Selective capture and separation of xenon and krypton using metal organic frameworks: a review

Yilun Zhou, Jingyi Wang, Yujie Zhao, He Gu, Zhongshan Chen, Hui Yang, Xiangke Wang

PDF(2992 KB)
PDF(2992 KB)
Front. Chem. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (12) : 1895-1912. DOI: 10.1007/s11705-023-2355-3
REVIEW ARTICLE
REVIEW ARTICLE

Selective capture and separation of xenon and krypton using metal organic frameworks: a review

Author information +
History +

Abstract

Xenon and krypton are widespread useful noble gases in commercial lighting, lasers, electronics, and medical industry. At the same time, radioactive noble gases may proliferate from used nuclear fuel and diffuse in open atmospheres. Metal organic frameworks as hotspot porous materials for gases uptake and separation are considered to be potential solutions. In this review, we comprehensively summarized recent researches on metal organic frameworks for selective capture and separation of xenon and krypton. Particularly, we followed the aspects of different optimal design strategies, including optimal pore/cage size and geometry, open metal sites, ions (anions and cations), and polar functional groups for enhancing the xenon adsorption and separation performances. Meanwhile, a comparison of each strategy and the mechanisms of xenon/krypton separation were pointed out. The separation of krypton from gases mixtures by dual-bed systems was further discussed. Finally, some existing challenges and opportunities for possible real applications were proclaimed.

Graphical abstract

Keywords

metal organic frameworks / xenon / krypton / selective separation / used nuclear fuel

Cite this article

Download citation ▾
Yilun Zhou, Jingyi Wang, Yujie Zhao, He Gu, Zhongshan Chen, Hui Yang, Xiangke Wang. Selective capture and separation of xenon and krypton using metal organic frameworks: a review. Front. Chem. Sci. Eng., 2023, 17(12): 1895‒1912 https://doi.org/10.1007/s11705-023-2355-3

References

[1]
Banerjee D, Cairns A J, Liu J, Motkuri R K, Nune S K, Fernandez C A, Krishna R, Strachan D M, Thallapally P K. Potential of metal-organic frameworks for separation of xenon and krypton. Accounts of Chemical Research, 2015, 48(2): 211–219
CrossRef Google scholar
[2]
Basu C, Meinhardt-Wollweber M, Roth B. Lighting with laser diodes. Advances in Optical Technologies, 2013, 2(4): 313–321
CrossRef Google scholar
[3]
Grigor’ev G Y, Nabiev S S. Production and applications of spin-polarized isotopes of noble gases. Russian Journal of Physical Chemistry B. Focus on Physics, 2018, 12(3): 363–377
CrossRef Google scholar
[4]
Yin H, Chen Z, Zhao H, Huang H, Liu W. Noble gas and neuroprotection: from bench to bedside. Frontiers in Pharmacology, 2022, 13: 1028688
CrossRef Google scholar
[5]
Banerjee D, Simon C M, Elsaidi S K, Haranczyk M, Thallapally P K. Xenon gas separation and storage using metal-organic frameworks. Chem, 2018, 4(3): 466–494
CrossRef Google scholar
[6]
Back H, Bottenus D, Clayton C, Stephenson D, TeGrotenhuis W. 136Xe enrichment through cryogenic distillation. Journal of Instrumentation: an IOP and SISSA Journal, 2017, 12(9): P09033
CrossRef Google scholar
[7]
Hasanzadeh A, Azamat J, Pakdel S, Erfan-Niya H, Khataee A. Separation of noble gases using CHA-type zeolite membrane: insights from molecular dynamics simulation. Chemical Papers, 2020, 74(9): 3057–3065
CrossRef Google scholar
[8]
Hye Kwon Y, Kiang C, Benjamin E, Crawford P, Nair S, Bhave R. Krypton-xenon separation properties of SAPO-34 zeolite materials and membranes. American Institute of Chemical Engineers Journals, 2017, 63(2): 761–769
CrossRef Google scholar
[9]
Wang X, Zhang Y, Wang X, Andres-Garcia E, Du P, Giordano L, Wang L, Hong Z, Gu X, Murad S, Kapteijn F. Xenon recovery by DD3R zeolite membranes: application in anaesthetics. Angewandte Chemie International Edition, 2019, 58(43): 15518–15525
CrossRef Google scholar
[10]
Magomedbekov E P, Merkushkin A O, Obruchikov A V, Pokalchuk V S. Argon, krypton and xenon adsorption coefficients on various activated carbons under dynamic conditions. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(2): 1091–1100
CrossRef Google scholar
[11]
Men’shchikov I, Shkolin A, Khozina E, Fomkin A. Peculiarities of thermodynamic behaviors of xenon adsorption on the activated carbon prepared from silicon carbide. Nanomaterials, 2021, 11(4): 971
CrossRef Google scholar
[12]
Nakano Y, Ichimura K, Ito H, Okada T, Sekiya H, Takeuchi Y, Tasaka S, Yamashita M. Evaluation of radon adsorption efficiency values in xenon with activated carbon fibers. Progress of Theoretical and Experimental Physics, 2020, 2020(11): 113H01
[13]
Li H, Eddaoudi M, O’Keeffe M, Yaghi O M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999, 402(6759): 276–279
CrossRef Google scholar
[14]
Ahmad A, Khan S, Tariq S, Luque R, Verpoort F. Self-sacrifice MOFs for heterogeneous catalysis: synthesis mechanisms and future perspectives. Materials Today, 2022, 55: 137–169
CrossRef Google scholar
[15]
Le M, Ni Q L, Zeng L H, Yuan C Y, Wang X J, Li S M, Gui L C. Construction of acylamide-functionalized MOFs for efficient catalysis on the conversion of CO2. Molecular Catalysis, 2022, 533: 112786
CrossRef Google scholar
[16]
Liu H, Xu Y, Li L, Dai X. Deciphering the underlying mechanism of MOF-808-based abiotic catalysis enhancing biodegradability of waste activated sludge: insights from the effects on bioconversion of extracellular organic substances into methane. Science of the Total Environment, 2022, 849: 157855
CrossRef Google scholar
[17]
Peng X, Chen L, Li Y. Ordered macroporous MOF-based materials for catalysis. Molecular Catalysis, 2022, 529: 112568
CrossRef Google scholar
[18]
Ghanbari T, Abnisa F, Wan Daud W M A. A review on production of metal organic frameworks (MOF) for CO2 adsorption. Science of the Total Environment, 2020, 707: 135090
CrossRef Google scholar
[19]
Li W, Ji W, Yılmaz M, Zhang T C, Yuan S. One-pot synthesis of MWCNTs/Fe-MOFs nanocomposites for enhanced adsorption of As(V) in aqueous solution. Applied Surface Science, 2023, 609: 155304
CrossRef Google scholar
[20]
Peh S B, Farooq S, Zhao D. Techno-economic analysis of MOF-based adsorption cycles for postcombustion CO2 capture from wet flue gas. Chemical Engineering Science, 2023, 268: 118390
CrossRef Google scholar
[21]
Rupam T H, Tuli F J, Jahan I, Palash M L, Chakraborty A, Saha B B. Isotherms and kinetics of water sorption onto MOFs for adsorption cooling applications. Thermal Science and Engineering Progress, 2022, 34: 101436
CrossRef Google scholar
[22]
Tan T L, Somat H A, Latif M A M, Rashid S A. One-pot solvothermal synthesis of Zr-based MOFs with enhanced adsorption capacity for Cu2+ ions removal. Journal of Solid State Chemistry, 2022, 315: 123429
CrossRef Google scholar
[23]
Chen C X, Pham T, Tan K, Krishna R, Lan P C, Wang L, Chen S, Al-Enizi A M, Nafady A, Forrest K A, Wang H, Wang S, Shan C, Zhang L, Su C Y, Ma S. Regulating C2H2/CO2 adsorption selectivity by electronic-state manipulation of iron in metal-organic frameworks. Cell Reports Physical Science, 2022, 3(8): 100977
CrossRef Google scholar
[24]
Knebel A, Caro J. Metal-organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation. Nature Nanotechnology, 2022, 17(9): 911–923
CrossRef Google scholar
[25]
Cao H, Gou M, Wang C, Guo R. Constructing solubility-diffusion domain in pebax by hybrid-phase MOFs for efficient separation of carbon dioxide and methane. Microporous and Mesoporous Materials, 2022, 346: 112328
CrossRef Google scholar
[26]
Wu W, Hong X, Fan J, Wei Y, Wang H. Research progress on the substrate for metal-organic framework (MOF) membrane growth for separation. Chinese Journal of Chemical Engineering, 2022, 56: 299–313
CrossRef Google scholar
[27]
Ye Q, Li J, Huang Y, Wu H, Li Y, Yan B. Preparation of a cyclodextrin metal-organic framework (CD-MOF) membrane for chiral separation. Journal of Environmental Chemical Engineering, 2023, 11(2): 109250
CrossRef Google scholar
[28]
Ahmed A, Siegel D J. Predicting hydrogen storage in MOFs via machine learning. Patterns, 2021, 2(7): 100291
CrossRef Google scholar
[29]
Elsabawy K M, Fallatah A M, Owidah Z O. Synthesis of newly crystalline-porous-Pd(II)-(E,E)-2,4-hexadienoic acid complex-leads to 3D-MOFs for hydrogen storage. Journal of Molecular Structure, 2022, 1250: 131723
CrossRef Google scholar
[30]
Gao H, Shi R, Shao Y, Liu Y, Zhu Y, Zhang J, Li L. Catalysis derived from flower-like Ni MOF towards the hydrogen storage performance of magnesium hydride. International Journal of Hydrogen Energy, 2022, 47(15): 9346–9356
CrossRef Google scholar
[31]
Jia T, Gu Y, Li F. Progress and potential of metal-organic frameworks (MOFs) for gas storage and separation: a review. Journal of Environmental Chemical Engineering, 2022, 10(5): 108300
CrossRef Google scholar
[32]
Yuan G, Tu H, Li M, Liu J, Zhao C, Liao J, Yang Y, Yang J, Liu N. Glycine derivative-functionalized metal-organic framework (MOF) materials for Co(II) removal from aqueous solution. Applied Surface Science, 2019, 466: 903–910
CrossRef Google scholar
[33]
Wang T, Lin E, Peng Y L, Chen Y, Cheng P, Zhang Z. Rational design and synthesis of ultramicroporous metal-organic frameworks for gas separation. Coordination Chemistry Reviews, 2020, 423: 213485
CrossRef Google scholar
[34]
Banerjee D, Simon C M, Plonka A M, Motkuri R K, Liu J, Chen X, Smit B, Parise J B, Haranczyk M, Thallapally P K. Metal-organic framework with optimally selective xenon adsorption and separation. Nature Communications, 2016, 7(1): 11831
CrossRef Google scholar
[35]
Chakraborty D, Nandi S, Maity R, Motkuri R K, Han K S, Collins S, Humble P, Hayes J C, Woo T K, Vaidhyanathan R, Thallapally P K. An ultra-microporous metal-organic framework with exceptional Xe capacity. Chemistry—A European Journal, 2020, 26(55): 12544–12548
CrossRef Google scholar
[36]
Kim M B, Robinson A J, Sushko M L, Thallapally P K. Aluminum-based microporous metal-organic framework for noble gas separation. Journal of Industrial and Engineering Chemistry, 2023, 118: 181–186
CrossRef Google scholar
[37]
Elsaidi S K, Mohamed M H, Simon C M, Braun E, Pham T, Forrest K A, Xu W, Banerjee D, Space B, Zaworotko M J. . Effect of ring rotation upon gas adsorption in SIFSIX-3-M (M = Fe, Ni) pillared square grid networks. Chemical Science, 2017, 8(3): 2373–2380
CrossRef Google scholar
[38]
Banerjee D, Elsaidi S K, Thallapally P K. Xe adsorption and separation properties of a series of microporous metal-organic frameworks (MOFs) with V-shaped linkers. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(32): 16611–16615
CrossRef Google scholar
[39]
Wang L, Liu W, Ding J, Zhang H, Zhu Y, Luo F. A robust calcium-organic framework for effective separation of xenon and krypton. Crystal Growth & Design, 2021, 21(2): 954–959
CrossRef Google scholar
[40]
Wang L, Ding J, Zhu Y, Xu Z, Fan Y, Krishna R, Luo F. A robust metal-organic framework showing two distinct pores for effective separation of xenon and krypton. Microporous and Mesoporous Materials, 2021, 326: 111350
CrossRef Google scholar
[41]
Zhang H, Fan Y, Krishna R, Feng X, Wang L, Luo F. Robust metal-organic framework with multiple traps for trace Xe/Kr separation. Science Bulletin, 2021, 66(11): 1073–1079
CrossRef Google scholar
[42]
Wei Y, Qi F, Li Y, Min X, Wang Q, Hu J, Sun T. Efficient Xe selective separation from Xe/Kr/N2 mixtures over a microporous CALF-20 framework. RSC Advances, 2022, 12(28): 18224–18231
CrossRef Google scholar
[43]
Yu L, Xiong S, Lin Y, Li L, Peng J, Liu W, Huang X, Wang H, Li J. Tuning the channel size and structure flexibility of metal-organic frameworks for the selective adsorption of noble gases. Inorganic Chemistry, 2019, 58(22): 15025–15028
CrossRef Google scholar
[44]
Gong L, Liu Y, Ren J, Al-Enizi A M, Nafady A, Ye Y, Bao Z, Ma S. Utilization of cationic microporous metal-organic framework for efficient Xe/Kr separation. Nano Research, 2022, 15(8): 7559–7564
CrossRef Google scholar
[45]
Xiong S, Gong Y, Hu S, Wu X, Li W, He Y, Chen B, Wang X. A microporous metal-organic framework with commensurate adsorption and highly selective separation of xenon. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(11): 4752–4758
CrossRef Google scholar
[46]
Maldonado R R, Zhang X, Hanna S, Gong X, Gianneschi N C, Hupp J T, Farha O K. Squeezing the box: isoreticular contraction of pyrene-based linker in a Zr-based metal-organic framework for Xe/Kr separation. Dalton Transactions, 2020, 49(20): 6553–6556
CrossRef Google scholar
[47]
Lee S J, Yoon T U, Kim A R, Kim S Y, Cho K H, Hwang Y K, Yeon J W, Bae Y S. Adsorptive separation of xenon/krypton mixtures using a zirconium-based metal-organic framework with high hydrothermal and radioactive stabilities. Journal of Hazardous Materials, 2016, 320: 513–520
CrossRef Google scholar
[48]
Yan Z, Gong Y, Chen B, Wu X, liu Q, Cui L, Xiong S, Peng S. Methyl functionalized Zr-Fum MOF with enhanced xenon adsorption and separation. Separation and Purification Technology, 2020, 239: 116514
CrossRef Google scholar
[49]
Yan Z, Gong Y, Yang C T, Wu X, Liu B, Liu Q, Xiong S, Peng S. Pore size reduction by methyl function in aluminum-based metal-organic frameworks for xenon/krypton separation. Crystal Growth & Design, 2020, 20(12): 8039–8046
CrossRef Google scholar
[50]
Zhou J, Ke T, Steinke F, Stock N, Zhang Z, Bao Z, He X, Ren Q, Yang Q. Tunable confined aliphatic pore environment in robust metal-organic frameworks for efficient separation of gases with a similar structure. Journal of the American Chemical Society, 2022, 144(31): 14322–14329
CrossRef Google scholar
[51]
Liu B, Yan Z, Liu Q, Gong Y, Wu X, Mao Z, Xiong S, Hu S. Boosting Xe/Kr separation by a mixed-linker strategy in radiation-resistant aluminum-based metal-organic frameworks. Separation and Purification Technology, 2023, 311: 123335
CrossRef Google scholar
[52]
Zhu Z, Li B, Liu X, Zhang P, Chen S, Deng Q, Zeng Z, Wang J, Deng S. Efficient Xe/Kr separation on two metal-organic frameworks with distinct pore shapes. Separation and Purification Technology, 2021, 274: 119132
CrossRef Google scholar
[53]
Gong W, Xie Y, Pham T D, Shetty S, Son F A, Idrees K B, Chen Z, Xie H, Liu Y, Snurr R Q, Chen B, Alameddine B, Cui Y, Farha O K. Creating optimal pockets in a clathrochelate-based metal-organic framework for gas adsorption and separation: experimental and computational studies. Journal of the American Chemical Society, 2022, 144(8): 3737–3745
CrossRef Google scholar
[54]
Fu X P, Li Z R, Liu Q Y, Guan H, Wang Y L. Microporous metal-organic framework with cage-within-cage structures for xenon/krypton separation. Industrial & Engineering Chemistry Research, 2022, 61(21): 7397–7402
CrossRef Google scholar
[55]
Li G, Ji G, Wang X, Liu W, Zhang D, Chen L, He L, Liang S, Li X, Ma F, Wang S. Efficient and selective capture of xenon over krypton by a window-cage metal-organic framework with parallel aromatic rings. Separation and Purification Technology, 2022, 295: 121281
CrossRef Google scholar
[56]
Idrees K B, Chen Z, Zhang X, Mian M R, Drout R J, Islamoglu T, Farha O K. Tailoring pore aperture and structural defects in zirconium-based metal-organic frameworks for krypton/xenon separation. Chemistry of Materials, 2020, 32(9): 3776–3782
CrossRef Google scholar
[57]
Lee S J, Kim K C, Yoon T U, Kim M B, Bae Y S. Selective dynamic separation of Xe and Kr in Co-MOF-74 through strong binding strength between Xe atom and unsaturated Co2+ site. Microporous and Mesoporous Materials, 2016, 236: 284–291
CrossRef Google scholar
[58]
Tao Y, Fan Y, Xu Z, Feng X, Krishna R, Luo F. Boosting selective adsorption of Xe over Kr by double-accessible open-metal site in metal-organic framework: experimental and theoretical research. Inorganic Chemistry, 2020, 59(16): 11793–11800
CrossRef Google scholar
[59]
Guo L, Zheng F, Xu Q, Chen R, Sun H, Chen L, Zhang Z, Yang Q, Yang Y, Ren Q, Bao Z. Double-accessible open metal sites in metal-organic frameworks with suitable pore size for efficient Xe/Kr separation. Industrial & Engineering Chemistry Research, 2022, 61(21): 7361–7369
CrossRef Google scholar
[60]
Wang T, Peng Y L, Lin E, Niu Z, Li P, Ma S, Zhao P, Chen Y, Cheng P, Zhang Z. Robust bimetallic ultramicroporous metal-organic framework for separation and purification of noble gases. Inorganic Chemistry, 2020, 59(7): 4868–4873
CrossRef Google scholar
[61]
Pei J, Gu X W, Liang C C, Chen B, Li B, Qian G. Robust and radiation-resistant hofmann-type metal-organic frameworks for record xenon/krypton separation. Journal of the American Chemical Society, 2022, 144(7): 3200–3209
CrossRef Google scholar
[62]
Wang Y, Liu W, Bai Z, Zheng T, Silver M A, Li Y, Wang Y, Wang X, Diwu J, Chai Z, Wang S. Employing an unsaturated Th4+ site in a porous thorium-organic framework for Kr/Xe uptake and separation. Angewandte Chemie International Edition, 2018, 57(20): 5783–5787
CrossRef Google scholar
[63]
Wu X L, Li Z J, Zhou H, Yang G, Liu X Y, Qian N, Wang W, Zeng Y S, Qian Z H, Chu X X, Liu W. Enhanced adsorption and separation of xenon over krypton via an unsaturated calcium center in a metal-organic framework. Inorganic Chemistry, 2021, 60(3): 1506–1512
CrossRef Google scholar
[64]
Zhang C, Dong X, Chen Y, Wu H, Yu L, Zhou K, Wu Y, Xia Q, Wang H, Han Y, Li J. Balancing uptake and selectivity in a copper-based metal-organic framework for xenon and krypton separation. Separation and Purification Technology, 2022, 291: 120932
CrossRef Google scholar
[65]
Mohamed M H, Elsaidi S K, Pham T, Forrest K A, Schaef H T, Hogan A, Wojtas L, Xu W, Space B, Zaworotko M J, Thallapally P K. Hybrid ultra-microporous materials for selective xenon adsorption and separation. Angewandte Chemie International Edition, 2016, 55(29): 8285–8289
CrossRef Google scholar
[66]
Zheng F, Guo L, Chen R, Chen L, Zhang Z, Yang Q, Yang Y, Su B, Ren Q, Bao Z. Shell-like xenon nano-traps within angular anion-pillared layered porous materials for boosting Xe/Kr separation. Angewandte Chemie International Edition, 2022, 61(20): e202116686
CrossRef Google scholar
[67]
Wang X, Ma F, Xiong S, Bai Z, Zhang Y, Li G, Chen J, Yuan M, Wang Y, Dai X, Chai Z, Wang S. Efficient Xe/Kr separation based on a lanthanide-organic framework with one-dimensional local positively charged rhomboid channels. ACS Applied Materials & Interfaces, 2022, 14(19): 22233–22241
CrossRef Google scholar
[68]
Liu B Y, Gong Y J, Wu X N, Liu Q, Li W, Xiong S S, Hu S, Wang X L. Enhanced xenon adsorption and separation with an anionic indium-organic framework by ion exchange with Co2+. RSC Advances, 2017, 7(87): 55012–55019
CrossRef Google scholar
[69]
Wang H, Shi Z, Yang J, Sun T, Rungtaweevoranit B, Lyu H, Zhang Y B, Yaghi O M. Docking of Cu(I) and Ag(I) in metal-organic frameworks for adsorption and separation of xenon. Angewandte Chemie International Edition, 2021, 60(7): 3417–3421
CrossRef Google scholar
[70]
Gong W, Xie Y, Wang X, Kirlikovali K O, Idrees K B, Sha F, Xie H, Liu Y, Chen B, Cui Y, Farha O K. Programmed polarizability engineering in a cyclen-based cubic Zr(IV) metal-organic framework to boost Xe/Kr separation. Journal of the American Chemical Society, 2023, 145(4): 2679–2689
CrossRef Google scholar
[71]
Liu J, Strachan D M, Thallapally P K. Enhanced noble gas adsorption in Ag@MOF-74Ni. Chemical Communications, 2014, 50(4): 466–468
CrossRef Google scholar
[72]
Chen X, Plonka A M, Banerjee D, Krishna R, Schaef H T, Ghose S, Thallapally P K, Parise J B. Direct observation of Xe and Kr adsorption in a Xe-selective microporous metal-organic framework. Journal of the American Chemical Society, 2015, 137(22): 7007–7010
CrossRef Google scholar
[73]
Li L, Guo L, Zhang Z, Yang Q, Yang Y, Bao Z, Ren Q, Li J. A robust squarate-based metal-organic framework demonstrates record-high affinity and selectivity for xenon over krypton. Journal of the American Chemical Society, 2019, 141(23): 9358–9364
CrossRef Google scholar
[74]
Lee S J, Kim S, Kim E J, Kim M, Bae Y S. Adsorptive separation of xenon/krypton mixtures using ligand controls in a zirconium-based metal-organic framework. Chemical Engineering Journal, 2018, 335: 345–351
CrossRef Google scholar
[75]
Wang H, Li J. General strategies for effective capture and separation of noble gases by metal-organic frameworks. Dalton Transactions, 2018, 47(12): 4027–4031
CrossRef Google scholar
[76]
Ryan P, Farha O K, Broadbelt L J, Snurr R Q. Computational screening of metal-organic frameworks for xenon/krypton separation. American Institute of Chemical Engineers Journals, 2011, 57(7): 1759–1766
CrossRef Google scholar
[77]
Sikora B J, Wilmer C E, Greenfield M L, Snurr R Q. Thermodynamic analysis of Xe/Kr selectivity in over 137000 hypothetical metal-organic frameworks. Chemical Science, 2012, 3(7): 2217–2223
CrossRef Google scholar
[78]
Kancharlapalli S, Natarajan S, Ghanty T K. Confinement-directed adsorption of noble gases (Xe/Kr) in MFM-300(M)-based metal-organic framework materials. Journal of Physical Chemistry C, 2019, 123(45): 27531–27541
CrossRef Google scholar
[79]
Zarabadi-Poor P, Marek R. In silico study of (Mn, Fe, Co, Ni, Zn)-BTC metal-organic frameworks for recovering xenon from exhaled anesthetic gas. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15001–15006
CrossRef Google scholar
[80]
Guo F, Liu Y, Hu J, Liu H, Hu Y. Fast screening of porous materials for noble gas adsorption and separation: a classical density functional approach. Physical Chemistry Chemical Physics, 2018, 20(44): 28193–28204
CrossRef Google scholar
[81]
Riley B J, Chong S, Kuang W, Varga T, Helal A S, Galanek M, Li J, Nelson Z J, Thallapally P K. Metal-organic framework-polyacrylonitrile composite beads for xenon capture. ACS Applied Materials & Interfaces, 2020, 12(40): 45342–45350
CrossRef Google scholar
[82]
Elsaidi S K, Ongari D, Xu W, Mohamed M H, Haranczyk M, Thallapally P K. Xenon recovery at room temperature using metal-organic frameworks. Chemistry—A European Journal, 2017, 23(45): 10758–10762
CrossRef Google scholar
[83]
Niu Z, Fan Z, Pham T, Verma G, Forrest K A, Space B, Thallapally P K, Al-Enizi A M, Ma S. Self-adjusting metal-organic framework for efficient capture of trace xenon and krypton. Angewandte Chemie International Edition, 2022, 61(11): e202117807
CrossRef Google scholar
[84]
Liu J, Fernandez C A, Martin P F, Thallapally P K, Strachan D M. A two-column method for the separation of Kr and Xe from process off-gases. Industrial & Engineering Chemistry Research, 2014, 53(32): 12893–12899
CrossRef Google scholar
[85]
Elsaidi S K, Mohamed M H, Helal A S, Galanek M, Pham T, Suepaul S, Space B, Hopkinson D, Thallapally P K, Li J. Radiation-resistant metal-organic framework enables efficient separation of krypton fission gas from spent nuclear fuel. Nature Communications, 2020, 11(1): 3103
CrossRef Google scholar
[86]
Zhang Y, Zhang X, Lyu J, Otake K i, Wang X, Redfern L R, Malliakas C D, Li Z, Islamoglu T, Wang B. . A flexible metal-organic framework with 4-connected Zr6 nodes. Journal of the American Chemical Society, 2018, 140(36): 11179–11183
CrossRef Google scholar
[87]
Wang T C, Bury W, Gómez-Gualdrón D A, Vermeulen N A, Mondloch J E, Deria P, Zhang K, Moghadam P Z, Sarjeant A A, Snurr R Q. . Ultrahigh surface area zirconium MOFs and insights into the applicability of the BET theory. Journal of the American Chemical Society, 2015, 137(10): 3585–3591
CrossRef Google scholar
[88]
Reinsch H, Waitschat S, Stock N. Mixed-linker MOFs with CAU-10 structure: synthesis and gas sorption characteristics. Dalton Transactions, 2013, 42(14): 4840–4847
CrossRef Google scholar
[89]
Fu X P, Wang Y L, Zhang X F, Zhang Z, He C T, Liu Q Y. Fluorous metal-organic frameworks with unique cage-in-cage structures featuring fluorophilic pore surfaces for efficient C2H2/CO2 separation. Chinese Chemical Society Chemistry, 2022, 4(10): 3416–3425
[90]
Yu G, Liu Y, Zou X, Zhao N, Rong H, Zhu G. A nanosized metal-organic framework with small pores for kinetic xenon separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(25): 11797–11803
CrossRef Google scholar
[91]
Abramova A, Couzon N, Leloire M, Nerisson P, Cantrel L, Royer S, Loiseau T, Volkringer C, Dhainaut J. Extrusion-spheronization of UiO-66 and UiO-66_NH2 into robust-shaped solids and their use for gaseous molecular iodine, xenon, and krypton adsorption. ACS Applied Materials & Interfaces, 2022, 14(8): 10669–10680
CrossRef Google scholar
[92]
Caskey S R, Wong-Foy A G, Matzger A J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. Journal of the American Chemical Society, 2008, 130(33): 10870–10871
CrossRef Google scholar
[93]
Dietzel P D C, Panella B, Hirscher M, Blom R, Fjellvåg H. Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. Chemical Communications, 2006, 9(9): 959–961
CrossRef Google scholar
[94]
Dietzel P D C, Besikiotis V, Blom R. Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide. Journal of Materials Chemistry, 2009, 19(39): 7362–7370
CrossRef Google scholar
[95]
Perry IV J J, Teich-McGoldrick S L, Meek S T, Greathouse J A, Haranczyk M, Allendorf M D. Noble gas adsorption in metal-organic frameworks containing open metal sites. Journal of Physical Chemistry C, 2014, 118(22): 11685–11698
CrossRef Google scholar
[96]
Luo F, Yan C, Dang L, Krishna R, Zhou W, Wu H, Dong X, Han Y, Hu T L, O’Keeffe M. . UTSA-74: a MOF-74 isomer with two accessible binding sites per metal center for highly selective gas separation. Journal of the American Chemical Society, 2016, 138(17): 5678–5684
CrossRef Google scholar
[97]
Liu Q, Gong Y, Liu B, Xiong S, Wen H M, Wang X. Dense packing of xenon in an ultra-microporous metal-organic framework for benchmark xenon capture and separation. Chemical Engineering Journal, 2023, 453: 139849
CrossRef Google scholar
[98]
Mohamed M H, Elsaidi S K, Wojtas L, Pham T, Forrest K A, Tudor B, Space B, Zaworotko M J. Highly selective CO2 uptake in uninodal 6-connected “mmo” nets based upon MO42– (M = Cr, Mo) pillars. Journal of the American Chemical Society, 2012, 134(48): 19556–19559
CrossRef Google scholar
[99]
Burd S D, Nugent P S, Mohameda M H, Elsaidia S K, Zaworotko M J. Square grid and pillared square grid coordination polymers—fertile ground for crystal engineering of structure and function. Chimia, 2013, 67(6): 372–378
CrossRef Google scholar
[100]
Mohamed M H, Elsaidi S K, Pham T, Forrest K A, Tudor B, Wojtas L, Space B, Zaworotko M J. Pillar substitution modulates CO2 affinity in “mmo” topology networks. Chemical Communications, 2013, 49(84): 9809–9811
CrossRef Google scholar
[101]
Gu X, Lu Z H, Jiang H L, Akita T, Xu Q. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. Journal of the American Chemical Society, 2011, 133(31): 11822–11825
CrossRef Google scholar
[102]
Dixit M, Adit Maark T, Ghatak K, Ahuja R, Pal S. Scandium-decorated MOF-5 as potential candidates for room-temperature hydrogen storage: a solution for the clustering problem in MOFs. Journal of Physical Chemistry C, 2012, 116(33): 17336–17342
CrossRef Google scholar
[103]
Sumida K, Stück D, Mino L, Chai J D, Bloch E D, Zavorotynska O, Murray L J, Dincă M, Chavan S, Bordiga S. . Impact of metal and anion substitutions on the hydrogen storage properties of M-BTT metal-organic frameworks. Journal of the American Chemical Society, 2013, 135(3): 1083–1091
CrossRef Google scholar
[104]
Fairchild D C, Hossain M I, Cordova J, Glover T G, Uribe-Romo F J. Steric and electronic effects on the interaction of Xe and Kr with functionalized zirconia metal-organic frameworks. ACS Materials Letters, 2021, 3(5): 504–510
CrossRef Google scholar
[105]
Qian J J, Chen G H, Xiao S T, Li H B, Ouyang Y G, Wang Q. Switching Xe/Kr adsorption selectivity in modified SBMOF-1: a theoretical study. RSC Advances, 2020, 10(29): 17195–17204
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

We gratefully acknowledge funding support from the National Science Foundation of China (Grants Nos. 22276054, U2167218, and 22006036) and the Beijing Outstanding Young Scientist Program.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(2992 KB)

Accesses

Citations

Detail

Sections
Recommended

/