Excitonic devices based on two-dimensional transition metal dichalcogenides van der Waals heterostructures

Yulun Liu , Yaojie Zhu , Zuowei Yan , Ruixue Bai , Xilin Zhang , Yanbo Ren , Xiaoyu Cheng , Hui Ma , Chongyun Jiang

Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (2) : 16

PDF (8327KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (2) : 16 DOI: 10.1007/s11705-023-2382-0
REVIEW ARTICLE

Excitonic devices based on two-dimensional transition metal dichalcogenides van der Waals heterostructures

Author information +
History +
PDF (8327KB)

Abstract

Excitonic devices are an emerging class of technology that utilizes excitons as carriers for encoding, transmitting, and storing information. Van der Waals heterostructures based on transition metal dichalcogenides often exhibit a type II band alignment, which facilitates the generation of interlayer excitons. As a bonded pair of electrons and holes in the separation layer, interlayer excitons offer the chance to investigate exciton transport due to their intrinsic out-of-plane dipole moment and extended exciton lifetime. Furthermore, interlayer excitons can potentially analyze other encoding strategies for information processing beyond the conventional utilization of spin and charge. The review provided valuable insights and recommendations for researchers studying interlayer excitonic devices within van der Waals heterostructures based on transition metal dichalcogenides. Firstly, we provide an overview of the essential attributes of transition metal dichalcogenide materials, focusing on their fundamental properties, excitonic effects, and the distinctive features exhibited by interlayer excitons in van der Waals heterostructures. Subsequently, this discourse emphasizes the recent advancements in interlayer excitonic devices founded on van der Waals heterostructures, with specific attention is given to the utilization of valley electronics for information processing, employing the valley index. In conclusion, this paper examines the potential and current challenges associated with excitonic devices.

Graphical abstract

Keywords

excitonic devices / van der Waals heterostructures / transition metal dichalcogenides / interlayer excitons / valley-Hall effect / optoelectronics

Cite this article

Download citation ▾
Yulun Liu, Yaojie Zhu, Zuowei Yan, Ruixue Bai, Xilin Zhang, Yanbo Ren, Xiaoyu Cheng, Hui Ma, Chongyun Jiang. Excitonic devices based on two-dimensional transition metal dichalcogenides van der Waals heterostructures. Front. Chem. Sci. Eng., 2024, 18(2): 16 DOI:10.1007/s11705-023-2382-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Song Y , Jia C , Xiong H , Wang B , Jiang Z , Huang K , Hwang J , Li Z , Hwang C , Liu Z . . Signatures of the exciton gas phase and its condensation in monolayer 1T-ZrTe2. Nature Communications, 2023, 14(1): 1116

[2]

Tagarelli F , Lopriore E , Erkensten D , Perea-Causín R , Brem S , Hagel J , Sun Z , Pasquale G , Watanabe K , Taniguchi T . . Electrical control of hybrid exciton transport in a van der Waals heterostructure. Nature Photonics, 2023, 17(7): 615–621

[3]

Datta B , Khatoniar M , Deshmukh P , Thouin F , Bushati R , De Liberato S , Cohen S K , Menon V M . Highly nonlinear dipolar exciton-polaritons in bilayer MoS2. Nature Communications, 2022, 13(1): 6341

[4]

Zhang Z , Regan E C , Wang D , Zhao W , Wang S , Sayyad M , Yumigeta K , Watanabe K , Taniguchi T , Tongay S . . Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and Moiré WS2/WSe2. Nature Physics, 2022, 18(10): 1214–1220

[5]

Erkensten D , Brem S , Perea-Causin R , Malic E . Microscopic origin of anomalous interlayer exciton transport in van der Waals heterostructures. Physical Review Materials, 2022, 6(9): 094006

[6]

Yuan H , Liu Z , Xu G , Zhou B , Wu S , Dumcenco D , Yan K , Zhang Y , Mo S K , Dudin P . . Evolution of the valley position in bulk transition-metal chalcogenides and their monolayer limit. Nano Letters, 2016, 16(8): 4738–4745

[7]

Zhang Y , Chang T R , Zhou B , Cui Y T , Yan H , Liu Z , Schmitt F , Lee J , Moore R , Chen Y . . Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nature Nanotechnology, 2014, 9(2): 111–115

[8]

Li Q , Song J H , Xu F , van de Groep J , Hong J , Daus A , Lee Y J , Johnson A C , Pop E , Liu F . . A purcell-enabled monolayer semiconductor free-space optical modulator. Nature Photonics, 2023, 17(10): 897–903

[9]

Zhang Q , Sun H , Tang J , Dai X , Wang Z , Ning C Z . Prolonging valley polarization lifetime through gate-controlled exciton-to-trion conversion in monolayer molybdenum ditelluride. Nature Communications, 2022, 13(1): 4101

[10]

Chen Y S , Chiu S K , Tsai D L , Liu C Y , Ting H A , Yao Y C , Son H , Haider G , Kalbáč M , Ting C C . . Mediator-assisted synthesis of WS2 with ultrahigh-optoelectronic performance at multi-wafer scale. npj 2D Materials and Applications, 2022, 6(1): 1–8

[11]

Xiao J , Zhang Y , Chen H , Xu N , Deng S . Enhanced performance of a monolayer MoS2/WSe2 heterojunction as a photoelectrochemical cathode. Nano-Micro Letters, 2018, 10(4): 60

[12]

Jiang Y , Wang R , Li X , Ma Z , Li L , Su J , Yan Y , Song X , Xia C . Photovoltaic field-effect photodiodes based on double van der Waals heterojunctions. ACS Nano, 2021, 15(9): 14295–14304

[13]

Yu X , Zhao G , Liu C , Wu C , Huang H , He J , Zhang N A . MoS2 and Graphene alternately stacking van der Waals heterostructure for Li+/Mg2+ co-intercalation. Advanced Functional Materials, 2021, 31(42): 2103214

[14]

Liu X , Wang W , Yang F , Feng S , Hu Z , Lu J , Ni Z . Bi2O2Se/BP van der Waals heterojunction for high performance broadband photodetector. Science China. Information Sciences, 2021, 64(4): 140404

[15]

Wu Y , Chen X , Cao J , Zhu Y , Yuan W , Hu Z , Ao Z , Brudvig G W , Tian F , Yu J C . . Photocatalytically recovering hydrogen energy from wastewater treatment using MoS2@TiO2 with sulfur/oxygen dual-defect. Applied Catalysis B: Environmental, 2022, 303(4): 120878

[16]

Zeng Y , Dai W , Ma R , Li Z , Ou Z , Wang C , Yu Y , Zhu T , Liu X , Wang T . . Distinguishing ultrafast energy transfer in atomically thin MoS2/WS2 heterostructures. Small, 2022, 18(44): 2204317

[17]

Zhou Y , Garoufalis C S , Baskoutas S , Zeng Z , Jia Y . Twisting enabled charge transfer excitons in epitaxially fused quantum dot molecules. Nano Letters, 2022, 22(12): 4912–4918

[18]

Hu Z , Liu X , Hernandez-Martinez P L , Zhang S , Gu P , Du W , Xu W , Demir H V , Liu H , Xiong Q . Interfacial charge and energy transfer in van der Waals heterojunctions. InfoMat, 2022, 4(3): e12290

[19]

Kiemle J , Sigger F , Lorke M , Miller B , Watanabe K , Taniguchi T , Holleitner A , Wurstbauer U . Control of the orbital character of indirect excitons in MoS2/WS2 heterobilayers. Physical Review. B, 2020, 101(12): 121404

[20]

Kim H , Aino K , Shinokita K , Zhang W , Watanabe K , Taniguchi T , Matsuda K . Dynamics of Moiré exciton in a twisted MoSe2/WSe2 heterobilayer. Advanced Optical Materials, 2023, 11(14): 2300146

[21]

Tan Q , Rasmita A , Li S , Liu S , Huang Z , Xiong Q , Yang S A , Novoselov K S , Gao W . Layer-engineered interlayer excitons. Science Advances, 2021, 7(30): eabh0863

[22]

Kim J , Jin C , Chen B , Cai H , Zhao T , Lee P , Kahn S , Watanabe K , Taniguchi T , Tongay S . . Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Science Advances, 2017, 3(7): e1700518

[23]

Jiang C , Xu W , Rasmita A , Huang Z , Li K , Xiong Q , Gao W . Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures. Nature Communications, 2018, 9(1): 753

[24]

Shanks D N , Mahdikhanysarvejahany F , Stanfill T G , Koehler M R , Mandrus D G , Taniguchi T , Watanabe K , LeRoy B J , Schaibley J R . Interlayer exciton diode and transistor. Nano Letters, 2022, 22(16): 6599–6605

[25]

Tang Y , Gu J , Liu S , Watanabe K , Taniguchi T , Hone J , Mak K F , Shan J . Tuning layer-hybridized Moiré excitons by the quantum-confined Stark effect. Nature Nanotechnology, 2021, 16(1): 52–57

[26]

Meng Y , Wang T , Jin C , Li Z , Miao S , Lian Z , Taniguchi T , Watanabe K , Song F , Shi S F . Electrical switching between exciton dissociation to exciton funneling in MoSe2/WS2 heterostructure. Nature Communications, 2020, 11(1): 2640

[27]

Joe A Y , Jauregui L A , Pistunova K , Mier Valdivia A M , Lu Z , Wild D S , Scuri G , De Greve K , Gelly R J , Zhou Y . . Electrically controlled emission from singlet and triplet exciton species in atomically thin light-emitting diodes. Physical Review. B, 2021, 103(16): L161411

[28]

Hagel J , Brem S , Malic E . Electrical tuning of Moiré excitons in MoSe2 bilayers. 2D Materials, 2022, 10(1): 014013

[29]

Erkensten D , Brem S , Perea-Causín R , Hagel J , Tagarelli F , Lopriore E , Kis A , Malic E . Electrically tunable dipolar interactions between layer-hybridized excitons. Nanoscale, 2023, 15(26): 11064–11071

[30]

Nagler P , Plechinger G , Ballottin M V , Mitioglu A , Meier S , Paradiso N , Strunk C , Chernikov A , Christianen P C M , Schüller C . . Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure. 2D Materials, 2017, 4(2): 025112

[31]

Karni O , Barré E , Lau S C , Gillen R , Ma E Y , Kim B , Watanabe K , Taniguchi T , Maultzsch J , Barmak K . . Infrared interlayer exciton emission in MoS2/WSe2 heterostructures. Physical Review Letters, 2019, 123(24): 247402

[32]

Rivera P , Yu H , Seyler K L , Wilson N P , Yao W , Xu X . Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nature Nanotechnology, 2018, 13(11): 1004–1015

[33]

Jauregui L A , Joe A Y , Pistunova K , Wild D S , High A A , Zhou Y , Scuri G , De Greve K , Sushko A , Yu C H . . Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science, 2019, 366(6467): 870–875

[34]

Kamban H C , Pedersen T G . Interlayer excitons in van der Waals heterostructures: binding energy, stark shift, and field-induced dissociation. Scientific Reports, 2020, 10(1): 5537

[35]

Merkl P , Mooshammer F , Steinleitner P , Girnghuber A , Lin K Q , Nagler P , Holler J , Schueller C , Lupton J M , Korn T . . Ultrafast transition between exciton phases in van der Waals heterostructures. Nature Materials, 2019, 18(7): 691–696

[36]

Dong X Y , Li R Z , Deng J P , Wang Z W . Interlayer exciton-polaron effect in transition metal dichalcogenides van der Waals heterostructures. Journal of Physics and Chemistry of Solids, 2019, 134(1): 1–4

[37]

Ponomarev E , Ubrig N , Gutiérrez-Lezama I , Berger H , Morpurgo A F . Semiconducting van der Waals interfaces as artificial semiconductors. Nano Letters, 2018, 18(8): 5146–5152

[38]

Brotons-Gisbert M , Baek H , Campbell A , Watanabe K , Taniguchi T , Gerardot B D . Moiré-trapped interlayer trions in a charge-tunable WSe2/MoSe2 heterobilayer. Physical Review X, 2021, 11(3): 031033

[39]

Brotons-Gisbert M , Baek H , Molina-Sánchez A , Campbell A , Scerri E , White D , Watanabe K , Taniguchi T , Bonato C , Gerardot B D . Spin-layer locking of interlayer excitons trapped in Moiré potentials. Nature Materials, 2020, 19(6): 630–636

[40]

Yu H , Liu G B , Tang J , Xu X , Yao W . Moiré excitons: from programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. Science Advances, 2017, 3(11): e1701696

[41]

Rasmussen F A , Thygesen K S . Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. Journal of Physical Chemistry C, 2015, 119(23): 13169–13183

[42]

Yin X , Tang C S , Zheng Y , Gao J , Wu J , Zhang H , Chhowalla M , Chen W , Wee A T S . Recent developments in 2D transition metal dichalcogenides: phase transition and applications of the (quasi-)metallic phases. Chemical Society Reviews, 2021, 50(18): 10087–10115

[43]

Li Y , Su L , Lu Y , Luo Q , Liang P , Shu H , Chen X . High-throughput screening of phase-engineered atomically thin transition-metal dichalcogenides for van der Waals contacts at the schottky-mott limit. InfoMat, 2023, 5(7): e12407

[44]

Manzeli S , Ovchinnikov D , Pasquier D , Yazyev O V , Kis A . 2D transition metal dichalcogenides. Nature Reviews. Materials, 2017, 2(8): 17033

[45]

Mak K F , Lee C , Hone J , Shan J , Heinz T F . Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters, 2010, 105(13): 136805

[46]

Splendiani A , Sun L , Zhang Y , Li T , Kim J , Chim C Y , Galli G , Wang F . Emerging photoluminescence in monolayer MoS2. Nano Letters, 2010, 10(4): 1271–1275

[47]

Xiao D , Liu G B , Feng W , Xu X , Yao W . Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Physical Review Letters, 2012, 108(19): 196802

[48]

Mak K F , He K , Shan J , Heinz T F . Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotechnology, 2012, 7(8): 494–498

[49]

Koperski M , Molas M R , Arora A , Nogajewski K , Bartos M , Wyzula J , Vaclavkova D , Kossacki P , Potemski M . Orbital, spin and valley contributions to zeeman splitting of excitonic resonances in MoSe2, WSe2 and WS2 monolayers. 2D Materials, 2018, 6(1): 015001

[50]

Zhang X X , You Y , Zhao S Y F , Heinz T F . Experimental evidence for dark excitons in monolayer WSe2. Physical Review Letters, 2015, 115(25): 257403

[51]

Ye Z , Cao T , OʼBrien K , Zhu H , Yin X , Wang Y , Louie S G , Zhang X . Probing excitonic dark states in single-layer tungsten disulphide. Nature, 2014, 513(7517): 214–218

[52]

Molas M R , Faugeras C , Slobodeniuk A O , Nogajewski K , Bartos M , Basko D M , Potemski M . Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides. 2D Materials, 2017, 4(2): 021003

[53]

Arora A , Nogajewski K , Molas M , Koperski M , Potemski M . Exciton band structure in layered MoSe2: from a monolayer to the bulk limit. Nanoscale, 2015, 7(48): 20769–20775

[54]

Hao K , Shreiner R , Kindseth A , High A A . Optically controllable magnetism in atomically thin semiconductors. Science Advances, 2022, 8(39): eabq7650

[55]

Li Z , Xiao Y , Gong Y , Wang Z , Kang Y , Zu S , Ajayan P M , Nordlander P , Fang Z . Active light control of the MoS2 monolayer exciton binding energy. ACS Nano, 2015, 9(10): 10158–10164

[56]

Chernikov A , Berkelbach T C , Hill H M , Rigosi A , Li Y , Aslan B , Reichman D R , Hybertsen M S , Heinz T F . Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2. Physical Review Letters, 2014, 113(7): 076802

[57]

Sie E J , McIver J W , Lee Y H , Fu L , Kong J , Gedik N . Valley-selective optical stark effect in monolayer WS2. Nature Materials, 2015, 14(3): 290–294

[58]

Shreiner R , Hao K , Butcher A , High A A . Electrically controllable chirality in a nanophotonic interface with a two-dimensional semiconductor. Nature Photonics, 2022, 16(4): 330–336

[59]

Aivazian G , Gong Z , Jones A M , Chu R L , Yan J , Mandrus D G , Zhang C , Cobden D , Yao W , Xu X . Magnetic control of valley pseudospin in monolayer WSe2. Nature Physics, 2015, 11(2): 148–152

[60]

Zeng H , Dai J , Yao W , Xiao D , Cui X . Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotechnology, 2012, 7(8): 490–493

[61]

Cao T , Wang G , Han W , Ye H , Zhu C , Shi J , Niu Q , Tan P , Wang E , Liu B . . Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Communications, 2012, 3(1): 887

[62]

Jones A M , Yu H , Ghimire N J , Wu S , Aivazian G , Ross J S , Zhao B , Yan J , Mandrus D G , Xiao D . . Optical generation of excitonic valley coherence in monolayer WSe2. Nature Nanotechnology, 2013, 8(9): 634–638

[63]

Mujeeb F , Chakrabarti P , Mahamiya V , Shukla A , Dhar S . Influence of defects on the valley polarization properties of monolayer MoS2 grown by chemical vapor deposition. Physical Review. B, 2023, 107(11): 115429

[64]

Mai C , Barrette A , Yu Y , Semenov Y G , Kim K W , Cao L , Gundogdu K . Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. Nano Letters, 2014, 14(1): 202–206

[65]

Sie E J , Lui C H , Lee Y H , Fu L , Kong J , Gedik N . Large, valley-exclusive bloch-siegert shift in monolayer WS2. Science, 2017, 355(6329): 1066–1069

[66]

Scuri G , Andersen T I , Zhou Y , Wild D S , Sung J , Gelly R J , Bérubé D , Heo H , Shao L , Joe A Y . . Electrically tunable valley dynamics in twisted WSe2/WSe2 bilayers. Physical Review Letters, 2020, 124(21): 217403

[67]

Srivastava A , Sidler M , Allain A V , Lembke D S , Kis A , Imamoğlu A . Valley zeeman effect in elementary optical excitations of monolayer WSe2. Nature Physics, 2015, 11(2): 141–147

[68]

Arora A , Deilmann T , Marauhn P , Drüppel M , Schneider R , Molas M R , Vaclavkova D , Vasconcellos S . Valley-contrasting optics of interlayer excitons in Mo- and W-based bulk transition metal dichalcogenides. Nanoscale, 2018, 10(33): 15571–15577

[69]

Fortin-Deschenes M , Watanabe K , Taniguchi T , Xia F . Van der Waals epitaxy of tunable Moiré enabled by alloying. Nature Materials, 2023, 22(10): 1–8

[70]

Conti S , Chaves A , Pandey T , Covaci L , Peeters F M , Neilson D , Milosevic M V . Flattening conduction and valence bands for interlayer excitons in a Moiré MoS2/WSe2 heterobilayer. Nanoscale, 2023, 15(34): 14032–14042

[71]

Ge C , Zhang D , Xiao F , Zhao H , He M , Huang L , Hou S , Tong Q , Pan A , Wang X . Observation and modulation of high-temperature Moiré-locale excitons in van der Waals heterobilayers. ACS Nano, 2023, 17(16): 16115–16122

[72]

Li F , Wang Y , Liang Y , Dai Y , Huang B , Wei W . Direct formation of interlayer excitons in MoSSe/WSSe van der Waals heterobilayer. Journal of Physics Condensed Matter, 2023, 35(30): 304005

[73]

Lim S Y , Kim H G , Choi Y W , Taniguchi T , Watanabe K , Choi H J , Cheong H . Modulation of phonons and excitons due to Moiré potentials in twisted bilayer of WSe2/MoSe2. ACS Nano, 2023, 17(14): 13938–13947

[74]

Louca C , Genco A , Chiavazzo S , Lyons T P , Randerson S , Trovatello C , Claronino P , Jayaprakash R , Hu X , Howarth J . . Interspecies exciton interactions lead to enhanced nonlinearity of dipolar excitons and polaritons in MoS2 homobilayers. Nature Communications, 2023, 14(1): 3818

[75]

Özçelik V O , Azadani J G , Yang C , Koester S J , Low T . Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Physical Review. B, 2016, 94(3): 035125

[76]

Kim Y S , Kang S , So J P , Kim J C , Kim K , Yang S , Jung Y , Shin Y , Lee S , Lee D . . Atomic-layer-confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides. Science Advances, 2021, 7(13): eabd7921

[77]

Zhang C , Gong C , Nie Y , Min K-A , Liang C , Oh Y J , Zhang H , Wang W , Hong S , Colombo L . . Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in van der Waals heterostructures. 2D Materials, 2016, 4(1): 015026

[78]

Xu K , Xu Y , Zhang H , Peng B , Shao H , Ni G , Li J , Yao M , Lu H , Zhu H . . The role of Andersonʼs rule in determining electronic, optical and transport properties of transition metal dichalcogenide heterostructures. Physical Chemistry Chemical Physics, 2018, 20(48): 30351–30364

[79]

Guo Y , Robertson J . Band engineering in transition metal dichalcogenides: stacked versus lateral heterostructures. Applied Physics Letters, 2016, 108(23): 233104

[80]

Wilson N R , Nguyen P V , Seyler K , Rivera P , Marsden A J , Laker Z P L , Constantinescu G C , Kandyba V , Barinov A , Hine N D M . . Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Science Advances, 2017, 3(2): e1601832

[81]

Chiu M H , Zhang C , Shiu H W , Chuu C P , Chen C H , Chang C Y S , Chen C H , Chou M Y , Shih C K , Li L J . Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nature Communications, 2015, 6(1): 7666

[82]

Zeng H , Liu X , Zhang H , Cheng X . New theoretical insights into the photoinduced carrier transfer dynamics in WS2/WSe2 van der Waals heterostructures. Physical Chemistry Chemical Physics, 2021, 23(1): 694–701

[83]

Wu L , Cong C , Shang J , Yang W , Chen Y , Zhou J , Ai W , Wang Y , Feng S , Zhang H . . Raman scattering investigation of twisted WS2/MoS2 heterostructures: interlayer mechanical coupling versus charge transfer. Nano Research, 2021, 14(7): 2215–2223

[84]

Zheng T , Lin Y C , Rafizadeh N , Geohegan D B , Ni Z , Xiao K , Zhao H . Janus monolayers for ultrafast and directional charge transfer in transition metal dichalcogenide heterostructures. ACS Nano, 2022, 16(3): 4197–4205

[85]

Kafle T R , Kattel B , Lane S D , Wang T , Zhao H , Chan W L . Charge transfer exciton and spin flipping at organic transition-metal dichalcogenide interfaces. ACS Nano, 2017, 11(10): 10184–10192

[86]

Froehlicher G , Lorchat E , Berciaud S . Charge versus energy transfer in atomically thin graphene-transition metal dichalcogenide van der Waals heterostructures. Physical Review X, 2018, 8(1): 011007

[87]

Policht V R , Russo M , Liu F , Trovatello C , Maiuri M , Bai Y , Zhu X , Dal Conte S , Cerullo G . Dissecting interlayer hole and electron transfer in transition metal dichalcogenide heterostructures via two-dimensional electronic spectroscopy. Nano Letters, 2021, 21(11): 4738–4743

[88]

Hong X , Kim J , Shi S F , Zhang Y , Jin C , Sun Y , Tongay S , Wu J , Zhang Y , Wang F . Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nature Nanotechnology, 2014, 9(9): 682–686

[89]

Tran K , Moody G , Wu F , Lu X , Choi J , Kim K , Rai A , Sanchez D A , Quan J , Singh A . . Evidence for Moiré excitons in van der waals heterostructures. Nature, 2019, 567(7746): 71–75

[90]

Liu E , Barré E , van Baren J , Wilson M , Taniguchi T , Watanabe K , Cui Y T , Gabor N M , Heinz T F , Chang Y C , Lui C H . Signatures of Moiré trions in WSe2/MoSe2 heterobilayers. Nature, 2021, 594(7861): 46–50

[91]

Rivera P , Schaibley J R , Jones A M , Ross J S , Wu S , Aivazian G , Klement P , Seyler K , Clark G , Ghimire N J . . Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nature Communications, 2015, 6(1): 6242

[92]

Baranowski M , Surrente A , Klopotowski L , Urban J M , Zhang N , Maude D K , Wiwatowski K , Mackowski S , Kung Y C , Dumcenco D . . Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der Waals heterostructure. Nano Letters, 2017, 17(10): 6360–6365

[93]

Shinokita K , Watanabe K , Taniguchi T , Matsuda K . Valley relaxation of the Moiré excitons in a WSe2/MoSe2 heterobilayer. ACS Nano, 2022, 16(10): 16862–16868

[94]

Li W , Lu X , Wu J , Srivastava A . Optical control of the valley zeeman effect through many-exciton interactions. Nature Nanotechnology, 2021, 16(2): 148–152

[95]

Alexeev E M , Catanzaro A , Skrypka O V , Nayak P K , Ahn S , Pak S , Lee J , Sohn J I , Novoselov K S , Shin H S . . Imaging of interlayer coupling in van der waals heterostructures using a bright-field optical microscope. Nano Letters, 2017, 17(9): 5342–5349

[96]

Luong D H , Lee H S , Neupane G P , Roy S , Ghimire G , Lee J H , Vu Q A , Lee Y H . Tunneling photocurrent assisted by interlayer excitons in staggered van der Waals hetero-bilayers. Advanced Materials, 2017, 29(33): 1701512

[97]

Sun Z , Ciarrocchi A , Tagarelli F , Gonzalez Marin J F , Watanabe K , Taniguchi T , Kis A . Excitonic transport driven by repulsive dipolar interaction in a van der Waals heterostructure. Nature Photonics, 2022, 16(1): 79–85

[98]

Schwartz I , Shimazaki Y , Kuhlenkamp C , Watanabe K , Taniguchi T , Kroner M , Imamoğlu A . Electrically tunable feshbach resonances in twisted bilayer semiconductors. Science, 2021, 374(6565): 336–340

[99]

Kezerashvili R Ya , Spiridonova A . Magnetoexcitons in transition metal dichalcogenides monolayers, bilayers, and van der Waals heterostructures. Physical Review Research, 2021, 3(3): 033078

[100]

Latini S , Winther K T , Olsen T , Thygesen K S . Interlayer excitons and band alignment in MoS2/hBN/WSe2 van der Waals heterostructures. Nano Letters, 2017, 17(2): 938–945

[101]

Zhou H , Zhao Y , Tao W , Li Y , Zhou Q , Zhu H . Controlling exciton and valley dynamics in two-dimensional heterostructures with atomically precise interlayer proximity. ACS Nano, 2020, 14(4): 4618–4625

[102]

Shimazaki Y , Schwartz I , Watanabe K , Taniguchi T , Kroner M , Imamoğlu A . Strongly correlated electrons and hybrid excitons in a Moiré heterostructure. Nature, 2020, 580(7804): 472–477

[103]

Ma L , Nguyen P X , Wang Z , Zeng Y , Watanabe K , Taniguchi T , MacDonald A H , Mak K F , Shan J . Strongly correlated excitonic insulator in atomic double layers. Nature, 2021, 598(7882): 585–589

[104]

Ruiz-Tijerina D A , FalʼKo V . Interlayer hybridization and Moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Physical Review. B, 2019, 99(12): 125424

[105]

Seyler K L , Rivera P , Yu H , Wilson N P , Ray E L , Mandrus D G , Yan J , Yao W , Xu X . Signatures of Moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567(7746): 66–70

[106]

Wu K , Zhong H , Guo Q , Tang J , Zhang J , Qian L , Shi Z , Zhang C , Yuan S , Zhang S . . Identification of twist-angle-dependent excitons in WS2/WSe2 heterobilayers. National Science Review, 2022, 9(6): nwab135

[107]

Marcellina E , Liu X , Hu Z , Fieramosca A , Huang Y , Du W , Liu S , Zhao J , Watanabe K , Taniguchi T . . Evidence for Moiré trions in twisted MoSe2 homobilayers. Nano Letters, 2021, 21(10): 4461–4468

[108]

Sokolowski N , Palai S , Dyksik M , Posmyk K , Baranowski M , Surrente A , Maude D , Carrascoso F , Cakiroglu O , Sanchez E . . Twist-angle dependent dehybridization of momentum-indirect excitons in MoSe2/MoS2 heterostructures. 2D Materials, 2023, 10(3): 034003

[109]

Yoon Y , Zhang Z , Qi R , Joe A Y , Sailus R , Watanabe K , Taniguchi T , Tongay S , Wang F . Charge transfer dynamics in MoSe2/hBN/WSe2 heterostructures. Nano Letters, 2022, 22(24): 10140–10146

[110]

Bernardi M , Ataca C , Palummo M , Grossman J C . Optical and electronic properties of two-dimensional layered materials. Nanophotonics, 2017, 6(2): 479–493

[111]

Zhang X , Tan Q H , Wu J B , Shi W , Tan P H . Review on the raman spectroscopy of different types of layered materials. Nanoscale, 2016, 8(12): 6435–6450

[112]

Gong Y , Lin J , Wang X , Shi G , Lei S , Lin Z , Zou X , Ye G , Vajtai R , Yakobson B I . . Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Materials, 2014, 13(12): 1135–1142

[113]

Hsu W T , Lu L S , Wu P H , Lee M H , Chen P J , Wu P Y , Chou Y C , Jeng H T , Li L J , Chu M W . . Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers. Nature Communications, 2018, 9(1): 1356

[114]

Zhang C , Chuu C P , Ren X , Li M Y , Li L J , Jin C , Chou M Y , Shih C K . Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Science Advances, 2017, 3(1): e1601459

[115]

Hong J , Hu Z , Probert M , Li K , Lv D , Yang X , Gu L , Mao N , Feng Q , Xie L . . Exploring atomic defects in molybdenum disulphide monolayers. Nature Communications, 2015, 6(1): 6293

[116]

Rhodes D , Chae S H , Ribeiro-Palau R , Hone J . Disorder in van der waals heterostructures of 2D materials. Nature Materials, 2019, 18(6): 541–549

[117]

Dean C R , Young A F , Meric I , Lee C , Wang L , Sorgenfrei S , Watanabe K , Taniguchi T , Kim P , Shepard K L . . Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology, 2010, 5(10): 722–726

[118]

Pizzocchero F , Gammelgaard L , Jessen B S , Caridad J M , Wang L , Hone J , Bøggild P , Booth T J . The hot pick-up technique for batch assembly of van der Waals heterostructures. Nature Communications, 2016, 7(1): 1–10

[119]

Kretinin A V , Cao Y , Tu J S , Yu G L , Jalil R , Novoselov K S , Haigh S J , Gholinia A , Mishchenko A , Lozada M . . Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Letters, 2014, 14(6): 3270–3276

[120]

Lui C H , Ye Z , Ji C , Chiu K C , Chou C T , Andersen T I , Means-Shively C , Anderson H , Wu J M , Kidd T . . Observation of interlayer phonon modes in van der Waals heterostructures. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(16): 165403

[121]

Liu F , Wu W , Bai Y , Chae S H , Li Q , Wang J , Hone J , Zhu X Y . Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science, 2020, 367(6480): 903–906

[122]

Huang Y , Pan Y H , Yang R , Bao L H , Meng L , Luo H L , Cai Y Q , Liu G D , Zhao W J , Zhou Z . . Universal mechanical exfoliation of large-area 2D crystals. Nature Communications, 2020, 11(1): 2453

[123]

Shim J , Bae S H , Kong W , Lee D , Qiao K , Nezich D , Park Y J , Zhao R , Sundaram S , Li X . . Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science, 2018, 362(6415): 665–670

[124]

Ciarrocchi A , Tagarelli F , Avsar A , Kis A . Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics. Nature Reviews. Materials, 2022, 7(6): 449–464

[125]

Ciarrocchi A , Unuchek D , Avsar A , Watanabe K , Taniguchi T , Kis A . Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nature Photonics, 2019, 13(2): 131–136

[126]

Ripin A , Peng R , Zhang X , Chakravarthi S , He M , Xu X , Fu K M , Cao T , Li M . Tunable phononic coupling in excitonic quantum emitters. Nature Nanotechnology, 2023, 18(6): 1020–1026

[127]

Chen Y , Liu Z , Li J , Cheng X , Ma J , Wang H , Li D . Robust interlayer coupling in two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(8): 10258–10264

[128]

Kremser M , Brotons-Gisbert M , Knörzer J , Gückelhorn J , Meyer M , Barbone M , Stier A V , Gerardot B D , Müller K , Finley J J . Discrete interactions between a few interlayer excitons trapped at a MoSe2-WSe2 heterointerface. npj 2D Materials and Applications, 2020, 4(1): 1–6

[129]

Sun X , Zhu Y , Qin H , Liu B , Tang Y , T , Rahman S , Yildirim T , Lu Y . Enhanced interactions of interlayer excitons in free-standing heterobilayers. Nature, 2022, 610(7932): 478–484

[130]

Wu F , Lovorn T , MacDonald A H . Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Physical Review. B, 2018, 97(3): 035306

[131]

Yu H , Wang Y , Tong Q , Xu X , Yao W . Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Physical Review Letters, 2015, 115(18): 187002

[132]

Alexeev E M , Ruiz-Tijerina D A , Danovich M , Hamer M J , Terry D J , Nayak P K , Ahn S , Pak S , Lee J , Sohn J I . . Resonantly hybridized excitons in Moiré superlattices in van der Waals heterostructures. Nature, 2019, 567(7746): 81–86

[133]

Zhang L , Zhang Z , Wu F , Wang D , Gogna R , Hou S , Watanabe K , Taniguchi T , Kulkarni K , Kuo T . Twist-angle dependence of Moiré excitons in WS2/MoSe2 heterobilayers. Nature Communications, 2020, 11(1): 5888

[134]

Rivera P , Seyler K L , Yu H , Schaibley J R , Yan J , Mandrus D G , Yao W , Xu X . Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science, 2016, 351(6274): 688–691

[135]

Förste J , Tepliakov N V , Kruchinin S Y , Lindlau J , Funk V , Förg M , Watanabe K , Taniguchi T , Baimuratov A S , Högele A . Exciton g-factors in monolayer and bilayer WSe2 from experiment and theory. Nature Communications, 2020, 11(1): 4539

[136]

Li Z , Förste J , Watanabe K , Taniguchi T , Urbaszek B , Baimuratov A S , Gerber I C , Högele A , Bilgin I . Stacking-dependent exciton multiplicity in WSe2 bilayers. Physical Review. B, 2022, 106(4): 045411

[137]

Li Z , Wang T , Miao S , Li Y , Lu Z , Jin C , Lian Z , Meng Y , Blei M , Taniguchi T . . Phonon-exciton interactions in WSe2 under a quantizing magnetic field. Nature Communications, 2020, 11(1): 3104

[138]

Liu E , van Baren J , Taniguchi T , Watanabe K , Chang Y C , Lui C H . Landau-quantized excitonic absorption and luminescence in a monolayer valley semiconductor. Physical Review Letters, 2020, 124(9): 097401

[139]

He M , Rivera P , Van Tuan D , Wilson N P , Yang M , Taniguchi T , Watanabe K , Yan J , Mandrus D G , Yu H . . Valley phonons and exciton complexes in a monolayer semiconductor. Nature Communications, 2020, 11(1): 618

[140]

Faria P E Junior , Fabian J . Signatures of electric field and layer separation effects on the spin-valley physics of MoSe2/WSe2 heterobilayers: from energy bands to dipolar excitons. Nanomaterials, 2023, 13(7): 1187

[141]

Smirnov D S , Holler J , Kempf M , Zipfel J , Nagler P , Ballottin M , Mitioglu A A , Chernikov A , Christianen P C M , Schueller C . . Valley-magnetophonon resonance for interlayer excitons. 2D Materials, 2022, 9(4): 045016

[142]

Nagler P , Ballottin M V , Mitioglu A A , Mooshammer F , Paradiso N , Strunk C , Huber R , Chernikov A , Christianen P C M , Schüller C . . Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nature Communications, 2017, 8(1): 1551

[143]

Wang T , Miao S , Li Z , Meng Y , Lu Z , Lian Z , Blei M , Taniguchi T , Watanabe K , Tongay S . . Giant valley-zeeman splitting from spin-singlet and spin-triplet interlayer excitons in WSe2/MoSe2 heterostructure. Nano Letters, 2020, 20(1): 694–700

[144]

Baek H , Brotons-Gisbert M , Koong Z X , Campbell A , Rambach M , Watanabe K , Taniguchi T , Gerardot B D . Highly energy-tunable quantum light from Moiré-trapped excitons. Science Advances, 2020, 6(37): eaba8526

[145]

Woźniak T , Faria P E Junior , Seifert G , Chaves A , Kunstmann J . Exciton g factors of van der Waals heterostructures from first-principles calculations. Physical Review. B, 2020, 101(23): 235408

[146]

Li W , Lu X , Dubey S , Devenica L , Srivastava A . Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nature Materials, 2020, 19(6): 624–629

[147]

Miller B , Steinhoff A , Pano B , Klein J , Jahnke F , Holleitner A , Wurstbauer U . Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Letters, 2017, 17(9): 5229–5237

[148]

Xia J , Yan J , Wang Z , He Y , Gong Y , Chen W , Sum T C , Liu Z , Ajayan P M , Shen Z . Strong coupling and pressure engineering in WSe2-MoSe2 heterobilayers. Nature Physics, 2021, 17(1): 92–98

[149]

Moon H , Grosso G , Chakraborty C , Peng C , Taniguchi T , Watanabe K , Englund D . Dynamic exciton funneling by local strain control in a monolayer semiconductor. Nano Letters, 2020, 20(9): 6791–6797

[150]

He Y , Yang Y , Zhang Z , Gong Y , Zhou W , Hu Z , Ye G , Zhang X , Bianco E , Lei S . . Strain-induced electronic structure changes in stacked van der Waals heterostructures. Nano Letters, 2016, 16(5): 3314–3320

[151]

Lu X B , Li X Q , Yang L . Modulated interlayer exciton properties in a two-dimensional Moiré crystal. Physical Review. B, 2019, 100(15): 155416

[152]

Geng W T , Wang V , Liu Y C , Ohno T , Nara J . Moiré potential, lattice corrugation, and band gap spatial variation in a twist-free MoTe2/MoS2 heterobilayer. Journal of Physical Chemistry Letters, 2020, 11(7): 2637–2646

[153]

Jin C , Regan E C , Yan A , Iqbal Bakti Utama M , Wang D , Zhao S , Qin Y , Yang S , Zheng Z , Shi S . . Observation of Moiré excitons in WSe2/WS2 heterostructure superlattices. Nature, 2019, 567(7746): 76–80

[154]

Wu B , Zheng H , Li S , Ding J , He J , Zeng Y , Chen K , Liu Z , Chen S , Pan A . . Evidence for Moiré intralayer excitons in twisted WSe2/WSe2 homobilayer superlattices. Light, Science & Applications, 2022, 11(1): 166

[155]

Li Z , Lu X , Cordovilla Leon D F , Lyu Z , Xie H , Hou J , Lu Y , Guo X , Kaczmarek A , Taniguchi T . . Interlayer exciton transport in MoSe2/WSe2 heterostructures. ACS Nano, 2021, 15(1): 1539–1547

[156]

Wang J , Shi Q , Shih E M , Zhou L , Wu W , Bai Y , Rhodes D , Barmak K , Hone J , Dean C R . . Diffusivity reveals three distinct phases of interlayer excitons in MoSe2/WSe2 heterobilayers. Physical Review Letters, 2021, 126(10): 106804

[157]

Zhang L , Wu F , Hou S , Zhang Z , Chou Y H , Watanabe K , Taniguchi T , Forrest S R , Deng H . Van der Waals heterostructure polaritons with Moiré-induced nonlinearity. Nature, 2021, 591(7848): 61–65

[158]

Tong Q , Yu H , Zhu Q , Wang Y , Xu X , Yao W . Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nature Physics, 2017, 13(4): 356–362

[159]

Zhao S , Li Z , Huang X , Rupp A , Göser J , Vovk I A , Kruchinin S Y , Watanabe K , Taniguchi T , Bilgin I . . Excitons in mesoscopically reconstructed Moiré heterostructures. Nature Nanotechnology, 2023, 18(6): 572–579

[160]

Wilson N P , Yao W , Shan J , Xu X . Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature, 2021, 599(7885): 383–392

[161]

Chen D , Lian Z , Huang X , Su Y , Rashetnia M , Yan L , Blei M , Taniguchi T , Watanabe K , Tongay S . . Tuning Moiré excitons and correlated electronic states through layer degree of freedom. Nature Communications, 2022, 13(1): 4810

[162]

Sung J , Zhou Y , Scuri G , Zólyomi V , Andersen T I , Yoo H , Wild D S , Joe A Y , Gelly R J , Heo H . . Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nature Nanotechnology, 2020, 15(9): 750–754

[163]

Yu H , Yao W . Luminescence anomaly of dipolar valley excitons in homobilayer semiconductor Moiré superlattices. Physical Review X, 2021, 11(2): 021042

[164]

Brem S , Lin K Q , Gillen R , Bauer J M , Maultzsch J , Lupton J M , Malic E . Hybridized intervalley Moiré excitons and flat bands in twisted WSe2 bilayers. Nanoscale, 2020, 12(20): 11088–11094

[165]

Tang Y , Li L , Li T , Xu Y , Liu S , Barmak K , Watanabe K , Taniguchi T , MacDonald A H , Shan J . . Simulation of hubbard model physics in WSe2/WS2 Moiré superlattices. Nature, 2020, 579(7799): 353–358

[166]

Paik E Y , Zhang L , Burg G W , Gogna R , Tutuc E , Deng H . Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature, 2019, 576(7785): 80–84

[167]

Liu Y , Fang H , Rasmita A , Zhou Y , Li J , Yu T , Xiong Q , Zheludev N , Liu J , Gao W . Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Science Advances, 2019, 5(4): eaav4506

[168]

LinQFangHLiuYZhangYFischerMLiJHagelJBremSMalicEStengerN, . A room temperature Moiré interlayer exciton laser. 2023, arXiv: 2302.01266

[169]

Unuchek D , Ciarrocchi A , Avsar A , Watanabe K , Taniguchi T , Kis A . Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature, 2018, 560(7718): 340–344

[170]

Peng R , Ripin A , Ye Y , Zhu J , Wu C , Lee S , Li H , Taniguchi T , Watanabe K , Cao T . . Long-range transport of 2D excitons with acoustic waves. Nature Communications, 2022, 13(1): 1334

[171]

Long M , Liu E , Wang P , Gao A , Xia H , Luo W , Wang B , Zeng J , Fu Y , Xu K . . Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Letters, 2016, 16(4): 2254–2259

[172]

Lukman S , Ding L , Xu L , Tao Y , Riis-Jensen A C , Zhang G , Wu Q Y S , Yang M , Luo S , Hsu C . . High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nature Nanotechnology, 2020, 15(8): 675–682

[173]

Yan J , Yang X , Liu X , Du C , Qin F , Yang M , Zheng Z , Li J . Van der Waals heterostructures with built-in mie resonances for polarization-sensitive photodetection. Advanced Science, 2023, 10(9): 2207022

[174]

Schaibley J R , Yu H Y , Clark G , Rivera P , Ross J S , Seyler K L , Yao W , Xu X D . Valleytronics in 2D materials. Nature Reviews. Materials, 2016, 1(11): 16055

[175]

Lee J , Mak K F , Shan J . Electrical control of the valley hall effect in bilayer MoS2 transistors. Nature Nanotechnology, 2016, 11(5): 421–425

[176]

Ubrig N , Jo S , Philippi M , Costanzo D , Berger H , Kuzmenko A B , Morpurgo A F . Microscopic origin of the valley hall effect in transition metal dichalcogenides revealed by wavelength-dependent mapping. Nano Letters, 2017, 17(9): 5719–5725

[177]

Huang Z , Liu Y , Dini K , Tan Q , Liu Z , Fang H , Liu J , Liew T , Gao W . Robust room temperature valley hall effect of interlayer excitons. Nano Letters, 2020, 20(2): 1345–1351

[178]

Li L , Shao L , Liu X , Gao A , Wang H , Zheng B , Hou G , Shehzad K , Yu L , Miao F , Shi Y , Xu Y , Wang X . Room-temperature valleytronic transistor. Nature Nanotechnology, 2020, 15(9): 743–749

[179]

Jiang C , Rasmita A , Ma H , Tan Q , Zhang Z , Huang Z , Lai S , Wang N , Liu S , Liu X . . A room-temperature gate-tunable bipolar valley hall effect in molybdenum disulfide/tungsten diselenide heterostructures. Nature Electronics, 2022, 5(1): 23–27

[180]

Zhang L , Gogna R , Burg G W , Horng J , Paik E , Chou Y H , Kim K , Tutuc E , Deng H . Highly valley-polarized singlet and triplet interlayer excitons in van der Waals heterostructure. Physical Review. B, 2019, 100(4): 041402

[181]

Ye T , Li Y , Li J , Shen H , Ren J , Ning C Z , Li D . Nonvolatile electrical switching of optical and valleytronic properties of interlayer excitons. Light, Science & Applications, 2022, 11(1): 23

[182]

Hu Y , Wen X , Lin J , Yao W , Chen Y , Li J , Chen S , Wang L , Xu W , Li D . All-optical valley polarization switch via controlling spin-triplet and spin-singlet interlayer exciton emission in WS2/WSe2 heterostructure. Nano Letters, 2023, 23(14): 6581–6587

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (8327KB)

5083

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/