Frontiers of Chemical Science and Engineering >
Selective capture and separation of xenon and krypton using metal organic frameworks: a review
Received date: 13 Jun 2023
Accepted date: 07 Jul 2023
Published date: 15 Dec 2023
Copyright
Xenon and krypton are widespread useful noble gases in commercial lighting, lasers, electronics, and medical industry. At the same time, radioactive noble gases may proliferate from used nuclear fuel and diffuse in open atmospheres. Metal organic frameworks as hotspot porous materials for gases uptake and separation are considered to be potential solutions. In this review, we comprehensively summarized recent researches on metal organic frameworks for selective capture and separation of xenon and krypton. Particularly, we followed the aspects of different optimal design strategies, including optimal pore/cage size and geometry, open metal sites, ions (anions and cations), and polar functional groups for enhancing the xenon adsorption and separation performances. Meanwhile, a comparison of each strategy and the mechanisms of xenon/krypton separation were pointed out. The separation of krypton from gases mixtures by dual-bed systems was further discussed. Finally, some existing challenges and opportunities for possible real applications were proclaimed.
Key words: metal organic frameworks; xenon; krypton; selective separation; used nuclear fuel
Yilun Zhou , Jingyi Wang , Yujie Zhao , He Gu , Zhongshan Chen , Hui Yang , Xiangke Wang . Selective capture and separation of xenon and krypton using metal organic frameworks: a review[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(12) : 1895 -1912 . DOI: 10.1007/s11705-023-2355-3
1 |
Banerjee D, Cairns A J, Liu J, Motkuri R K, Nune S K, Fernandez C A, Krishna R, Strachan D M, Thallapally P K. Potential of metal-organic frameworks for separation of xenon and krypton. Accounts of Chemical Research, 2015, 48(2): 211–219
|
2 |
Basu C, Meinhardt-Wollweber M, Roth B. Lighting with laser diodes. Advances in Optical Technologies, 2013, 2(4): 313–321
|
3 |
Grigor’ev G Y, Nabiev S S. Production and applications of spin-polarized isotopes of noble gases. Russian Journal of Physical Chemistry B. Focus on Physics, 2018, 12(3): 363–377
|
4 |
Yin H, Chen Z, Zhao H, Huang H, Liu W. Noble gas and neuroprotection: from bench to bedside. Frontiers in Pharmacology, 2022, 13: 1028688
|
5 |
Banerjee D, Simon C M, Elsaidi S K, Haranczyk M, Thallapally P K. Xenon gas separation and storage using metal-organic frameworks. Chem, 2018, 4(3): 466–494
|
6 |
Back H, Bottenus D, Clayton C, Stephenson D, TeGrotenhuis W. 136Xe enrichment through cryogenic distillation. Journal of Instrumentation: an IOP and SISSA Journal, 2017, 12(9): P09033
|
7 |
Hasanzadeh A, Azamat J, Pakdel S, Erfan-Niya H, Khataee A. Separation of noble gases using CHA-type zeolite membrane: insights from molecular dynamics simulation. Chemical Papers, 2020, 74(9): 3057–3065
|
8 |
Hye Kwon Y, Kiang C, Benjamin E, Crawford P, Nair S, Bhave R. Krypton-xenon separation properties of SAPO-34 zeolite materials and membranes. American Institute of Chemical Engineers Journals, 2017, 63(2): 761–769
|
9 |
Wang X, Zhang Y, Wang X, Andres-Garcia E, Du P, Giordano L, Wang L, Hong Z, Gu X, Murad S, Kapteijn F. Xenon recovery by DD3R zeolite membranes: application in anaesthetics. Angewandte Chemie International Edition, 2019, 58(43): 15518–15525
|
10 |
Magomedbekov E P, Merkushkin A O, Obruchikov A V, Pokalchuk V S. Argon, krypton and xenon adsorption coefficients on various activated carbons under dynamic conditions. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(2): 1091–1100
|
11 |
Men’shchikov I, Shkolin A, Khozina E, Fomkin A. Peculiarities of thermodynamic behaviors of xenon adsorption on the activated carbon prepared from silicon carbide. Nanomaterials, 2021, 11(4): 971
|
12 |
Nakano Y, Ichimura K, Ito H, Okada T, Sekiya H, Takeuchi Y, Tasaka S, Yamashita M. Evaluation of radon adsorption efficiency values in xenon with activated carbon fibers. Progress of Theoretical and Experimental Physics, 2020, 2020(11): 113H01
|
13 |
Li H, Eddaoudi M, O’Keeffe M, Yaghi O M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999, 402(6759): 276–279
|
14 |
Ahmad A, Khan S, Tariq S, Luque R, Verpoort F. Self-sacrifice MOFs for heterogeneous catalysis: synthesis mechanisms and future perspectives. Materials Today, 2022, 55: 137–169
|
15 |
Le M, Ni Q L, Zeng L H, Yuan C Y, Wang X J, Li S M, Gui L C. Construction of acylamide-functionalized MOFs for efficient catalysis on the conversion of CO2. Molecular Catalysis, 2022, 533: 112786
|
16 |
Liu H, Xu Y, Li L, Dai X. Deciphering the underlying mechanism of MOF-808-based abiotic catalysis enhancing biodegradability of waste activated sludge: insights from the effects on bioconversion of extracellular organic substances into methane. Science of the Total Environment, 2022, 849: 157855
|
17 |
Peng X, Chen L, Li Y. Ordered macroporous MOF-based materials for catalysis. Molecular Catalysis, 2022, 529: 112568
|
18 |
Ghanbari T, Abnisa F, Wan Daud W M A. A review on production of metal organic frameworks (MOF) for CO2 adsorption. Science of the Total Environment, 2020, 707: 135090
|
19 |
Li W, Ji W, Yılmaz M, Zhang T C, Yuan S. One-pot synthesis of MWCNTs/Fe-MOFs nanocomposites for enhanced adsorption of As(V) in aqueous solution. Applied Surface Science, 2023, 609: 155304
|
20 |
Peh S B, Farooq S, Zhao D. Techno-economic analysis of MOF-based adsorption cycles for postcombustion CO2 capture from wet flue gas. Chemical Engineering Science, 2023, 268: 118390
|
21 |
Rupam T H, Tuli F J, Jahan I, Palash M L, Chakraborty A, Saha B B. Isotherms and kinetics of water sorption onto MOFs for adsorption cooling applications. Thermal Science and Engineering Progress, 2022, 34: 101436
|
22 |
Tan T L, Somat H A, Latif M A M, Rashid S A. One-pot solvothermal synthesis of Zr-based MOFs with enhanced adsorption capacity for Cu2+ ions removal. Journal of Solid State Chemistry, 2022, 315: 123429
|
23 |
Chen C X, Pham T, Tan K, Krishna R, Lan P C, Wang L, Chen S, Al-Enizi A M, Nafady A, Forrest K A, Wang H, Wang S, Shan C, Zhang L, Su C Y, Ma S. Regulating C2H2/CO2 adsorption selectivity by electronic-state manipulation of iron in metal-organic frameworks. Cell Reports Physical Science, 2022, 3(8): 100977
|
24 |
Knebel A, Caro J. Metal-organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation. Nature Nanotechnology, 2022, 17(9): 911–923
|
25 |
Cao H, Gou M, Wang C, Guo R. Constructing solubility-diffusion domain in pebax by hybrid-phase MOFs for efficient separation of carbon dioxide and methane. Microporous and Mesoporous Materials, 2022, 346: 112328
|
26 |
Wu W, Hong X, Fan J, Wei Y, Wang H. Research progress on the substrate for metal-organic framework (MOF) membrane growth for separation. Chinese Journal of Chemical Engineering, 2022, 56: 299–313
|
27 |
Ye Q, Li J, Huang Y, Wu H, Li Y, Yan B. Preparation of a cyclodextrin metal-organic framework (CD-MOF) membrane for chiral separation. Journal of Environmental Chemical Engineering, 2023, 11(2): 109250
|
28 |
Ahmed A, Siegel D J. Predicting hydrogen storage in MOFs via machine learning. Patterns, 2021, 2(7): 100291
|
29 |
Elsabawy K M, Fallatah A M, Owidah Z O. Synthesis of newly crystalline-porous-Pd(II)-(E,E)-2,4-hexadienoic acid complex-leads to 3D-MOFs for hydrogen storage. Journal of Molecular Structure, 2022, 1250: 131723
|
30 |
Gao H, Shi R, Shao Y, Liu Y, Zhu Y, Zhang J, Li L. Catalysis derived from flower-like Ni MOF towards the hydrogen storage performance of magnesium hydride. International Journal of Hydrogen Energy, 2022, 47(15): 9346–9356
|
31 |
Jia T, Gu Y, Li F. Progress and potential of metal-organic frameworks (MOFs) for gas storage and separation: a review. Journal of Environmental Chemical Engineering, 2022, 10(5): 108300
|
32 |
Yuan G, Tu H, Li M, Liu J, Zhao C, Liao J, Yang Y, Yang J, Liu N. Glycine derivative-functionalized metal-organic framework (MOF) materials for Co(II) removal from aqueous solution. Applied Surface Science, 2019, 466: 903–910
|
33 |
Wang T, Lin E, Peng Y L, Chen Y, Cheng P, Zhang Z. Rational design and synthesis of ultramicroporous metal-organic frameworks for gas separation. Coordination Chemistry Reviews, 2020, 423: 213485
|
34 |
Banerjee D, Simon C M, Plonka A M, Motkuri R K, Liu J, Chen X, Smit B, Parise J B, Haranczyk M, Thallapally P K. Metal-organic framework with optimally selective xenon adsorption and separation. Nature Communications, 2016, 7(1): 11831
|
35 |
Chakraborty D, Nandi S, Maity R, Motkuri R K, Han K S, Collins S, Humble P, Hayes J C, Woo T K, Vaidhyanathan R, Thallapally P K. An ultra-microporous metal-organic framework with exceptional Xe capacity. Chemistry—A European Journal, 2020, 26(55): 12544–12548
|
36 |
Kim M B, Robinson A J, Sushko M L, Thallapally P K. Aluminum-based microporous metal-organic framework for noble gas separation. Journal of Industrial and Engineering Chemistry, 2023, 118: 181–186
|
37 |
Elsaidi S K, Mohamed M H, Simon C M, Braun E, Pham T, Forrest K A, Xu W, Banerjee D, Space B, Zaworotko M J.
|
38 |
Banerjee D, Elsaidi S K, Thallapally P K. Xe adsorption and separation properties of a series of microporous metal-organic frameworks (MOFs) with V-shaped linkers. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(32): 16611–16615
|
39 |
Wang L, Liu W, Ding J, Zhang H, Zhu Y, Luo F. A robust calcium-organic framework for effective separation of xenon and krypton. Crystal Growth & Design, 2021, 21(2): 954–959
|
40 |
Wang L, Ding J, Zhu Y, Xu Z, Fan Y, Krishna R, Luo F. A robust metal-organic framework showing two distinct pores for effective separation of xenon and krypton. Microporous and Mesoporous Materials, 2021, 326: 111350
|
41 |
Zhang H, Fan Y, Krishna R, Feng X, Wang L, Luo F. Robust metal-organic framework with multiple traps for trace Xe/Kr separation. Science Bulletin, 2021, 66(11): 1073–1079
|
42 |
Wei Y, Qi F, Li Y, Min X, Wang Q, Hu J, Sun T. Efficient Xe selective separation from Xe/Kr/N2 mixtures over a microporous CALF-20 framework. RSC Advances, 2022, 12(28): 18224–18231
|
43 |
Yu L, Xiong S, Lin Y, Li L, Peng J, Liu W, Huang X, Wang H, Li J. Tuning the channel size and structure flexibility of metal-organic frameworks for the selective adsorption of noble gases. Inorganic Chemistry, 2019, 58(22): 15025–15028
|
44 |
Gong L, Liu Y, Ren J, Al-Enizi A M, Nafady A, Ye Y, Bao Z, Ma S. Utilization of cationic microporous metal-organic framework for efficient Xe/Kr separation. Nano Research, 2022, 15(8): 7559–7564
|
45 |
Xiong S, Gong Y, Hu S, Wu X, Li W, He Y, Chen B, Wang X. A microporous metal-organic framework with commensurate adsorption and highly selective separation of xenon. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(11): 4752–4758
|
46 |
Maldonado R R, Zhang X, Hanna S, Gong X, Gianneschi N C, Hupp J T, Farha O K. Squeezing the box: isoreticular contraction of pyrene-based linker in a Zr-based metal-organic framework for Xe/Kr separation. Dalton Transactions, 2020, 49(20): 6553–6556
|
47 |
Lee S J, Yoon T U, Kim A R, Kim S Y, Cho K H, Hwang Y K, Yeon J W, Bae Y S. Adsorptive separation of xenon/krypton mixtures using a zirconium-based metal-organic framework with high hydrothermal and radioactive stabilities. Journal of Hazardous Materials, 2016, 320: 513–520
|
48 |
Yan Z, Gong Y, Chen B, Wu X, liu Q, Cui L, Xiong S, Peng S. Methyl functionalized Zr-Fum MOF with enhanced xenon adsorption and separation. Separation and Purification Technology, 2020, 239: 116514
|
49 |
Yan Z, Gong Y, Yang C T, Wu X, Liu B, Liu Q, Xiong S, Peng S. Pore size reduction by methyl function in aluminum-based metal-organic frameworks for xenon/krypton separation. Crystal Growth & Design, 2020, 20(12): 8039–8046
|
50 |
Zhou J, Ke T, Steinke F, Stock N, Zhang Z, Bao Z, He X, Ren Q, Yang Q. Tunable confined aliphatic pore environment in robust metal-organic frameworks for efficient separation of gases with a similar structure. Journal of the American Chemical Society, 2022, 144(31): 14322–14329
|
51 |
Liu B, Yan Z, Liu Q, Gong Y, Wu X, Mao Z, Xiong S, Hu S. Boosting Xe/Kr separation by a mixed-linker strategy in radiation-resistant aluminum-based metal-organic frameworks. Separation and Purification Technology, 2023, 311: 123335
|
52 |
Zhu Z, Li B, Liu X, Zhang P, Chen S, Deng Q, Zeng Z, Wang J, Deng S. Efficient Xe/Kr separation on two metal-organic frameworks with distinct pore shapes. Separation and Purification Technology, 2021, 274: 119132
|
53 |
Gong W, Xie Y, Pham T D, Shetty S, Son F A, Idrees K B, Chen Z, Xie H, Liu Y, Snurr R Q, Chen B, Alameddine B, Cui Y, Farha O K. Creating optimal pockets in a clathrochelate-based metal-organic framework for gas adsorption and separation: experimental and computational studies. Journal of the American Chemical Society, 2022, 144(8): 3737–3745
|
54 |
Fu X P, Li Z R, Liu Q Y, Guan H, Wang Y L. Microporous metal-organic framework with cage-within-cage structures for xenon/krypton separation. Industrial & Engineering Chemistry Research, 2022, 61(21): 7397–7402
|
55 |
Li G, Ji G, Wang X, Liu W, Zhang D, Chen L, He L, Liang S, Li X, Ma F, Wang S. Efficient and selective capture of xenon over krypton by a window-cage metal-organic framework with parallel aromatic rings. Separation and Purification Technology, 2022, 295: 121281
|
56 |
Idrees K B, Chen Z, Zhang X, Mian M R, Drout R J, Islamoglu T, Farha O K. Tailoring pore aperture and structural defects in zirconium-based metal-organic frameworks for krypton/xenon separation. Chemistry of Materials, 2020, 32(9): 3776–3782
|
57 |
Lee S J, Kim K C, Yoon T U, Kim M B, Bae Y S. Selective dynamic separation of Xe and Kr in Co-MOF-74 through strong binding strength between Xe atom and unsaturated Co2+ site. Microporous and Mesoporous Materials, 2016, 236: 284–291
|
58 |
Tao Y, Fan Y, Xu Z, Feng X, Krishna R, Luo F. Boosting selective adsorption of Xe over Kr by double-accessible open-metal site in metal-organic framework: experimental and theoretical research. Inorganic Chemistry, 2020, 59(16): 11793–11800
|
59 |
Guo L, Zheng F, Xu Q, Chen R, Sun H, Chen L, Zhang Z, Yang Q, Yang Y, Ren Q, Bao Z. Double-accessible open metal sites in metal-organic frameworks with suitable pore size for efficient Xe/Kr separation. Industrial & Engineering Chemistry Research, 2022, 61(21): 7361–7369
|
60 |
Wang T, Peng Y L, Lin E, Niu Z, Li P, Ma S, Zhao P, Chen Y, Cheng P, Zhang Z. Robust bimetallic ultramicroporous metal-organic framework for separation and purification of noble gases. Inorganic Chemistry, 2020, 59(7): 4868–4873
|
61 |
Pei J, Gu X W, Liang C C, Chen B, Li B, Qian G. Robust and radiation-resistant hofmann-type metal-organic frameworks for record xenon/krypton separation. Journal of the American Chemical Society, 2022, 144(7): 3200–3209
|
62 |
Wang Y, Liu W, Bai Z, Zheng T, Silver M A, Li Y, Wang Y, Wang X, Diwu J, Chai Z, Wang S. Employing an unsaturated Th4+ site in a porous thorium-organic framework for Kr/Xe uptake and separation. Angewandte Chemie International Edition, 2018, 57(20): 5783–5787
|
63 |
Wu X L, Li Z J, Zhou H, Yang G, Liu X Y, Qian N, Wang W, Zeng Y S, Qian Z H, Chu X X, Liu W. Enhanced adsorption and separation of xenon over krypton via an unsaturated calcium center in a metal-organic framework. Inorganic Chemistry, 2021, 60(3): 1506–1512
|
64 |
Zhang C, Dong X, Chen Y, Wu H, Yu L, Zhou K, Wu Y, Xia Q, Wang H, Han Y, Li J. Balancing uptake and selectivity in a copper-based metal-organic framework for xenon and krypton separation. Separation and Purification Technology, 2022, 291: 120932
|
65 |
Mohamed M H, Elsaidi S K, Pham T, Forrest K A, Schaef H T, Hogan A, Wojtas L, Xu W, Space B, Zaworotko M J, Thallapally P K. Hybrid ultra-microporous materials for selective xenon adsorption and separation. Angewandte Chemie International Edition, 2016, 55(29): 8285–8289
|
66 |
Zheng F, Guo L, Chen R, Chen L, Zhang Z, Yang Q, Yang Y, Su B, Ren Q, Bao Z. Shell-like xenon nano-traps within angular anion-pillared layered porous materials for boosting Xe/Kr separation. Angewandte Chemie International Edition, 2022, 61(20): e202116686
|
67 |
Wang X, Ma F, Xiong S, Bai Z, Zhang Y, Li G, Chen J, Yuan M, Wang Y, Dai X, Chai Z, Wang S. Efficient Xe/Kr separation based on a lanthanide-organic framework with one-dimensional local positively charged rhomboid channels. ACS Applied Materials & Interfaces, 2022, 14(19): 22233–22241
|
68 |
Liu B Y, Gong Y J, Wu X N, Liu Q, Li W, Xiong S S, Hu S, Wang X L. Enhanced xenon adsorption and separation with an anionic indium-organic framework by ion exchange with Co2+. RSC Advances, 2017, 7(87): 55012–55019
|
69 |
Wang H, Shi Z, Yang J, Sun T, Rungtaweevoranit B, Lyu H, Zhang Y B, Yaghi O M. Docking of Cu(I) and Ag(I) in metal-organic frameworks for adsorption and separation of xenon. Angewandte Chemie International Edition, 2021, 60(7): 3417–3421
|
70 |
Gong W, Xie Y, Wang X, Kirlikovali K O, Idrees K B, Sha F, Xie H, Liu Y, Chen B, Cui Y, Farha O K. Programmed polarizability engineering in a cyclen-based cubic Zr(IV) metal-organic framework to boost Xe/Kr separation. Journal of the American Chemical Society, 2023, 145(4): 2679–2689
|
71 |
Liu J, Strachan D M, Thallapally P K. Enhanced noble gas adsorption in Ag@MOF-74Ni. Chemical Communications, 2014, 50(4): 466–468
|
72 |
Chen X, Plonka A M, Banerjee D, Krishna R, Schaef H T, Ghose S, Thallapally P K, Parise J B. Direct observation of Xe and Kr adsorption in a Xe-selective microporous metal-organic framework. Journal of the American Chemical Society, 2015, 137(22): 7007–7010
|
73 |
Li L, Guo L, Zhang Z, Yang Q, Yang Y, Bao Z, Ren Q, Li J. A robust squarate-based metal-organic framework demonstrates record-high affinity and selectivity for xenon over krypton. Journal of the American Chemical Society, 2019, 141(23): 9358–9364
|
74 |
Lee S J, Kim S, Kim E J, Kim M, Bae Y S. Adsorptive separation of xenon/krypton mixtures using ligand controls in a zirconium-based metal-organic framework. Chemical Engineering Journal, 2018, 335: 345–351
|
75 |
Wang H, Li J. General strategies for effective capture and separation of noble gases by metal-organic frameworks. Dalton Transactions, 2018, 47(12): 4027–4031
|
76 |
Ryan P, Farha O K, Broadbelt L J, Snurr R Q. Computational screening of metal-organic frameworks for xenon/krypton separation. American Institute of Chemical Engineers Journals, 2011, 57(7): 1759–1766
|
77 |
Sikora B J, Wilmer C E, Greenfield M L, Snurr R Q. Thermodynamic analysis of Xe/Kr selectivity in over 137000 hypothetical metal-organic frameworks. Chemical Science, 2012, 3(7): 2217–2223
|
78 |
Kancharlapalli S, Natarajan S, Ghanty T K. Confinement-directed adsorption of noble gases (Xe/Kr) in MFM-300(M)-based metal-organic framework materials. Journal of Physical Chemistry C, 2019, 123(45): 27531–27541
|
79 |
Zarabadi-Poor P, Marek R. In silico study of (Mn, Fe, Co, Ni, Zn)-BTC metal-organic frameworks for recovering xenon from exhaled anesthetic gas. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15001–15006
|
80 |
Guo F, Liu Y, Hu J, Liu H, Hu Y. Fast screening of porous materials for noble gas adsorption and separation: a classical density functional approach. Physical Chemistry Chemical Physics, 2018, 20(44): 28193–28204
|
81 |
Riley B J, Chong S, Kuang W, Varga T, Helal A S, Galanek M, Li J, Nelson Z J, Thallapally P K. Metal-organic framework-polyacrylonitrile composite beads for xenon capture. ACS Applied Materials & Interfaces, 2020, 12(40): 45342–45350
|
82 |
Elsaidi S K, Ongari D, Xu W, Mohamed M H, Haranczyk M, Thallapally P K. Xenon recovery at room temperature using metal-organic frameworks. Chemistry—A European Journal, 2017, 23(45): 10758–10762
|
83 |
Niu Z, Fan Z, Pham T, Verma G, Forrest K A, Space B, Thallapally P K, Al-Enizi A M, Ma S. Self-adjusting metal-organic framework for efficient capture of trace xenon and krypton. Angewandte Chemie International Edition, 2022, 61(11): e202117807
|
84 |
Liu J, Fernandez C A, Martin P F, Thallapally P K, Strachan D M. A two-column method for the separation of Kr and Xe from process off-gases. Industrial & Engineering Chemistry Research, 2014, 53(32): 12893–12899
|
85 |
Elsaidi S K, Mohamed M H, Helal A S, Galanek M, Pham T, Suepaul S, Space B, Hopkinson D, Thallapally P K, Li J. Radiation-resistant metal-organic framework enables efficient separation of krypton fission gas from spent nuclear fuel. Nature Communications, 2020, 11(1): 3103
|
86 |
Zhang Y, Zhang X, Lyu J, Otake K i, Wang X, Redfern L R, Malliakas C D, Li Z, Islamoglu T, Wang B.
|
87 |
Wang T C, Bury W, Gómez-Gualdrón D A, Vermeulen N A, Mondloch J E, Deria P, Zhang K, Moghadam P Z, Sarjeant A A, Snurr R Q.
|
88 |
Reinsch H, Waitschat S, Stock N. Mixed-linker MOFs with CAU-10 structure: synthesis and gas sorption characteristics. Dalton Transactions, 2013, 42(14): 4840–4847
|
89 |
Fu X P, Wang Y L, Zhang X F, Zhang Z, He C T, Liu Q Y. Fluorous metal-organic frameworks with unique cage-in-cage structures featuring fluorophilic pore surfaces for efficient C2H2/CO2 separation. Chinese Chemical Society Chemistry, 2022, 4(10): 3416–3425
|
90 |
Yu G, Liu Y, Zou X, Zhao N, Rong H, Zhu G. A nanosized metal-organic framework with small pores for kinetic xenon separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(25): 11797–11803
|
91 |
Abramova A, Couzon N, Leloire M, Nerisson P, Cantrel L, Royer S, Loiseau T, Volkringer C, Dhainaut J. Extrusion-spheronization of UiO-66 and UiO-66_NH2 into robust-shaped solids and their use for gaseous molecular iodine, xenon, and krypton adsorption. ACS Applied Materials & Interfaces, 2022, 14(8): 10669–10680
|
92 |
Caskey S R, Wong-Foy A G, Matzger A J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. Journal of the American Chemical Society, 2008, 130(33): 10870–10871
|
93 |
Dietzel P D C, Panella B, Hirscher M, Blom R, Fjellvåg H. Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. Chemical Communications, 2006, 9(9): 959–961
|
94 |
Dietzel P D C, Besikiotis V, Blom R. Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide. Journal of Materials Chemistry, 2009, 19(39): 7362–7370
|
95 |
Perry IV J J, Teich-McGoldrick S L, Meek S T, Greathouse J A, Haranczyk M, Allendorf M D. Noble gas adsorption in metal-organic frameworks containing open metal sites. Journal of Physical Chemistry C, 2014, 118(22): 11685–11698
|
96 |
Luo F, Yan C, Dang L, Krishna R, Zhou W, Wu H, Dong X, Han Y, Hu T L, O’Keeffe M.
|
97 |
Liu Q, Gong Y, Liu B, Xiong S, Wen H M, Wang X. Dense packing of xenon in an ultra-microporous metal-organic framework for benchmark xenon capture and separation. Chemical Engineering Journal, 2023, 453: 139849
|
98 |
Mohamed M H, Elsaidi S K, Wojtas L, Pham T, Forrest K A, Tudor B, Space B, Zaworotko M J. Highly selective CO2 uptake in uninodal 6-connected “mmo” nets based upon MO42– (M = Cr, Mo) pillars. Journal of the American Chemical Society, 2012, 134(48): 19556–19559
|
99 |
Burd S D, Nugent P S, Mohameda M H, Elsaidia S K, Zaworotko M J. Square grid and pillared square grid coordination polymers—fertile ground for crystal engineering of structure and function. Chimia, 2013, 67(6): 372–378
|
100 |
Mohamed M H, Elsaidi S K, Pham T, Forrest K A, Tudor B, Wojtas L, Space B, Zaworotko M J. Pillar substitution modulates CO2 affinity in “mmo” topology networks. Chemical Communications, 2013, 49(84): 9809–9811
|
101 |
Gu X, Lu Z H, Jiang H L, Akita T, Xu Q. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. Journal of the American Chemical Society, 2011, 133(31): 11822–11825
|
102 |
Dixit M, Adit Maark T, Ghatak K, Ahuja R, Pal S. Scandium-decorated MOF-5 as potential candidates for room-temperature hydrogen storage: a solution for the clustering problem in MOFs. Journal of Physical Chemistry C, 2012, 116(33): 17336–17342
|
103 |
Sumida K, Stück D, Mino L, Chai J D, Bloch E D, Zavorotynska O, Murray L J, Dincă M, Chavan S, Bordiga S.
|
104 |
Fairchild D C, Hossain M I, Cordova J, Glover T G, Uribe-Romo F J. Steric and electronic effects on the interaction of Xe and Kr with functionalized zirconia metal-organic frameworks. ACS Materials Letters, 2021, 3(5): 504–510
|
105 |
Qian J J, Chen G H, Xiao S T, Li H B, Ouyang Y G, Wang Q. Switching Xe/Kr adsorption selectivity in modified SBMOF-1: a theoretical study. RSC Advances, 2020, 10(29): 17195–17204
|
/
〈 | 〉 |