagler P , Ballottin M , Mitioglu A A , Chernikov A , Christianen P C M , Schueller C .
|
[142] |
Nagler P , Ballottin M V , Mitioglu A A , Mooshammer F , Paradiso N , Strunk C , Huber R , Chernikov A , Christianen P C M , Schüller C .
CrossRef
Google scholar
|
[143] |
Wang T , Miao S , Li Z , Meng Y , Lu Z , Lian Z , Blei M , Taniguchi T , Watanabe K , Tongay S .
CrossRef
Google scholar
|
[144] |
Baek H , Brotons-Gisbert M , Koong Z X , Campbell A , Rambach M , Watanabe K , Taniguchi T , Gerardot B D . Highly energy-tunable quantum light from Moiré-trapped excitons. Science Advances, 2020, 6(37): eaba8526
CrossRef
Google scholar
|
[145] |
Woźniak T , Faria P E Junior , Seifert G , Chaves A , Kunstmann J . Exciton g factors of van der Waals heterostructures from first-principles calculations. Physical Review. B, 2020, 101(23): 235408
CrossRef
Google scholar
|
[146] |
Li W , Lu X , Dubey S , Devenica L , Srivastava A . Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nature Materials, 2020, 19(6): 624–629
CrossRef
Google scholar
|
[147] |
Miller B , Steinhoff A , Pano B , Klein J , Jahnke F , Holleitner A , Wurstbauer U . Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Letters, 2017, 17(9): 5229–5237
CrossRef
Google scholar
|
[148] |
Xia J , Yan J , Wang Z , He Y , Gong Y , Chen W , Sum T C , Liu Z , Ajayan P M , Shen Z . Strong coupling and pressure engineering in WSe2-MoSe2 heterobilayers. Nature Physics, 2021, 17(1): 92–98
CrossRef
Google scholar
|
[149] |
Moon H , Grosso G , Chakraborty C , Peng C , Taniguchi T , Watanabe K , Englund D . Dynamic exciton funneling by local strain control in a monolayer semiconductor. Nano Letters, 2020, 20(9): 6791–6797
CrossRef
Google scholar
|
[150] |
He Y , Yang Y , Zhang Z , Gong Y , Zhou W , Hu Z , Ye G , Zhang X , Bianco E , Lei S .
CrossRef
Google scholar
|
[151] |
Lu X B , Li X Q , Yang L . Modulated interlayer exciton properties in a two-dimensional Moiré crystal. Physical Review. B, 2019, 100(15): 155416
CrossRef
Google scholar
|
[152] |
Geng W T , Wang V , Liu Y C , Ohno T , Nara J . Moiré potential, lattice corrugation, and band gap spatial variation in a twist-free MoTe2/MoS2 heterobilayer. Journal of Physical Chemistry Letters, 2020, 11(7): 2637–2646
CrossRef
Google scholar
|
[153] |
Jin C , Regan E C , Yan A , Iqbal Bakti Utama M , Wang D , Zhao S , Qin Y , Yang S , Zheng Z , Shi S .
CrossRef
Google scholar
|
[154] |
Wu B , Zheng H , Li S , Ding J , He J , Zeng Y , Chen K , Liu Z , Chen S , Pan A .
CrossRef
Google scholar
|
[155] |
Li Z , Lu X , Cordovilla Leon D F , Lyu Z , Xie H , Hou J , Lu Y , Guo X , Kaczmarek A , Taniguchi T .
CrossRef
Google scholar
|
[156] |
Wang J , Shi Q , Shih E M , Zhou L , Wu W , Bai Y , Rhodes D , Barmak K , Hone J , Dean C R .
CrossRef
Google scholar
|
[157] |
Zhang L , Wu F , Hou S , Zhang Z , Chou Y H , Watanabe K , Taniguchi T , Forrest S R , Deng H . Van der Waals heterostructure polaritons with Moiré-induced nonlinearity. Nature, 2021, 591(7848): 61–65
CrossRef
Google scholar
|
[158] |
Tong Q , Yu H , Zhu Q , Wang Y , Xu X , Yao W . Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nature Physics, 2017, 13(4): 356–362
CrossRef
Google scholar
|
[159] |
Zhao S , Li Z , Huang X , Rupp A , Göser J , Vovk I A , Kruchinin S Y , Watanabe K , Taniguchi T , Bilgin I .
CrossRef
Google scholar
|
[160] |
Wilson N P , Yao W , Shan J , Xu X . Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature, 2021, 599(7885): 383–392
CrossRef
Google scholar
|
[161] |
Chen D , Lian Z , Huang X , Su Y , Rashetnia M , Yan L , Blei M , Taniguchi T , Watanabe K , Tongay S .
CrossRef
Google scholar
|
[162] |
Sung J , Zhou Y , Scuri G , Zólyomi V , Andersen T I , Yoo H , Wild D S , Joe A Y , Gelly R J , Heo H .
CrossRef
Google scholar
|
[163] |
Yu H , Yao W . Luminescence anomaly of dipolar valley excitons in homobilayer semiconductor Moiré superlattices. Physical Review X, 2021, 11(2): 021042
CrossRef
Google scholar
|
[164] |
Brem S , Lin K Q , Gillen R , Bauer J M , Maultzsch J , Lupton J M , Malic E . Hybridized intervalley Moiré excitons and flat bands in twisted WSe2 bilayers. Nanoscale, 2020, 12(20): 11088–11094
CrossRef
Google scholar
|
[165] |
Tang Y , Li L , Li T , Xu Y , Liu S , Barmak K , Watanabe K , Taniguchi T , MacDonald A H , Shan J .
CrossRef
Google scholar
|
[166] |
Paik E Y , Zhang L , Burg G W , Gogna R , Tutuc E , Deng H . Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature, 2019, 576(7785): 80–84
CrossRef
Google scholar
|
[167] |
Liu Y , Fang H , Rasmita A , Zhou Y , Li J , Yu T , Xiong Q , Zheludev N , Liu J , Gao W . Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Science Advances, 2019, 5(4): eaav4506
CrossRef
Google scholar
|
[168] |
LinQFangHLiuYZhangYFischerMLiJHagelJBremSMalicEStengerN,
|
[169] |
Unuchek D , Ciarrocchi A , Avsar A , Watanabe K , Taniguchi T , Kis A . Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature, 2018, 560(7718): 340–344
CrossRef
Google scholar
|
[170] |
Peng R , Ripin A , Ye Y , Zhu J , Wu C , Lee S , Li H , Taniguchi T , Watanabe K , Cao T .
CrossRef
Google scholar
|
[171] |
Long M , Liu E , Wang P , Gao A , Xia H , Luo W , Wang B , Zeng J , Fu Y , Xu K .
CrossRef
Google scholar
|
[172] |
Lukman S , Ding L , Xu L , Tao Y , Riis-Jensen A C , Zhang G , Wu Q Y S , Yang M , Luo S , Hsu C .
CrossRef
Google scholar
|
[173] |
Yan J , Yang X , Liu X , Du C , Qin F , Yang M , Zheng Z , Li J . Van der Waals heterostructures with built-in mie resonances for polarization-sensitive photodetection. Advanced Science, 2023, 10(9): 2207022
CrossRef
Google scholar
|
[174] |
Schaibley J R , Yu H Y , Clark G , Rivera P , Ross J S , Seyler K L , Yao W , Xu X D . Valleytronics in 2D materials. Nature Reviews. Materials, 2016, 1(11): 16055
CrossRef
Google scholar
|
[175] |
Lee J , Mak K F , Shan J . Electrical control of the valley hall effect in bilayer MoS2 transistors. Nature Nanotechnology, 2016, 11(5): 421–425
CrossRef
Google scholar
|
[176] |
Ubrig N , Jo S , Philippi M , Costanzo D , Berger H , Kuzmenko A B , Morpurgo A F . Microscopic origin of the valley hall effect in transition metal dichalcogenides revealed by wavelength-dependent mapping. Nano Letters, 2017, 17(9): 5719–5725
CrossRef
Google scholar
|
[177] |
Huang Z , Liu Y , Dini K , Tan Q , Liu Z , Fang H , Liu J , Liew T , Gao W . Robust room temperature valley hall effect of interlayer excitons. Nano Letters, 2020, 20(2): 1345–1351
CrossRef
Google scholar
|
[178] |
Li L , Shao L , Liu X , Gao A , Wang H , Zheng B , Hou G , Shehzad K , Yu L , Miao F , Shi Y , Xu Y , Wang X . Room-temperature valleytronic transistor. Nature Nanotechnology, 2020, 15(9): 743–749
CrossRef
Google scholar
|
[179] |
Jiang C , Rasmita A , Ma H , Tan Q , Zhang Z , Huang Z , Lai S , Wang N , Liu S , Liu X .
CrossRef
Google scholar
|
[180] |
Zhang L , Gogna R , Burg G W , Horng J , Paik E , Chou Y H , Kim K , Tutuc E , Deng H . Highly valley-polarized singlet and triplet interlayer excitons in van der Waals heterostructure. Physical Review. B, 2019, 100(4): 041402
CrossRef
Google scholar
|
[181] |
Ye T , Li Y , Li J , Shen H , Ren J , Ning C Z , Li D . Nonvolatile electrical switching of optical and valleytronic properties of interlayer excitons. Light, Science & Applications, 2022, 11(1): 23
CrossRef
Google scholar
|
[182] |
Hu Y , Wen X , Lin J , Yao W , Chen Y , Li J , Chen S , Wang L , Xu W , Li D . All-optical valley polarization switch via controlling spin-triplet and spin-singlet interlayer exciton emission in WS2/WSe2 heterostructure. Nano Letters, 2023, 23(14): 6581–6587
CrossRef
Google scholar
|
/
〈 | 〉 |