Cobalt-nanoparticle catalysts derived from zeolitic imidazolate framework@MXene composites for efficient oxidative self-coupling of benzylamines

Jie Chen, Mingyuan Jian, Deqiong Xie, Kecan Dou, Deli Chen, Weidong Zhu, Fumin Zhang

PDF(7095 KB)
PDF(7095 KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (1) : 9. DOI: 10.1007/s11705-023-2378-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Cobalt-nanoparticle catalysts derived from zeolitic imidazolate framework@MXene composites for efficient oxidative self-coupling of benzylamines

Author information +
History +

Abstract

In this study, we synthesize a catalyst comprising cobalt nanoparticles supported on MXene by pyrolyzing a composite in a N2 environment. Specifically, the composite comprises a bimetallic Zn/Co zeolitic imidazole framework grown in situ on the outer surface of MXene. The catalytic efficiency of the catalyst is tested for the self-coupling of 4-methoxybenzylamine to produce value-added imine, where atmospheric oxygen (1 atm) is used as the oxidant. Based on the results, the catalyst displayed impressive catalytic activity, achieving 95.4% yield of the desired imine at 383 K for 8 h. Furthermore, the catalyst showed recyclability and tolerance toward benzylamine substrates with various functional groups. The outstanding performance of the catalyst is primarily attributed to the synergetic catalytic effect between the cobalt nanoparticles and MXene support, while also benefiting from the three-dimensional porous structure. Additionally, a preliminary investigation of potential reaction mechanisms is conducted.

Graphical abstract

Keywords

MXene / sacrificial template / oxidative self-coupling / Co nanoparticles / imine

Cite this article

Download citation ▾
Jie Chen, Mingyuan Jian, Deqiong Xie, Kecan Dou, Deli Chen, Weidong Zhu, Fumin Zhang. Cobalt-nanoparticle catalysts derived from zeolitic imidazolate framework@MXene composites for efficient oxidative self-coupling of benzylamines. Front. Chem. Sci. Eng., 2024, 18(1): 9 https://doi.org/10.1007/s11705-023-2378-9

References

[1]
Nugent T C , El-Shazly M . Chiral amine synthesis–recent developments and trends for enamide reduction, reductive amination, and imine reduction. Advanced Synthesis & Catalysis, 2010, 352(5): 753–819
CrossRef Google scholar
[2]
Zhai Y , Chu M , Xie C , Huang F , Zhang C , Zhang Y , Liu H , Wang H , Gao Y . Synergetic effect of B and O dopants for aerobic oxidative coupling of amines to imines. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 17410–17418
CrossRef Google scholar
[3]
Chakraborti A K , Bhagat S , Rudrawar S . Magnesium perchlorate as an efficient catalyst for the synthesis of imines and phenylhydrazones. Tetrahedron Letters, 2004, 45(41): 7641–7644
CrossRef Google scholar
[4]
Zhang L , Wang W , Wang A , Cui Y , Yang X , Huang Y , Liu X , Liu W , Son J Y , Oji H . . Aerobic oxidative coupling of alcohols and amines over Au-Pd/resin in water: Au/Pd molar ratios switch the reaction pathways to amides or imines. Green Chemistry, 2013, 15(10): 2680–2684
CrossRef Google scholar
[5]
Zhang E , Tian H , Xu S , Yu X , Xu Q . Iron-catalyzed direct synthesis of imines from amines or alcohols and amines via aerobic oxidative reactions under air. Organic Letters, 2013, 15(11): 2704–2707
CrossRef Google scholar
[6]
Naeimi H , Salimi F , Rabiei K . Mild and convenient one pot synthesis of Schiff bases in the presence of P2O5/Al2O3 as new catalyst under solvent-free conditions. Journal of Molecular Catalysis A Chemical, 2006, 260(1-2): 100–104
CrossRef Google scholar
[7]
Patil R D , Adimurthy S . Copper-catalyzed aerobic oxidation of amines to imines under neat conditions with low catalyst loading. Advanced Synthesis & Catalysis, 2011, 353(10): 1695–1700
CrossRef Google scholar
[8]
Furukawa S , Ohno Y , Shishido T , Teramura K , Tanaka T . Selective amine oxidation using Nb2O5 photocatalyst and O2. ACS Catalysis, 2011, 1(10): 1150–1153
CrossRef Google scholar
[9]
Liu H , Guo Z , Lv H , Liu X , Che Y , Mei Y , Bai R , Chi Y , Xing H . Visible-light-driven self-coupling and oxidative dehydrogenation of amines to imines via a Mn(II)-based coordination polymer. Inorganic Chemistry Frontiers, 2020, 7(4): 1016–1025
CrossRef Google scholar
[10]
Dong C P , Uematsu A , Kumazawa S , Yamamoto Y , Kodama S , Nomoto A , Ueshima M , Ogawa A . 2,4,6-Trihydroxybenzoic acid-catalyzed oxidative Ugi reactions with molecular oxygen via homo- and cross-coupling of amines. Journal of Organic Chemistry, 2019, 84(18): 11562–11571
CrossRef Google scholar
[11]
Yu J , Liu Q , Qiao W , Lv D , Li Y , Liu C , Yu Y , Li Y , Niemantsverdriet H , Zhang B . . Catalytic role of metal nanoparticles in selectivity control over photodehydrogenative coupling of primary amines to imines and secondary amines. ACS Catalysis, 2021, 11(11): 6656–6661
CrossRef Google scholar
[12]
Bai P , Tong X , Gao Y , Guo P . Oxygen-free water-promoted selective photocatalytic oxidative coupling of amines. Catalysis Science & Technology, 2019, 9(20): 5803–5811
CrossRef Google scholar
[13]
Yang J , Mou C Y . Ordered mesoporous Au/TiO2 nanospheres for solvent-free visible-light-driven plasmonic oxidative coupling reactions of amines. Applied Catalysis B: Environmental, 2018, 231: 283–291
CrossRef Google scholar
[14]
Guðmundsson A , Manna S , Bäckvall J E . Iron(II)-catalyzed aerobic biomimetic oxidation of amines using a hybrid hydroquinone/cobalt catalyst as electron transfer mediator. Angewandte Chemie International Edition, 2021, 60(21): 11819–11823
CrossRef Google scholar
[15]
Fu Y , Zheng M , Li Q , Zhang L , Wang S , Kondratiev V V , Jiang B . Interfacial engineering by creating Cu-based ternary heterostructures on C3N4 tubes towards enhanced photocatalytic oxidative coupling of benzylamines. RSC Advances, 2020, 10(47): 28059–28065
CrossRef Google scholar
[16]
Bag J , Barman S , Pal K . Metal ion (NiII vs CoII)-mediated unusual amine-imine interconversion in conjugated amine-ene-imine ligand: synthesis, structure, and characterization. Inorganic Chemistry, 2020, 59(3): 1863–1870
CrossRef Google scholar
[17]
Hazra S , Pilania P , Deb M , Kushawaha A K , Elias A J . Aerobic oxidation of primary amines to imines in water using a cobalt complex as recyclable catalyst under mild conditions. Chemistry, 2018, 24(59): 15766–15771
CrossRef Google scholar
[18]
Zhang C , Zhao P , Zhang Z , Zhang J , Yang P , Gao P , Gao J , Liu D . Co–N–C supported on SiO2: a facile, efficient catalyst for aerobic oxidation of amines to imines. RSC Advances, 2017, 7(75): 47366–47372
CrossRef Google scholar
[19]
Jian Y , Qu D , Guo L , Zhu Y , Su C , Feng H , Zhang G , Zhang J , Wu W , Yao M S . The prior rules of designing Ti3C2Tx MXene-based gas sensors. Frontiers of Chemical Science and Engineering, 2021, 15(3): 505–517
CrossRef Google scholar
[20]
Zhang J F , Cao H Y , Wang H B . Research progress of novel two-dimensional material MXene. Journal of Inorganic Materials, 2017, 32(6): 561–570
CrossRef Google scholar
[21]
Rasheed T . MXenes as an emerging class of two-dimensional materials for advanced energy storage devices. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(9): 4558–4584
CrossRef Google scholar
[22]
Bharali L , Kalita J , Sankar Dhar S . Several fundamental aspects of MXene: synthesis and their applications. ChemistrySelect, 2023, 8(30): e202301486
CrossRef Google scholar
[23]
Ustad R E , Kundale S S , Rokade K A , Patil S L , Chavan V D , Kadam K D , Patil H S , Patil S P , Kamat R K , Kim D K . . Recent progress in energy, environment, and electronic applications of MXene nanomaterials. Nanoscale, 2023, 15(23): 9891–9926
CrossRef Google scholar
[24]
Dai Y , Fang H , Lu Z , Yang Z , Wei Y . Toughening of vinyl ester resins by two-dimensional MXene nanosheets. Frontiers of Chemical Science and Engineering, 2022, 16(11): 1651–1658
CrossRef Google scholar
[25]
Sherryna A , Tahir M . Role of surface morphology and terminating groups in titanium carbide MXenes (Ti3C2Tx) cocatalysts with engineering aspects for modulating solar hydrogen production: a critical review. Chemical Engineering Journal, 2022, 433: 134573
CrossRef Google scholar
[26]
Nguyen V H , Nguyen B S , Hu C , Nguyen C C , Nguyen D L T , Nguyen Dinh M T , Vo D N , Trinh Q T , Shokouhimehr M , Hasani A . . Novel architecture titanium carbide (Ti3C2Tx) MXene cocatalysts toward photocatalytic hydrogen production: a mini-review. Nanomaterials (Basel, Switzerland), 2020, 10(4): 602
CrossRef Google scholar
[27]
Liu A , Liang X , Ren X , Guan W , Gao M , Yang Y , Yang Q , Gao L , Li Y , Ma T . Recent progress in MXene-based materials: potential high-performance electrocatalysts. Advanced Functional Materials, 2020, 30(38): 2003437
CrossRef Google scholar
[28]
Tang R , Xiong S , Gong D , Deng Y , Wang Y , Su L , Ding C , Yang L , Liao C . Ti3C2 2D MXene: recent progress and perspectives in photocatalysis. ACS Applied Materials & Interfaces, 2020, 12(51): 56663–56680
CrossRef Google scholar
[29]
Huang W X , Li Z P , Li D D , Hu Z H , Wu C , Lv K L , Li Q . Ti3C2 MXene: recent progress in its fundamentals, synthesis, and applications. Rare Metals, 2022, 41(10): 3268–3300
CrossRef Google scholar
[30]
Ali Khan A , Tahir M , Khan N . Recent developments in titanium carbide (Ti3C2)-based layered double hydroxide (LDH) nanocomposites for energy storage and conversion applications: a minireview and perspectives. Energy & Fuels, 2022, 36(17): 9821–9843
CrossRef Google scholar
[31]
Chen X , Shi Z , Tian Y , Lin P , Wu D , Li X , Dong B , Xu W , Fang X . Two-dimensional Ti3C2 MXene-based nanostructures for emerging optoelectronic applications. Materials Horizons, 2021, 8(11): 2929–2963
CrossRef Google scholar
[32]
Shi L , Wu C , Wang Y , Dou Y , Yuan D , Li H , Huang H , Zhang Y , Gates I D , Sun X . . Rational design of coordination bond connected metal organic frameworks/MXene hybrids for efficient solar water splitting. Advanced Functional Materials, 2022, 32(30): 2202571
CrossRef Google scholar
[33]
Zhang Y , Zhao Z , Luo C , Wu X , Chen W . Toward understanded the electrochemical capacitance mechanism of MXene by intercalation of inorganic ions and organic macromolecular ions. Applied Surface Science, 2022, 578: 152030
CrossRef Google scholar
[34]
Bian R , Lin R , Wang G , Lu G , Zhi W , Xiang S , Wang T , Clegg P S , Cai D , Huang W . 3D assembly of Ti3C2-MXene directed by water/oil interfaces. Nanoscale, 2018, 10(8): 3621–3625
CrossRef Google scholar
[35]
Wen Y , Rufford T E , Chen X , Li N , Lyu M , Dai L , Wang L . Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy, 2017, 38: 368–376
CrossRef Google scholar
[36]
Ran J , Gao G , Li F T , Ma T Y , Du A , Qiao S Z . Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nature Communications, 2017, 8(1): 13907
CrossRef Google scholar
[37]
Overbury S H , Kolesnikov A I , Brown G M , Zhang Z , Nair G S , Sacci R L , Lotfi R , van Duin A C T , Naguib M . Complexity of intercalation in MXenes: destabilization of urea by two-dimensional titanium carbide. Journal of the American Chemical Society, 2018, 140(32): 10305–10314
CrossRef Google scholar
[38]
Liu C , Bai Y , Li W , Yang F , Zhang G , Pang H . In situ growth of three-dimensional MXene/metal-organic framework composites for high-performance supercapacitors. Angewandte Chemie International Edition, 2022, 61(11): e202116282
CrossRef Google scholar
[39]
Jiao L , Wan G , Zhang R , Zhou H , Yu S H , Jiang H L . From metal-organic frameworks to single–atom Fe implanted N-doped porous carbons: efficient oxygen reduction in both alkaline and acidic media. Angewandte Chemie International Edition, 2018, 57(28): 8525–8529
CrossRef Google scholar
[40]
Ji D , Fan L , Li L , Peng S , Yu D , Song J , Ramakrishna S , Guo S . Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries. Advanced Materials, 2019, 31(16): 1808267
CrossRef Google scholar
[41]
Wu Y , Qiu X , Liang F , Zhang Q , Koo A , Dai Y , Lei Y , Sun X . A metal-organic framework-derived bifunctional catalyst for hybrid sodium-air batteries. Applied Catalysis B: Environmental, 2019, 241: 407–414
CrossRef Google scholar
[42]
Wang Y , Yuan H , Liu F , Hu T . Metal alkoxide-derived Co@NC/NCNS as a highly efficient bifunctional oxygen electrocatalyst. Chemical Communications, 2021, 57(24): 2994–2997
CrossRef Google scholar
[43]
Al-Hmoud L , Jones C W . Reaction pathways over copper and cerium oxide catalysts for direct synthesis of imines from amines under aerobic conditions. Journal of Catalysis, 2013, 301: 116–124
CrossRef Google scholar
[44]
Xu Q , Feng B , Ye C , Fu Y , Chen D L , Zhang F , Zhang J , Zhu W . Atomically dispersed vanadium sites anchored on N-doped porous carbon for the efficient oxidative coupling of amines to imines. ACS Applied Materials & Interfaces, 2021, 13(13): 15168–15177
CrossRef Google scholar
[45]
Shubhashish S , Khanna H S , Achola L A , Amin A S , Willis W S , Suib S L . Selective oxidative coupling of amines using mesoporous MoOx catalysts. ACS Applied Nano Materials, 2021, 4(2): 2086–2097
CrossRef Google scholar
[46]
Chen J , Jian M , Zhuang L , Lin W , Fu Y , Chen D L , Zhu W , Chen G , Zhang F . Enhancing the efficiency of benzylamine oxidative coupling over N-doped porous carbon-supported CeO2 and ZrO2 nanoparticles. New Journal of Chemistry, 2023, 47(38): 17790–17798
CrossRef Google scholar
[47]
Patil R D , Adimurthy S . Copper(0)-catalyzed aerobic oxidative synthesis of imines from amines under solvent-free conditions. RSC Advances, 2012, 2(12): 5119–5122
CrossRef Google scholar
[48]
Lang X , Ji H , Chen C , Ma W , Zhao J . Selective formation of imines by aerobic photocatalytic oxidation of amines on TiO2. Angewandte Chemie International Edition, 2011, 50(17): 3934–3937
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

We thank the financial support from the National Natural Science Foundation of China (Grant No. 21576243).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-023-2378-9 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(7095 KB)

Accesses

Citations

Detail

Sections
Recommended

/