RESEARCH ARTICLE

Cobalt-nanoparticle catalysts derived from zeolitic imidazolate framework@MXene composites for efficient oxidative self-coupling of benzylamines

  • Jie Chen ,
  • Mingyuan Jian ,
  • Deqiong Xie ,
  • Kecan Dou ,
  • Deli Chen ,
  • Weidong Zhu ,
  • Fumin Zhang
Expand
  • Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
weidongzhu@zjnu.cn
zhangfumin@zjnu.cn

Received date: 14 Sep 2023

Accepted date: 19 Oct 2023

Copyright

2023 Higher Education Press

Abstract

In this study, we synthesize a catalyst comprising cobalt nanoparticles supported on MXene by pyrolyzing a composite in a N2 environment. Specifically, the composite comprises a bimetallic Zn/Co zeolitic imidazole framework grown in situ on the outer surface of MXene. The catalytic efficiency of the catalyst is tested for the self-coupling of 4-methoxybenzylamine to produce value-added imine, where atmospheric oxygen (1 atm) is used as the oxidant. Based on the results, the catalyst displayed impressive catalytic activity, achieving 95.4% yield of the desired imine at 383 K for 8 h. Furthermore, the catalyst showed recyclability and tolerance toward benzylamine substrates with various functional groups. The outstanding performance of the catalyst is primarily attributed to the synergetic catalytic effect between the cobalt nanoparticles and MXene support, while also benefiting from the three-dimensional porous structure. Additionally, a preliminary investigation of potential reaction mechanisms is conducted.

Cite this article

Jie Chen , Mingyuan Jian , Deqiong Xie , Kecan Dou , Deli Chen , Weidong Zhu , Fumin Zhang . Cobalt-nanoparticle catalysts derived from zeolitic imidazolate framework@MXene composites for efficient oxidative self-coupling of benzylamines[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(1) : 9 . DOI: 10.1007/s11705-023-2378-9

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

We thank the financial support from the National Natural Science Foundation of China (Grant No. 21576243).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-023-2378-9 and is accessible for authorized users.
1
Nugent T C , El-Shazly M . Chiral amine synthesis–recent developments and trends for enamide reduction, reductive amination, and imine reduction. Advanced Synthesis & Catalysis, 2010, 352(5): 753–819

DOI

2
Zhai Y , Chu M , Xie C , Huang F , Zhang C , Zhang Y , Liu H , Wang H , Gao Y . Synergetic effect of B and O dopants for aerobic oxidative coupling of amines to imines. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 17410–17418

DOI

3
Chakraborti A K , Bhagat S , Rudrawar S . Magnesium perchlorate as an efficient catalyst for the synthesis of imines and phenylhydrazones. Tetrahedron Letters, 2004, 45(41): 7641–7644

DOI

4
Zhang L , Wang W , Wang A , Cui Y , Yang X , Huang Y , Liu X , Liu W , Son J Y , Oji H . . Aerobic oxidative coupling of alcohols and amines over Au-Pd/resin in water: Au/Pd molar ratios switch the reaction pathways to amides or imines. Green Chemistry, 2013, 15(10): 2680–2684

DOI

5
Zhang E , Tian H , Xu S , Yu X , Xu Q . Iron-catalyzed direct synthesis of imines from amines or alcohols and amines via aerobic oxidative reactions under air. Organic Letters, 2013, 15(11): 2704–2707

DOI

6
Naeimi H , Salimi F , Rabiei K . Mild and convenient one pot synthesis of Schiff bases in the presence of P2O5/Al2O3 as new catalyst under solvent-free conditions. Journal of Molecular Catalysis A Chemical, 2006, 260(1-2): 100–104

DOI

7
Patil R D , Adimurthy S . Copper-catalyzed aerobic oxidation of amines to imines under neat conditions with low catalyst loading. Advanced Synthesis & Catalysis, 2011, 353(10): 1695–1700

DOI

8
Furukawa S , Ohno Y , Shishido T , Teramura K , Tanaka T . Selective amine oxidation using Nb2O5 photocatalyst and O2. ACS Catalysis, 2011, 1(10): 1150–1153

DOI

9
Liu H , Guo Z , Lv H , Liu X , Che Y , Mei Y , Bai R , Chi Y , Xing H . Visible-light-driven self-coupling and oxidative dehydrogenation of amines to imines via a Mn(II)-based coordination polymer. Inorganic Chemistry Frontiers, 2020, 7(4): 1016–1025

DOI

10
Dong C P , Uematsu A , Kumazawa S , Yamamoto Y , Kodama S , Nomoto A , Ueshima M , Ogawa A . 2,4,6-Trihydroxybenzoic acid-catalyzed oxidative Ugi reactions with molecular oxygen via homo- and cross-coupling of amines. Journal of Organic Chemistry, 2019, 84(18): 11562–11571

DOI

11
Yu J , Liu Q , Qiao W , Lv D , Li Y , Liu C , Yu Y , Li Y , Niemantsverdriet H , Zhang B . . Catalytic role of metal nanoparticles in selectivity control over photodehydrogenative coupling of primary amines to imines and secondary amines. ACS Catalysis, 2021, 11(11): 6656–6661

DOI

12
Bai P , Tong X , Gao Y , Guo P . Oxygen-free water-promoted selective photocatalytic oxidative coupling of amines. Catalysis Science & Technology, 2019, 9(20): 5803–5811

DOI

13
Yang J , Mou C Y . Ordered mesoporous Au/TiO2 nanospheres for solvent-free visible-light-driven plasmonic oxidative coupling reactions of amines. Applied Catalysis B: Environmental, 2018, 231: 283–291

DOI

14
Guðmundsson A , Manna S , Bäckvall J E . Iron(II)-catalyzed aerobic biomimetic oxidation of amines using a hybrid hydroquinone/cobalt catalyst as electron transfer mediator. Angewandte Chemie International Edition, 2021, 60(21): 11819–11823

DOI

15
Fu Y , Zheng M , Li Q , Zhang L , Wang S , Kondratiev V V , Jiang B . Interfacial engineering by creating Cu-based ternary heterostructures on C3N4 tubes towards enhanced photocatalytic oxidative coupling of benzylamines. RSC Advances, 2020, 10(47): 28059–28065

DOI

16
Bag J , Barman S , Pal K . Metal ion (NiII vs CoII)-mediated unusual amine-imine interconversion in conjugated amine-ene-imine ligand: synthesis, structure, and characterization. Inorganic Chemistry, 2020, 59(3): 1863–1870

DOI

17
Hazra S , Pilania P , Deb M , Kushawaha A K , Elias A J . Aerobic oxidation of primary amines to imines in water using a cobalt complex as recyclable catalyst under mild conditions. Chemistry, 2018, 24(59): 15766–15771

DOI

18
Zhang C , Zhao P , Zhang Z , Zhang J , Yang P , Gao P , Gao J , Liu D . Co–N–C supported on SiO2: a facile, efficient catalyst for aerobic oxidation of amines to imines. RSC Advances, 2017, 7(75): 47366–47372

DOI

19
Jian Y , Qu D , Guo L , Zhu Y , Su C , Feng H , Zhang G , Zhang J , Wu W , Yao M S . The prior rules of designing Ti3C2Tx MXene-based gas sensors. Frontiers of Chemical Science and Engineering, 2021, 15(3): 505–517

DOI

20
Zhang J F , Cao H Y , Wang H B . Research progress of novel two-dimensional material MXene. Journal of Inorganic Materials, 2017, 32(6): 561–570

DOI

21
Rasheed T . MXenes as an emerging class of two-dimensional materials for advanced energy storage devices. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(9): 4558–4584

DOI

22
Bharali L , Kalita J , Sankar Dhar S . Several fundamental aspects of MXene: synthesis and their applications. ChemistrySelect, 2023, 8(30): e202301486

DOI

23
Ustad R E , Kundale S S , Rokade K A , Patil S L , Chavan V D , Kadam K D , Patil H S , Patil S P , Kamat R K , Kim D K . . Recent progress in energy, environment, and electronic applications of MXene nanomaterials. Nanoscale, 2023, 15(23): 9891–9926

DOI

24
Dai Y , Fang H , Lu Z , Yang Z , Wei Y . Toughening of vinyl ester resins by two-dimensional MXene nanosheets. Frontiers of Chemical Science and Engineering, 2022, 16(11): 1651–1658

DOI

25
Sherryna A , Tahir M . Role of surface morphology and terminating groups in titanium carbide MXenes (Ti3C2Tx) cocatalysts with engineering aspects for modulating solar hydrogen production: a critical review. Chemical Engineering Journal, 2022, 433: 134573

DOI

26
Nguyen V H , Nguyen B S , Hu C , Nguyen C C , Nguyen D L T , Nguyen Dinh M T , Vo D N , Trinh Q T , Shokouhimehr M , Hasani A . . Novel architecture titanium carbide (Ti3C2Tx) MXene cocatalysts toward photocatalytic hydrogen production: a mini-review. Nanomaterials (Basel, Switzerland), 2020, 10(4): 602

DOI

27
Liu A , Liang X , Ren X , Guan W , Gao M , Yang Y , Yang Q , Gao L , Li Y , Ma T . Recent progress in MXene-based materials: potential high-performance electrocatalysts. Advanced Functional Materials, 2020, 30(38): 2003437

DOI

28
Tang R , Xiong S , Gong D , Deng Y , Wang Y , Su L , Ding C , Yang L , Liao C . Ti3C2 2D MXene: recent progress and perspectives in photocatalysis. ACS Applied Materials & Interfaces, 2020, 12(51): 56663–56680

DOI

29
Huang W X , Li Z P , Li D D , Hu Z H , Wu C , Lv K L , Li Q . Ti3C2 MXene: recent progress in its fundamentals, synthesis, and applications. Rare Metals, 2022, 41(10): 3268–3300

DOI

30
Ali Khan A , Tahir M , Khan N . Recent developments in titanium carbide (Ti3C2)-based layered double hydroxide (LDH) nanocomposites for energy storage and conversion applications: a minireview and perspectives. Energy & Fuels, 2022, 36(17): 9821–9843

DOI

31
Chen X , Shi Z , Tian Y , Lin P , Wu D , Li X , Dong B , Xu W , Fang X . Two-dimensional Ti3C2 MXene-based nanostructures for emerging optoelectronic applications. Materials Horizons, 2021, 8(11): 2929–2963

DOI

32
Shi L , Wu C , Wang Y , Dou Y , Yuan D , Li H , Huang H , Zhang Y , Gates I D , Sun X . . Rational design of coordination bond connected metal organic frameworks/MXene hybrids for efficient solar water splitting. Advanced Functional Materials, 2022, 32(30): 2202571

DOI

33
Zhang Y , Zhao Z , Luo C , Wu X , Chen W . Toward understanded the electrochemical capacitance mechanism of MXene by intercalation of inorganic ions and organic macromolecular ions. Applied Surface Science, 2022, 578: 152030

DOI

34
Bian R , Lin R , Wang G , Lu G , Zhi W , Xiang S , Wang T , Clegg P S , Cai D , Huang W . 3D assembly of Ti3C2-MXene directed by water/oil interfaces. Nanoscale, 2018, 10(8): 3621–3625

DOI

35
Wen Y , Rufford T E , Chen X , Li N , Lyu M , Dai L , Wang L . Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy, 2017, 38: 368–376

DOI

36
Ran J , Gao G , Li F T , Ma T Y , Du A , Qiao S Z . Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nature Communications, 2017, 8(1): 13907

DOI

37
Overbury S H , Kolesnikov A I , Brown G M , Zhang Z , Nair G S , Sacci R L , Lotfi R , van Duin A C T , Naguib M . Complexity of intercalation in MXenes: destabilization of urea by two-dimensional titanium carbide. Journal of the American Chemical Society, 2018, 140(32): 10305–10314

DOI

38
Liu C , Bai Y , Li W , Yang F , Zhang G , Pang H . In situ growth of three-dimensional MXene/metal-organic framework composites for high-performance supercapacitors. Angewandte Chemie International Edition, 2022, 61(11): e202116282

DOI

39
Jiao L , Wan G , Zhang R , Zhou H , Yu S H , Jiang H L . From metal-organic frameworks to single–atom Fe implanted N-doped porous carbons: efficient oxygen reduction in both alkaline and acidic media. Angewandte Chemie International Edition, 2018, 57(28): 8525–8529

DOI

40
Ji D , Fan L , Li L , Peng S , Yu D , Song J , Ramakrishna S , Guo S . Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries. Advanced Materials, 2019, 31(16): 1808267

DOI

41
Wu Y , Qiu X , Liang F , Zhang Q , Koo A , Dai Y , Lei Y , Sun X . A metal-organic framework-derived bifunctional catalyst for hybrid sodium-air batteries. Applied Catalysis B: Environmental, 2019, 241: 407–414

DOI

42
Wang Y , Yuan H , Liu F , Hu T . Metal alkoxide-derived Co@NC/NCNS as a highly efficient bifunctional oxygen electrocatalyst. Chemical Communications, 2021, 57(24): 2994–2997

DOI

43
Al-Hmoud L , Jones C W . Reaction pathways over copper and cerium oxide catalysts for direct synthesis of imines from amines under aerobic conditions. Journal of Catalysis, 2013, 301: 116–124

DOI

44
Xu Q , Feng B , Ye C , Fu Y , Chen D L , Zhang F , Zhang J , Zhu W . Atomically dispersed vanadium sites anchored on N-doped porous carbon for the efficient oxidative coupling of amines to imines. ACS Applied Materials & Interfaces, 2021, 13(13): 15168–15177

DOI

45
Shubhashish S , Khanna H S , Achola L A , Amin A S , Willis W S , Suib S L . Selective oxidative coupling of amines using mesoporous MoOx catalysts. ACS Applied Nano Materials, 2021, 4(2): 2086–2097

DOI

46
Chen J , Jian M , Zhuang L , Lin W , Fu Y , Chen D L , Zhu W , Chen G , Zhang F . Enhancing the efficiency of benzylamine oxidative coupling over N-doped porous carbon-supported CeO2 and ZrO2 nanoparticles. New Journal of Chemistry, 2023, 47(38): 17790–17798

DOI

47
Patil R D , Adimurthy S . Copper(0)-catalyzed aerobic oxidative synthesis of imines from amines under solvent-free conditions. RSC Advances, 2012, 2(12): 5119–5122

DOI

48
Lang X , Ji H , Chen C , Ma W , Zhao J . Selective formation of imines by aerobic photocatalytic oxidation of amines on TiO2. Angewandte Chemie International Edition, 2011, 50(17): 3934–3937

DOI

Outlines

/