REVIEW ARTICLE

Selective capture and separation of xenon and krypton using metal organic frameworks: a review

  • Yilun Zhou ,
  • Jingyi Wang ,
  • Yujie Zhao ,
  • He Gu ,
  • Zhongshan Chen ,
  • Hui Yang ,
  • Xiangke Wang
Expand
  • College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
zschen@ncepu.edu.cn
xkwang@ncepu.edu.cn

Received date: 13 Jun 2023

Accepted date: 07 Jul 2023

Published date: 15 Dec 2023

Copyright

2023 Higher Education Press

Abstract

Xenon and krypton are widespread useful noble gases in commercial lighting, lasers, electronics, and medical industry. At the same time, radioactive noble gases may proliferate from used nuclear fuel and diffuse in open atmospheres. Metal organic frameworks as hotspot porous materials for gases uptake and separation are considered to be potential solutions. In this review, we comprehensively summarized recent researches on metal organic frameworks for selective capture and separation of xenon and krypton. Particularly, we followed the aspects of different optimal design strategies, including optimal pore/cage size and geometry, open metal sites, ions (anions and cations), and polar functional groups for enhancing the xenon adsorption and separation performances. Meanwhile, a comparison of each strategy and the mechanisms of xenon/krypton separation were pointed out. The separation of krypton from gases mixtures by dual-bed systems was further discussed. Finally, some existing challenges and opportunities for possible real applications were proclaimed.

Cite this article

Yilun Zhou , Jingyi Wang , Yujie Zhao , He Gu , Zhongshan Chen , Hui Yang , Xiangke Wang . Selective capture and separation of xenon and krypton using metal organic frameworks: a review[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(12) : 1895 -1912 . DOI: 10.1007/s11705-023-2355-3

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

We gratefully acknowledge funding support from the National Science Foundation of China (Grants Nos. 22276054, U2167218, and 22006036) and the Beijing Outstanding Young Scientist Program.
1
Banerjee D, Cairns A J, Liu J, Motkuri R K, Nune S K, Fernandez C A, Krishna R, Strachan D M, Thallapally P K. Potential of metal-organic frameworks for separation of xenon and krypton. Accounts of Chemical Research, 2015, 48(2): 211–219

DOI

2
Basu C, Meinhardt-Wollweber M, Roth B. Lighting with laser diodes. Advances in Optical Technologies, 2013, 2(4): 313–321

DOI

3
Grigor’ev G Y, Nabiev S S. Production and applications of spin-polarized isotopes of noble gases. Russian Journal of Physical Chemistry B. Focus on Physics, 2018, 12(3): 363–377

DOI

4
Yin H, Chen Z, Zhao H, Huang H, Liu W. Noble gas and neuroprotection: from bench to bedside. Frontiers in Pharmacology, 2022, 13: 1028688

DOI

5
Banerjee D, Simon C M, Elsaidi S K, Haranczyk M, Thallapally P K. Xenon gas separation and storage using metal-organic frameworks. Chem, 2018, 4(3): 466–494

DOI

6
Back H, Bottenus D, Clayton C, Stephenson D, TeGrotenhuis W. 136Xe enrichment through cryogenic distillation. Journal of Instrumentation: an IOP and SISSA Journal, 2017, 12(9): P09033

DOI

7
Hasanzadeh A, Azamat J, Pakdel S, Erfan-Niya H, Khataee A. Separation of noble gases using CHA-type zeolite membrane: insights from molecular dynamics simulation. Chemical Papers, 2020, 74(9): 3057–3065

DOI

8
Hye Kwon Y, Kiang C, Benjamin E, Crawford P, Nair S, Bhave R. Krypton-xenon separation properties of SAPO-34 zeolite materials and membranes. American Institute of Chemical Engineers Journals, 2017, 63(2): 761–769

DOI

9
Wang X, Zhang Y, Wang X, Andres-Garcia E, Du P, Giordano L, Wang L, Hong Z, Gu X, Murad S, Kapteijn F. Xenon recovery by DD3R zeolite membranes: application in anaesthetics. Angewandte Chemie International Edition, 2019, 58(43): 15518–15525

DOI

10
Magomedbekov E P, Merkushkin A O, Obruchikov A V, Pokalchuk V S. Argon, krypton and xenon adsorption coefficients on various activated carbons under dynamic conditions. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(2): 1091–1100

DOI

11
Men’shchikov I, Shkolin A, Khozina E, Fomkin A. Peculiarities of thermodynamic behaviors of xenon adsorption on the activated carbon prepared from silicon carbide. Nanomaterials, 2021, 11(4): 971

DOI

12
Nakano Y, Ichimura K, Ito H, Okada T, Sekiya H, Takeuchi Y, Tasaka S, Yamashita M. Evaluation of radon adsorption efficiency values in xenon with activated carbon fibers. Progress of Theoretical and Experimental Physics, 2020, 2020(11): 113H01

13
Li H, Eddaoudi M, O’Keeffe M, Yaghi O M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999, 402(6759): 276–279

DOI

14
Ahmad A, Khan S, Tariq S, Luque R, Verpoort F. Self-sacrifice MOFs for heterogeneous catalysis: synthesis mechanisms and future perspectives. Materials Today, 2022, 55: 137–169

DOI

15
Le M, Ni Q L, Zeng L H, Yuan C Y, Wang X J, Li S M, Gui L C. Construction of acylamide-functionalized MOFs for efficient catalysis on the conversion of CO2. Molecular Catalysis, 2022, 533: 112786

DOI

16
Liu H, Xu Y, Li L, Dai X. Deciphering the underlying mechanism of MOF-808-based abiotic catalysis enhancing biodegradability of waste activated sludge: insights from the effects on bioconversion of extracellular organic substances into methane. Science of the Total Environment, 2022, 849: 157855

DOI

17
Peng X, Chen L, Li Y. Ordered macroporous MOF-based materials for catalysis. Molecular Catalysis, 2022, 529: 112568

DOI

18
Ghanbari T, Abnisa F, Wan Daud W M A. A review on production of metal organic frameworks (MOF) for CO2 adsorption. Science of the Total Environment, 2020, 707: 135090

DOI

19
Li W, Ji W, Yılmaz M, Zhang T C, Yuan S. One-pot synthesis of MWCNTs/Fe-MOFs nanocomposites for enhanced adsorption of As(V) in aqueous solution. Applied Surface Science, 2023, 609: 155304

DOI

20
Peh S B, Farooq S, Zhao D. Techno-economic analysis of MOF-based adsorption cycles for postcombustion CO2 capture from wet flue gas. Chemical Engineering Science, 2023, 268: 118390

DOI

21
Rupam T H, Tuli F J, Jahan I, Palash M L, Chakraborty A, Saha B B. Isotherms and kinetics of water sorption onto MOFs for adsorption cooling applications. Thermal Science and Engineering Progress, 2022, 34: 101436

DOI

22
Tan T L, Somat H A, Latif M A M, Rashid S A. One-pot solvothermal synthesis of Zr-based MOFs with enhanced adsorption capacity for Cu2+ ions removal. Journal of Solid State Chemistry, 2022, 315: 123429

DOI

23
Chen C X, Pham T, Tan K, Krishna R, Lan P C, Wang L, Chen S, Al-Enizi A M, Nafady A, Forrest K A, Wang H, Wang S, Shan C, Zhang L, Su C Y, Ma S. Regulating C2H2/CO2 adsorption selectivity by electronic-state manipulation of iron in metal-organic frameworks. Cell Reports Physical Science, 2022, 3(8): 100977

DOI

24
Knebel A, Caro J. Metal-organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation. Nature Nanotechnology, 2022, 17(9): 911–923

DOI

25
Cao H, Gou M, Wang C, Guo R. Constructing solubility-diffusion domain in pebax by hybrid-phase MOFs for efficient separation of carbon dioxide and methane. Microporous and Mesoporous Materials, 2022, 346: 112328

DOI

26
Wu W, Hong X, Fan J, Wei Y, Wang H. Research progress on the substrate for metal-organic framework (MOF) membrane growth for separation. Chinese Journal of Chemical Engineering, 2022, 56: 299–313

DOI

27
Ye Q, Li J, Huang Y, Wu H, Li Y, Yan B. Preparation of a cyclodextrin metal-organic framework (CD-MOF) membrane for chiral separation. Journal of Environmental Chemical Engineering, 2023, 11(2): 109250

DOI

28
Ahmed A, Siegel D J. Predicting hydrogen storage in MOFs via machine learning. Patterns, 2021, 2(7): 100291

DOI

29
Elsabawy K M, Fallatah A M, Owidah Z O. Synthesis of newly crystalline-porous-Pd(II)-(E,E)-2,4-hexadienoic acid complex-leads to 3D-MOFs for hydrogen storage. Journal of Molecular Structure, 2022, 1250: 131723

DOI

30
Gao H, Shi R, Shao Y, Liu Y, Zhu Y, Zhang J, Li L. Catalysis derived from flower-like Ni MOF towards the hydrogen storage performance of magnesium hydride. International Journal of Hydrogen Energy, 2022, 47(15): 9346–9356

DOI

31
Jia T, Gu Y, Li F. Progress and potential of metal-organic frameworks (MOFs) for gas storage and separation: a review. Journal of Environmental Chemical Engineering, 2022, 10(5): 108300

DOI

32
Yuan G, Tu H, Li M, Liu J, Zhao C, Liao J, Yang Y, Yang J, Liu N. Glycine derivative-functionalized metal-organic framework (MOF) materials for Co(II) removal from aqueous solution. Applied Surface Science, 2019, 466: 903–910

DOI

33
Wang T, Lin E, Peng Y L, Chen Y, Cheng P, Zhang Z. Rational design and synthesis of ultramicroporous metal-organic frameworks for gas separation. Coordination Chemistry Reviews, 2020, 423: 213485

DOI

34
Banerjee D, Simon C M, Plonka A M, Motkuri R K, Liu J, Chen X, Smit B, Parise J B, Haranczyk M, Thallapally P K. Metal-organic framework with optimally selective xenon adsorption and separation. Nature Communications, 2016, 7(1): 11831

DOI

35
Chakraborty D, Nandi S, Maity R, Motkuri R K, Han K S, Collins S, Humble P, Hayes J C, Woo T K, Vaidhyanathan R, Thallapally P K. An ultra-microporous metal-organic framework with exceptional Xe capacity. Chemistry—A European Journal, 2020, 26(55): 12544–12548

DOI

36
Kim M B, Robinson A J, Sushko M L, Thallapally P K. Aluminum-based microporous metal-organic framework for noble gas separation. Journal of Industrial and Engineering Chemistry, 2023, 118: 181–186

DOI

37
Elsaidi S K, Mohamed M H, Simon C M, Braun E, Pham T, Forrest K A, Xu W, Banerjee D, Space B, Zaworotko M J. . Effect of ring rotation upon gas adsorption in SIFSIX-3-M (M = Fe, Ni) pillared square grid networks. Chemical Science, 2017, 8(3): 2373–2380

DOI

38
Banerjee D, Elsaidi S K, Thallapally P K. Xe adsorption and separation properties of a series of microporous metal-organic frameworks (MOFs) with V-shaped linkers. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(32): 16611–16615

DOI

39
Wang L, Liu W, Ding J, Zhang H, Zhu Y, Luo F. A robust calcium-organic framework for effective separation of xenon and krypton. Crystal Growth & Design, 2021, 21(2): 954–959

DOI

40
Wang L, Ding J, Zhu Y, Xu Z, Fan Y, Krishna R, Luo F. A robust metal-organic framework showing two distinct pores for effective separation of xenon and krypton. Microporous and Mesoporous Materials, 2021, 326: 111350

DOI

41
Zhang H, Fan Y, Krishna R, Feng X, Wang L, Luo F. Robust metal-organic framework with multiple traps for trace Xe/Kr separation. Science Bulletin, 2021, 66(11): 1073–1079

DOI

42
Wei Y, Qi F, Li Y, Min X, Wang Q, Hu J, Sun T. Efficient Xe selective separation from Xe/Kr/N2 mixtures over a microporous CALF-20 framework. RSC Advances, 2022, 12(28): 18224–18231

DOI

43
Yu L, Xiong S, Lin Y, Li L, Peng J, Liu W, Huang X, Wang H, Li J. Tuning the channel size and structure flexibility of metal-organic frameworks for the selective adsorption of noble gases. Inorganic Chemistry, 2019, 58(22): 15025–15028

DOI

44
Gong L, Liu Y, Ren J, Al-Enizi A M, Nafady A, Ye Y, Bao Z, Ma S. Utilization of cationic microporous metal-organic framework for efficient Xe/Kr separation. Nano Research, 2022, 15(8): 7559–7564

DOI

45
Xiong S, Gong Y, Hu S, Wu X, Li W, He Y, Chen B, Wang X. A microporous metal-organic framework with commensurate adsorption and highly selective separation of xenon. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(11): 4752–4758

DOI

46
Maldonado R R, Zhang X, Hanna S, Gong X, Gianneschi N C, Hupp J T, Farha O K. Squeezing the box: isoreticular contraction of pyrene-based linker in a Zr-based metal-organic framework for Xe/Kr separation. Dalton Transactions, 2020, 49(20): 6553–6556

DOI

47
Lee S J, Yoon T U, Kim A R, Kim S Y, Cho K H, Hwang Y K, Yeon J W, Bae Y S. Adsorptive separation of xenon/krypton mixtures using a zirconium-based metal-organic framework with high hydrothermal and radioactive stabilities. Journal of Hazardous Materials, 2016, 320: 513–520

DOI

48
Yan Z, Gong Y, Chen B, Wu X, liu Q, Cui L, Xiong S, Peng S. Methyl functionalized Zr-Fum MOF with enhanced xenon adsorption and separation. Separation and Purification Technology, 2020, 239: 116514

DOI

49
Yan Z, Gong Y, Yang C T, Wu X, Liu B, Liu Q, Xiong S, Peng S. Pore size reduction by methyl function in aluminum-based metal-organic frameworks for xenon/krypton separation. Crystal Growth & Design, 2020, 20(12): 8039–8046

DOI

50
Zhou J, Ke T, Steinke F, Stock N, Zhang Z, Bao Z, He X, Ren Q, Yang Q. Tunable confined aliphatic pore environment in robust metal-organic frameworks for efficient separation of gases with a similar structure. Journal of the American Chemical Society, 2022, 144(31): 14322–14329

DOI

51
Liu B, Yan Z, Liu Q, Gong Y, Wu X, Mao Z, Xiong S, Hu S. Boosting Xe/Kr separation by a mixed-linker strategy in radiation-resistant aluminum-based metal-organic frameworks. Separation and Purification Technology, 2023, 311: 123335

DOI

52
Zhu Z, Li B, Liu X, Zhang P, Chen S, Deng Q, Zeng Z, Wang J, Deng S. Efficient Xe/Kr separation on two metal-organic frameworks with distinct pore shapes. Separation and Purification Technology, 2021, 274: 119132

DOI

53
Gong W, Xie Y, Pham T D, Shetty S, Son F A, Idrees K B, Chen Z, Xie H, Liu Y, Snurr R Q, Chen B, Alameddine B, Cui Y, Farha O K. Creating optimal pockets in a clathrochelate-based metal-organic framework for gas adsorption and separation: experimental and computational studies. Journal of the American Chemical Society, 2022, 144(8): 3737–3745

DOI

54
Fu X P, Li Z R, Liu Q Y, Guan H, Wang Y L. Microporous metal-organic framework with cage-within-cage structures for xenon/krypton separation. Industrial & Engineering Chemistry Research, 2022, 61(21): 7397–7402

DOI

55
Li G, Ji G, Wang X, Liu W, Zhang D, Chen L, He L, Liang S, Li X, Ma F, Wang S. Efficient and selective capture of xenon over krypton by a window-cage metal-organic framework with parallel aromatic rings. Separation and Purification Technology, 2022, 295: 121281

DOI

56
Idrees K B, Chen Z, Zhang X, Mian M R, Drout R J, Islamoglu T, Farha O K. Tailoring pore aperture and structural defects in zirconium-based metal-organic frameworks for krypton/xenon separation. Chemistry of Materials, 2020, 32(9): 3776–3782

DOI

57
Lee S J, Kim K C, Yoon T U, Kim M B, Bae Y S. Selective dynamic separation of Xe and Kr in Co-MOF-74 through strong binding strength between Xe atom and unsaturated Co2+ site. Microporous and Mesoporous Materials, 2016, 236: 284–291

DOI

58
Tao Y, Fan Y, Xu Z, Feng X, Krishna R, Luo F. Boosting selective adsorption of Xe over Kr by double-accessible open-metal site in metal-organic framework: experimental and theoretical research. Inorganic Chemistry, 2020, 59(16): 11793–11800

DOI

59
Guo L, Zheng F, Xu Q, Chen R, Sun H, Chen L, Zhang Z, Yang Q, Yang Y, Ren Q, Bao Z. Double-accessible open metal sites in metal-organic frameworks with suitable pore size for efficient Xe/Kr separation. Industrial & Engineering Chemistry Research, 2022, 61(21): 7361–7369

DOI

60
Wang T, Peng Y L, Lin E, Niu Z, Li P, Ma S, Zhao P, Chen Y, Cheng P, Zhang Z. Robust bimetallic ultramicroporous metal-organic framework for separation and purification of noble gases. Inorganic Chemistry, 2020, 59(7): 4868–4873

DOI

61
Pei J, Gu X W, Liang C C, Chen B, Li B, Qian G. Robust and radiation-resistant hofmann-type metal-organic frameworks for record xenon/krypton separation. Journal of the American Chemical Society, 2022, 144(7): 3200–3209

DOI

62
Wang Y, Liu W, Bai Z, Zheng T, Silver M A, Li Y, Wang Y, Wang X, Diwu J, Chai Z, Wang S. Employing an unsaturated Th4+ site in a porous thorium-organic framework for Kr/Xe uptake and separation. Angewandte Chemie International Edition, 2018, 57(20): 5783–5787

DOI

63
Wu X L, Li Z J, Zhou H, Yang G, Liu X Y, Qian N, Wang W, Zeng Y S, Qian Z H, Chu X X, Liu W. Enhanced adsorption and separation of xenon over krypton via an unsaturated calcium center in a metal-organic framework. Inorganic Chemistry, 2021, 60(3): 1506–1512

DOI

64
Zhang C, Dong X, Chen Y, Wu H, Yu L, Zhou K, Wu Y, Xia Q, Wang H, Han Y, Li J. Balancing uptake and selectivity in a copper-based metal-organic framework for xenon and krypton separation. Separation and Purification Technology, 2022, 291: 120932

DOI

65
Mohamed M H, Elsaidi S K, Pham T, Forrest K A, Schaef H T, Hogan A, Wojtas L, Xu W, Space B, Zaworotko M J, Thallapally P K. Hybrid ultra-microporous materials for selective xenon adsorption and separation. Angewandte Chemie International Edition, 2016, 55(29): 8285–8289

DOI

66
Zheng F, Guo L, Chen R, Chen L, Zhang Z, Yang Q, Yang Y, Su B, Ren Q, Bao Z. Shell-like xenon nano-traps within angular anion-pillared layered porous materials for boosting Xe/Kr separation. Angewandte Chemie International Edition, 2022, 61(20): e202116686

DOI

67
Wang X, Ma F, Xiong S, Bai Z, Zhang Y, Li G, Chen J, Yuan M, Wang Y, Dai X, Chai Z, Wang S. Efficient Xe/Kr separation based on a lanthanide-organic framework with one-dimensional local positively charged rhomboid channels. ACS Applied Materials & Interfaces, 2022, 14(19): 22233–22241

DOI

68
Liu B Y, Gong Y J, Wu X N, Liu Q, Li W, Xiong S S, Hu S, Wang X L. Enhanced xenon adsorption and separation with an anionic indium-organic framework by ion exchange with Co2+. RSC Advances, 2017, 7(87): 55012–55019

DOI

69
Wang H, Shi Z, Yang J, Sun T, Rungtaweevoranit B, Lyu H, Zhang Y B, Yaghi O M. Docking of Cu(I) and Ag(I) in metal-organic frameworks for adsorption and separation of xenon. Angewandte Chemie International Edition, 2021, 60(7): 3417–3421

DOI

70
Gong W, Xie Y, Wang X, Kirlikovali K O, Idrees K B, Sha F, Xie H, Liu Y, Chen B, Cui Y, Farha O K. Programmed polarizability engineering in a cyclen-based cubic Zr(IV) metal-organic framework to boost Xe/Kr separation. Journal of the American Chemical Society, 2023, 145(4): 2679–2689

DOI

71
Liu J, Strachan D M, Thallapally P K. Enhanced noble gas adsorption in Ag@MOF-74Ni. Chemical Communications, 2014, 50(4): 466–468

DOI

72
Chen X, Plonka A M, Banerjee D, Krishna R, Schaef H T, Ghose S, Thallapally P K, Parise J B. Direct observation of Xe and Kr adsorption in a Xe-selective microporous metal-organic framework. Journal of the American Chemical Society, 2015, 137(22): 7007–7010

DOI

73
Li L, Guo L, Zhang Z, Yang Q, Yang Y, Bao Z, Ren Q, Li J. A robust squarate-based metal-organic framework demonstrates record-high affinity and selectivity for xenon over krypton. Journal of the American Chemical Society, 2019, 141(23): 9358–9364

DOI

74
Lee S J, Kim S, Kim E J, Kim M, Bae Y S. Adsorptive separation of xenon/krypton mixtures using ligand controls in a zirconium-based metal-organic framework. Chemical Engineering Journal, 2018, 335: 345–351

DOI

75
Wang H, Li J. General strategies for effective capture and separation of noble gases by metal-organic frameworks. Dalton Transactions, 2018, 47(12): 4027–4031

DOI

76
Ryan P, Farha O K, Broadbelt L J, Snurr R Q. Computational screening of metal-organic frameworks for xenon/krypton separation. American Institute of Chemical Engineers Journals, 2011, 57(7): 1759–1766

DOI

77
Sikora B J, Wilmer C E, Greenfield M L, Snurr R Q. Thermodynamic analysis of Xe/Kr selectivity in over 137000 hypothetical metal-organic frameworks. Chemical Science, 2012, 3(7): 2217–2223

DOI

78
Kancharlapalli S, Natarajan S, Ghanty T K. Confinement-directed adsorption of noble gases (Xe/Kr) in MFM-300(M)-based metal-organic framework materials. Journal of Physical Chemistry C, 2019, 123(45): 27531–27541

DOI

79
Zarabadi-Poor P, Marek R. In silico study of (Mn, Fe, Co, Ni, Zn)-BTC metal-organic frameworks for recovering xenon from exhaled anesthetic gas. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15001–15006

DOI

80
Guo F, Liu Y, Hu J, Liu H, Hu Y. Fast screening of porous materials for noble gas adsorption and separation: a classical density functional approach. Physical Chemistry Chemical Physics, 2018, 20(44): 28193–28204

DOI

81
Riley B J, Chong S, Kuang W, Varga T, Helal A S, Galanek M, Li J, Nelson Z J, Thallapally P K. Metal-organic framework-polyacrylonitrile composite beads for xenon capture. ACS Applied Materials & Interfaces, 2020, 12(40): 45342–45350

DOI

82
Elsaidi S K, Ongari D, Xu W, Mohamed M H, Haranczyk M, Thallapally P K. Xenon recovery at room temperature using metal-organic frameworks. Chemistry—A European Journal, 2017, 23(45): 10758–10762

DOI

83
Niu Z, Fan Z, Pham T, Verma G, Forrest K A, Space B, Thallapally P K, Al-Enizi A M, Ma S. Self-adjusting metal-organic framework for efficient capture of trace xenon and krypton. Angewandte Chemie International Edition, 2022, 61(11): e202117807

DOI

84
Liu J, Fernandez C A, Martin P F, Thallapally P K, Strachan D M. A two-column method for the separation of Kr and Xe from process off-gases. Industrial & Engineering Chemistry Research, 2014, 53(32): 12893–12899

DOI

85
Elsaidi S K, Mohamed M H, Helal A S, Galanek M, Pham T, Suepaul S, Space B, Hopkinson D, Thallapally P K, Li J. Radiation-resistant metal-organic framework enables efficient separation of krypton fission gas from spent nuclear fuel. Nature Communications, 2020, 11(1): 3103

DOI

86
Zhang Y, Zhang X, Lyu J, Otake K i, Wang X, Redfern L R, Malliakas C D, Li Z, Islamoglu T, Wang B. . A flexible metal-organic framework with 4-connected Zr6 nodes. Journal of the American Chemical Society, 2018, 140(36): 11179–11183

DOI

87
Wang T C, Bury W, Gómez-Gualdrón D A, Vermeulen N A, Mondloch J E, Deria P, Zhang K, Moghadam P Z, Sarjeant A A, Snurr R Q. . Ultrahigh surface area zirconium MOFs and insights into the applicability of the BET theory. Journal of the American Chemical Society, 2015, 137(10): 3585–3591

DOI

88
Reinsch H, Waitschat S, Stock N. Mixed-linker MOFs with CAU-10 structure: synthesis and gas sorption characteristics. Dalton Transactions, 2013, 42(14): 4840–4847

DOI

89
Fu X P, Wang Y L, Zhang X F, Zhang Z, He C T, Liu Q Y. Fluorous metal-organic frameworks with unique cage-in-cage structures featuring fluorophilic pore surfaces for efficient C2H2/CO2 separation. Chinese Chemical Society Chemistry, 2022, 4(10): 3416–3425

90
Yu G, Liu Y, Zou X, Zhao N, Rong H, Zhu G. A nanosized metal-organic framework with small pores for kinetic xenon separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(25): 11797–11803

DOI

91
Abramova A, Couzon N, Leloire M, Nerisson P, Cantrel L, Royer S, Loiseau T, Volkringer C, Dhainaut J. Extrusion-spheronization of UiO-66 and UiO-66_NH2 into robust-shaped solids and their use for gaseous molecular iodine, xenon, and krypton adsorption. ACS Applied Materials & Interfaces, 2022, 14(8): 10669–10680

DOI

92
Caskey S R, Wong-Foy A G, Matzger A J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. Journal of the American Chemical Society, 2008, 130(33): 10870–10871

DOI

93
Dietzel P D C, Panella B, Hirscher M, Blom R, Fjellvåg H. Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. Chemical Communications, 2006, 9(9): 959–961

DOI

94
Dietzel P D C, Besikiotis V, Blom R. Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide. Journal of Materials Chemistry, 2009, 19(39): 7362–7370

DOI

95
Perry IV J J, Teich-McGoldrick S L, Meek S T, Greathouse J A, Haranczyk M, Allendorf M D. Noble gas adsorption in metal-organic frameworks containing open metal sites. Journal of Physical Chemistry C, 2014, 118(22): 11685–11698

DOI

96
Luo F, Yan C, Dang L, Krishna R, Zhou W, Wu H, Dong X, Han Y, Hu T L, O’Keeffe M. . UTSA-74: a MOF-74 isomer with two accessible binding sites per metal center for highly selective gas separation. Journal of the American Chemical Society, 2016, 138(17): 5678–5684

DOI

97
Liu Q, Gong Y, Liu B, Xiong S, Wen H M, Wang X. Dense packing of xenon in an ultra-microporous metal-organic framework for benchmark xenon capture and separation. Chemical Engineering Journal, 2023, 453: 139849

DOI

98
Mohamed M H, Elsaidi S K, Wojtas L, Pham T, Forrest K A, Tudor B, Space B, Zaworotko M J. Highly selective CO2 uptake in uninodal 6-connected “mmo” nets based upon MO42– (M = Cr, Mo) pillars. Journal of the American Chemical Society, 2012, 134(48): 19556–19559

DOI

99
Burd S D, Nugent P S, Mohameda M H, Elsaidia S K, Zaworotko M J. Square grid and pillared square grid coordination polymers—fertile ground for crystal engineering of structure and function. Chimia, 2013, 67(6): 372–378

DOI

100
Mohamed M H, Elsaidi S K, Pham T, Forrest K A, Tudor B, Wojtas L, Space B, Zaworotko M J. Pillar substitution modulates CO2 affinity in “mmo” topology networks. Chemical Communications, 2013, 49(84): 9809–9811

DOI

101
Gu X, Lu Z H, Jiang H L, Akita T, Xu Q. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. Journal of the American Chemical Society, 2011, 133(31): 11822–11825

DOI

102
Dixit M, Adit Maark T, Ghatak K, Ahuja R, Pal S. Scandium-decorated MOF-5 as potential candidates for room-temperature hydrogen storage: a solution for the clustering problem in MOFs. Journal of Physical Chemistry C, 2012, 116(33): 17336–17342

DOI

103
Sumida K, Stück D, Mino L, Chai J D, Bloch E D, Zavorotynska O, Murray L J, Dincă M, Chavan S, Bordiga S. . Impact of metal and anion substitutions on the hydrogen storage properties of M-BTT metal-organic frameworks. Journal of the American Chemical Society, 2013, 135(3): 1083–1091

DOI

104
Fairchild D C, Hossain M I, Cordova J, Glover T G, Uribe-Romo F J. Steric and electronic effects on the interaction of Xe and Kr with functionalized zirconia metal-organic frameworks. ACS Materials Letters, 2021, 3(5): 504–510

DOI

105
Qian J J, Chen G H, Xiao S T, Li H B, Ouyang Y G, Wang Q. Switching Xe/Kr adsorption selectivity in modified SBMOF-1: a theoretical study. RSC Advances, 2020, 10(29): 17195–17204

DOI

Outlines

/