Cobalt-nanoparticle catalysts derived from zeolitic imidazolate framework@MXene composites for efficient oxidative self-coupling of benzylamines
Received date: 14 Sep 2023
Accepted date: 19 Oct 2023
Copyright
In this study, we synthesize a catalyst comprising cobalt nanoparticles supported on MXene by pyrolyzing a composite in a N2 environment. Specifically, the composite comprises a bimetallic Zn/Co zeolitic imidazole framework grown in situ on the outer surface of MXene. The catalytic efficiency of the catalyst is tested for the self-coupling of 4-methoxybenzylamine to produce value-added imine, where atmospheric oxygen (1 atm) is used as the oxidant. Based on the results, the catalyst displayed impressive catalytic activity, achieving 95.4% yield of the desired imine at 383 K for 8 h. Furthermore, the catalyst showed recyclability and tolerance toward benzylamine substrates with various functional groups. The outstanding performance of the catalyst is primarily attributed to the synergetic catalytic effect between the cobalt nanoparticles and MXene support, while also benefiting from the three-dimensional porous structure. Additionally, a preliminary investigation of potential reaction mechanisms is conducted.
Key words: MXene; sacrificial template; oxidative self-coupling; Co nanoparticles; imine
Jie Chen , Mingyuan Jian , Deqiong Xie , Kecan Dou , Deli Chen , Weidong Zhu , Fumin Zhang . Cobalt-nanoparticle catalysts derived from zeolitic imidazolate framework@MXene composites for efficient oxidative self-coupling of benzylamines[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(1) : 9 . DOI: 10.1007/s11705-023-2378-9
1 |
Nugent T C , El-Shazly M . Chiral amine synthesis–recent developments and trends for enamide reduction, reductive amination, and imine reduction. Advanced Synthesis & Catalysis, 2010, 352(5): 753–819
|
2 |
Zhai Y , Chu M , Xie C , Huang F , Zhang C , Zhang Y , Liu H , Wang H , Gao Y . Synergetic effect of B and O dopants for aerobic oxidative coupling of amines to imines. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 17410–17418
|
3 |
Chakraborti A K , Bhagat S , Rudrawar S . Magnesium perchlorate as an efficient catalyst for the synthesis of imines and phenylhydrazones. Tetrahedron Letters, 2004, 45(41): 7641–7644
|
4 |
Zhang L , Wang W , Wang A , Cui Y , Yang X , Huang Y , Liu X , Liu W , Son J Y , Oji H .
|
5 |
Zhang E , Tian H , Xu S , Yu X , Xu Q . Iron-catalyzed direct synthesis of imines from amines or alcohols and amines via aerobic oxidative reactions under air. Organic Letters, 2013, 15(11): 2704–2707
|
6 |
Naeimi H , Salimi F , Rabiei K . Mild and convenient one pot synthesis of Schiff bases in the presence of P2O5/Al2O3 as new catalyst under solvent-free conditions. Journal of Molecular Catalysis A Chemical, 2006, 260(1-2): 100–104
|
7 |
Patil R D , Adimurthy S . Copper-catalyzed aerobic oxidation of amines to imines under neat conditions with low catalyst loading. Advanced Synthesis & Catalysis, 2011, 353(10): 1695–1700
|
8 |
Furukawa S , Ohno Y , Shishido T , Teramura K , Tanaka T . Selective amine oxidation using Nb2O5 photocatalyst and O2. ACS Catalysis, 2011, 1(10): 1150–1153
|
9 |
Liu H , Guo Z , Lv H , Liu X , Che Y , Mei Y , Bai R , Chi Y , Xing H . Visible-light-driven self-coupling and oxidative dehydrogenation of amines to imines via a Mn(II)-based coordination polymer. Inorganic Chemistry Frontiers, 2020, 7(4): 1016–1025
|
10 |
Dong C P , Uematsu A , Kumazawa S , Yamamoto Y , Kodama S , Nomoto A , Ueshima M , Ogawa A . 2,4,6-Trihydroxybenzoic acid-catalyzed oxidative Ugi reactions with molecular oxygen via homo- and cross-coupling of amines. Journal of Organic Chemistry, 2019, 84(18): 11562–11571
|
11 |
Yu J , Liu Q , Qiao W , Lv D , Li Y , Liu C , Yu Y , Li Y , Niemantsverdriet H , Zhang B .
|
12 |
Bai P , Tong X , Gao Y , Guo P . Oxygen-free water-promoted selective photocatalytic oxidative coupling of amines. Catalysis Science & Technology, 2019, 9(20): 5803–5811
|
13 |
Yang J , Mou C Y . Ordered mesoporous Au/TiO2 nanospheres for solvent-free visible-light-driven plasmonic oxidative coupling reactions of amines. Applied Catalysis B: Environmental, 2018, 231: 283–291
|
14 |
Guðmundsson A , Manna S , Bäckvall J E . Iron(II)-catalyzed aerobic biomimetic oxidation of amines using a hybrid hydroquinone/cobalt catalyst as electron transfer mediator. Angewandte Chemie International Edition, 2021, 60(21): 11819–11823
|
15 |
Fu Y , Zheng M , Li Q , Zhang L , Wang S , Kondratiev V V , Jiang B . Interfacial engineering by creating Cu-based ternary heterostructures on C3N4 tubes towards enhanced photocatalytic oxidative coupling of benzylamines. RSC Advances, 2020, 10(47): 28059–28065
|
16 |
Bag J , Barman S , Pal K . Metal ion (NiII vs CoII)-mediated unusual amine-imine interconversion in conjugated amine-ene-imine ligand: synthesis, structure, and characterization. Inorganic Chemistry, 2020, 59(3): 1863–1870
|
17 |
Hazra S , Pilania P , Deb M , Kushawaha A K , Elias A J . Aerobic oxidation of primary amines to imines in water using a cobalt complex as recyclable catalyst under mild conditions. Chemistry, 2018, 24(59): 15766–15771
|
18 |
Zhang C , Zhao P , Zhang Z , Zhang J , Yang P , Gao P , Gao J , Liu D . Co–N–C supported on SiO2: a facile, efficient catalyst for aerobic oxidation of amines to imines. RSC Advances, 2017, 7(75): 47366–47372
|
19 |
Jian Y , Qu D , Guo L , Zhu Y , Su C , Feng H , Zhang G , Zhang J , Wu W , Yao M S . The prior rules of designing Ti3C2Tx MXene-based gas sensors. Frontiers of Chemical Science and Engineering, 2021, 15(3): 505–517
|
20 |
Zhang J F , Cao H Y , Wang H B . Research progress of novel two-dimensional material MXene. Journal of Inorganic Materials, 2017, 32(6): 561–570
|
21 |
Rasheed T . MXenes as an emerging class of two-dimensional materials for advanced energy storage devices. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(9): 4558–4584
|
22 |
Bharali L , Kalita J , Sankar Dhar S . Several fundamental aspects of MXene: synthesis and their applications. ChemistrySelect, 2023, 8(30): e202301486
|
23 |
Ustad R E , Kundale S S , Rokade K A , Patil S L , Chavan V D , Kadam K D , Patil H S , Patil S P , Kamat R K , Kim D K .
|
24 |
Dai Y , Fang H , Lu Z , Yang Z , Wei Y . Toughening of vinyl ester resins by two-dimensional MXene nanosheets. Frontiers of Chemical Science and Engineering, 2022, 16(11): 1651–1658
|
25 |
Sherryna A , Tahir M . Role of surface morphology and terminating groups in titanium carbide MXenes (Ti3C2Tx) cocatalysts with engineering aspects for modulating solar hydrogen production: a critical review. Chemical Engineering Journal, 2022, 433: 134573
|
26 |
Nguyen V H , Nguyen B S , Hu C , Nguyen C C , Nguyen D L T , Nguyen Dinh M T , Vo D N , Trinh Q T , Shokouhimehr M , Hasani A .
|
27 |
Liu A , Liang X , Ren X , Guan W , Gao M , Yang Y , Yang Q , Gao L , Li Y , Ma T . Recent progress in MXene-based materials: potential high-performance electrocatalysts. Advanced Functional Materials, 2020, 30(38): 2003437
|
28 |
Tang R , Xiong S , Gong D , Deng Y , Wang Y , Su L , Ding C , Yang L , Liao C . Ti3C2 2D MXene: recent progress and perspectives in photocatalysis. ACS Applied Materials & Interfaces, 2020, 12(51): 56663–56680
|
29 |
Huang W X , Li Z P , Li D D , Hu Z H , Wu C , Lv K L , Li Q . Ti3C2 MXene: recent progress in its fundamentals, synthesis, and applications. Rare Metals, 2022, 41(10): 3268–3300
|
30 |
Ali Khan A , Tahir M , Khan N . Recent developments in titanium carbide (Ti3C2)-based layered double hydroxide (LDH) nanocomposites for energy storage and conversion applications: a minireview and perspectives. Energy & Fuels, 2022, 36(17): 9821–9843
|
31 |
Chen X , Shi Z , Tian Y , Lin P , Wu D , Li X , Dong B , Xu W , Fang X . Two-dimensional Ti3C2 MXene-based nanostructures for emerging optoelectronic applications. Materials Horizons, 2021, 8(11): 2929–2963
|
32 |
Shi L , Wu C , Wang Y , Dou Y , Yuan D , Li H , Huang H , Zhang Y , Gates I D , Sun X .
|
33 |
Zhang Y , Zhao Z , Luo C , Wu X , Chen W . Toward understanded the electrochemical capacitance mechanism of MXene by intercalation of inorganic ions and organic macromolecular ions. Applied Surface Science, 2022, 578: 152030
|
34 |
Bian R , Lin R , Wang G , Lu G , Zhi W , Xiang S , Wang T , Clegg P S , Cai D , Huang W . 3D assembly of Ti3C2-MXene directed by water/oil interfaces. Nanoscale, 2018, 10(8): 3621–3625
|
35 |
Wen Y , Rufford T E , Chen X , Li N , Lyu M , Dai L , Wang L . Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy, 2017, 38: 368–376
|
36 |
Ran J , Gao G , Li F T , Ma T Y , Du A , Qiao S Z . Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nature Communications, 2017, 8(1): 13907
|
37 |
Overbury S H , Kolesnikov A I , Brown G M , Zhang Z , Nair G S , Sacci R L , Lotfi R , van Duin A C T , Naguib M . Complexity of intercalation in MXenes: destabilization of urea by two-dimensional titanium carbide. Journal of the American Chemical Society, 2018, 140(32): 10305–10314
|
38 |
Liu C , Bai Y , Li W , Yang F , Zhang G , Pang H . In situ growth of three-dimensional MXene/metal-organic framework composites for high-performance supercapacitors. Angewandte Chemie International Edition, 2022, 61(11): e202116282
|
39 |
Jiao L , Wan G , Zhang R , Zhou H , Yu S H , Jiang H L . From metal-organic frameworks to single–atom Fe implanted N-doped porous carbons: efficient oxygen reduction in both alkaline and acidic media. Angewandte Chemie International Edition, 2018, 57(28): 8525–8529
|
40 |
Ji D , Fan L , Li L , Peng S , Yu D , Song J , Ramakrishna S , Guo S . Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries. Advanced Materials, 2019, 31(16): 1808267
|
41 |
Wu Y , Qiu X , Liang F , Zhang Q , Koo A , Dai Y , Lei Y , Sun X . A metal-organic framework-derived bifunctional catalyst for hybrid sodium-air batteries. Applied Catalysis B: Environmental, 2019, 241: 407–414
|
42 |
Wang Y , Yuan H , Liu F , Hu T . Metal alkoxide-derived Co@NC/NCNS as a highly efficient bifunctional oxygen electrocatalyst. Chemical Communications, 2021, 57(24): 2994–2997
|
43 |
Al-Hmoud L , Jones C W . Reaction pathways over copper and cerium oxide catalysts for direct synthesis of imines from amines under aerobic conditions. Journal of Catalysis, 2013, 301: 116–124
|
44 |
Xu Q , Feng B , Ye C , Fu Y , Chen D L , Zhang F , Zhang J , Zhu W . Atomically dispersed vanadium sites anchored on N-doped porous carbon for the efficient oxidative coupling of amines to imines. ACS Applied Materials & Interfaces, 2021, 13(13): 15168–15177
|
45 |
Shubhashish S , Khanna H S , Achola L A , Amin A S , Willis W S , Suib S L . Selective oxidative coupling of amines using mesoporous MoOx catalysts. ACS Applied Nano Materials, 2021, 4(2): 2086–2097
|
46 |
Chen J , Jian M , Zhuang L , Lin W , Fu Y , Chen D L , Zhu W , Chen G , Zhang F . Enhancing the efficiency of benzylamine oxidative coupling over N-doped porous carbon-supported CeO2 and ZrO2 nanoparticles. New Journal of Chemistry, 2023, 47(38): 17790–17798
|
47 |
Patil R D , Adimurthy S . Copper(0)-catalyzed aerobic oxidative synthesis of imines from amines under solvent-free conditions. RSC Advances, 2012, 2(12): 5119–5122
|
48 |
Lang X , Ji H , Chen C , Ma W , Zhao J . Selective formation of imines by aerobic photocatalytic oxidation of amines on TiO2. Angewandte Chemie International Edition, 2011, 50(17): 3934–3937
|
/
〈 | 〉 |