Frontiers of Chemical Science and Engineering >
From plasma to plasmonics: toward sustainable and clean water production through membranes
Received date: 22 Feb 2023
Accepted date: 13 May 2023
Published date: 15 Dec 2023
Copyright
The increasing demand for potable water is never-ending. Freshwater resources are scarce and stress is accumulating on other alternatives. Therefore, new technologies and novel optimization methods are developed for the existing processes. Membrane-based processes are among the most efficient methods for water treatment. Yet, membranes suffer from severe operational problems, namely fouling and temperature polarization. These effects can harm the membrane’s permeability, permeate recovery, and lifetime. To mitigate such effects, membranes can be treated through two techniques: plasma treatment (a surface modification technique), and treatment through the use of plasmonic materials (surface and bulk modification). This article showcases plasma- and plasmonic-based treatments in the context of water desalination/purification. It aims to offer a comprehensive review of the current developments in membrane-based water treatment technologies along with suggested directions to enhance its overall efficiency through careful selection of material and system design. Moreover, basic guidelines and strategies are outlined on the different membrane modification techniques to evaluate its prerequisites. Besides, we discuss the challenges and future developments about these membrane modification methods.
Farah Abuhatab , Omar Khalifa , Husam Al Araj , Shadi W. Hasan . From plasma to plasmonics: toward sustainable and clean water production through membranes[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(12) : 1809 -1836 . DOI: 10.1007/s11705-023-2339-3
1 |
Lou J, Liu Y, Wang Z, Zhao D, Song C, Wu J, Dasgupta N, Zhang W, Zhang D, Tao P.
|
2 |
Al-Obaidani S, Curcio E, Macedonio F, Di Profio G, Al-Hinai H, Drioli E. Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation. Journal of Membrane Science, 2008, 323(1): 85–98
|
3 |
Chen X, Yip N Y. Unlocking high-salinity desalination with cascading osmotically mediated reverse osmosis: energy and operating pressure analysis. Environmental Science & Technology, 2018, 52(4): 2242–2250
|
4 |
Jones E, Qadir M, van Vliet M T H, Smakhtin V, Kang S. The state of desalination and brine production: a global outlook. Science of the Total Environment, 2019, 657: 1343–1356
|
5 |
Ghaffour N, Soukane S, Lee J G, Kim Y, Alpatova A. Membrane distillation hybrids for water production and energy efficiency enhancement: a critical review. Applied Energy, 2019, 254: 113698
|
6 |
Filloux E, Wang J, Pidou M, Gernjak W, Yuan Z. Biofouling and scaling control of reverse osmosis membrane using one-step cleaning-potential of acidified nitrite solution as an agent. Journal of Membrane Science, 2015, 495: 276–283
|
7 |
Guo W, Ngo H H, Li J. A mini-review on membrane fouling. Bioresource Technology, 2012, 122: 27–34
|
8 |
Lee S, Lee C H. Effect of operating conditions on CaSO4 scale formation mechanism in nanofiltration for water softening. Water Research, 2000, 34(15): 3854–3866
|
9 |
Tang S, Wang Z, Wu Z, Zhou Q. Role of dissolved organic matters (DOM) in membrane fouling of membrane bioreactors for municipal wastewater treatment. Journal of Hazardous Materials, 2010, 178(1-3): 377–384
|
10 |
Xu P, Bellona C, Drewes J E. Fouling of nanofiltration and reverse osmosis membranes during municipal wastewater reclamation: membrane autopsy results from pilot-scale investigations. Journal of Membrane Science, 2010, 353(1-2): 111–121
|
11 |
Yiantsios S G, Karabelas A J. The effect of colloid stability on membrane fouling. Desalination, 1998, 118(1-3): 143–152
|
12 |
Martínez-Díez L, Vazquez-Gonzalez M I. Temperature and concentration polarization in membrane distillation of aqueous salt solutions. Journal of Membrane Science, 1999, 156(2): 265–273
|
13 |
Wang P, Chung T S. Recent advances in membrane distillation processes: membrane development, configuration design and application exploring. Journal of Membrane Science, 2015, 474: 39–56
|
14 |
Martinez-Diez L, Vázquez-González M I. Effects of polarization on mass transport through hydrophobic porous membranes. Industrial & Engineering Chemistry Research, 1998, 37(10): 4128–4135
|
15 |
Gao W, Liang H, Ma J, Han M, Chen Z, Han Z, Li G. Membrane fouling control in ultrafiltration technology for drinking water production: a review. Desalination, 2011, 272(1-3): 1–8
|
16 |
Razaqpur A G, Wang Y, Liao X, Liao Y, Wang R. Progress of photothermal membrane distillation for decentralized desalination: a review. Water Research, 2021, 201: 117299
|
17 |
Madalosso H B, Machado R, Hotza D, Marangoni C. Membrane surface modification by electrospinning, coating, and plasma for membrane distillation applications: a state-of-the-art review. Advanced Engineering Materials, 2021, 23(6): 2001456
|
18 |
Liu G, Xu J, Wang K. Solar water evaporation by black photothermal sheets. Nano Energy, 2017, 41: 269–284
|
19 |
Mansour S, Giwa A, Hasan S W. Novel graphene nanoplatelets-coated polyethylene membrane for the treatment of reject brine by pilot-scale direct contact membrane distillation: an optimization study. Desalination, 2018, 441: 9–20
|
20 |
Kang G, Cao Y. Application and modification of poly(vinylidenefluoride) (PVDF) membranes—a review. Journal of Membrane Science, 2014, 463: 145–165
|
21 |
Himma N F, Prasetya N, Anisah S, Wenten I G. Superhydrophobic membrane: progress in preparation and its separation properties. Reviews in Chemical Engineering, 2019, 35(2): 211–238
|
22 |
Cui Z, Zhang Y, Li X, Wang X, Drioli E, Wang Z, Zhao S. Optimization of novel composite membranes for water and mineral recovery by vacuum membrane distillation. Desalination, 2018, 440: 39–47
|
23 |
Pedram S, Mortaheb H R, Arefi-Khonsari F. Plasma treatment of polyethersulfone membrane for benzene removal from water by air gap membrane distillation. Environmental Technology, 2018, 39(2): 157–171
|
24 |
Yang C, Tian M, Xie Y, Li X M, Zhao B, He T, Liu J. Effective evaporation of CF4 plasma modified PVDF membranes in direct contact membrane distillation. Journal of Membrane Science, 2015, 482: 25–32
|
25 |
Ekanayake U G M, Barclay M, Seo D H, Park M J, MacLeod J, O’Mullane A P, Motta N, Shon H K, Ostrikov K. Utilization of plasma in water desalination and purification. Desalination, 2021, 500: 114903
|
26 |
Zarshenas K, Raisi A, Aroujalian A. Surface modification of polyamide composite membranes by corona air plasma for gas separation applications. RSC Advances, 2015, 5(25): 19760–19772
|
27 |
Khulbe K C, Feng C, Matsuura T. The art of surface modification of synthetic polymeric membranes. Journal of Applied Polymer Science, 2010, 115(2): 855–895
|
28 |
Kim E S, Yu Q, Deng B. Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling. Applied Surface Science, 2011, 257(23): 9863–9871
|
29 |
Lai J Y, Chao Y C. Plasma-modified nylon 4 membranes for reverse osmosis desalination. Journal of Applied Polymer Science, 1990, 39(1112): 2293–2303
|
30 |
Ohland A L, Salim V M M, Borges C P. Plasma functionalized hydroxyapatite incorporated in membranes for improved performance of osmotic processes. Desalination, 2019, 452: 87–93
|
31 |
Dumée L F, Alglave H, Chaffraix T, Lin B, Magniez K, Schütz J. Morphology-properties relationship of gas plasma treated hydrophobic meso-porous membranes and their improved performance for desalination by membrane distillation. Applied Surface Science, 2016, 363: 273–285
|
32 |
Zhao Z, Shi S, Cao H, Li Y. Effect of plasma treatment on the surface properties and antifouling performance of homogeneous anion exchange membrane. Desalination and Water Treatment, 2017, 89: 77–86
|
33 |
Fu Y, Wang G, Ming X, Liu X, Hou B, Mei T, Li J, Wang J, Wang X. Oxygen plasma treated graphene aerogel as a solar absorber for rapid and efficient solar steam generation. Carbon, 2018, 130: 250–256
|
34 |
Kong W, Wang G, Zhang M, Duan X, Hu J, Duan X. Villiform carbon fiber paper as current collector for capacitive deionization devices with high areal electrosorption capacity. Desalination, 2019, 459: 1–9
|
35 |
De Oliveira Barauna J B F, Pereira C S, Gonçalves I A, De Oliveira Vitoriano J, Junior C A. Sodium chloride crystallization by electric discharge in brine. Materials Research, 2017, 20(suppl 2): 215–220
|
36 |
Ekanayake U G M, Seo D H, Faershteyn K, O’Mullane A P, Shon H, MacLeod J, Golberg D, Ostrikov K. Atmospheric-pressure plasma seawater desalination: clean energy, agriculture, and resource recovery nexus for a blue planet. Sustainable Materials and Technologies, 2020, 25: e00181
|
37 |
Kruithof J C, Kamp P C, Martijn B J. UV/H2O2 treatment: a practical solution for organic contaminant control and primary disinfection. Ozone Science and Engineering, 2007, 29(4): 273–280
|
38 |
Johnson D C, Bzdek J P, Fahrenbruck C R, Chandler J C, Bisha B, Goodridge L D, Hybertson B M. An innovative non-thermal plasma reactor to eliminate microorganisms in water. Desalination and Water Treatment, 2016, 57(18): 8097–8108
|
39 |
Ulbin-Figlewicz N, Jarmoluk A, Marycz K. Antimicrobial activity of low-pressure plasma treatment against selected foodborne bacteria and meat microbiota. Annals of Microbiology, 2015, 65(3): 1537–1546
|
40 |
Daer S, Kharraz J, Giwa A, Hasan S W. Recent applications of nanomaterials in water desalination: a critical review and future opportunities. Desalination, 2015, 367: 37–48
|
41 |
Kallem P, Othman I, Ouda M, Hasan S W, AlNashef I, Banat F. Polyethersulfone hybrid ultrafiltration membranes fabricated with polydopamine modified ZnFe2O4 nanocomposites: applications in humic acid removal and oil/water emulsion separation. Process Safety and Environmental Protection, 2021, 148: 813–824
|
42 |
Alenazi N A, Hussein M A, Alamry K A, Asiri A M. Modified polyether-sulfone membrane: a mini review. Designed Monomers and Polymers, 2017, 20(1): 532–546
|
43 |
Van der Bruggen B. Chemical modification of polyethersulfone nanofiltration membranes: a review. Journal of Applied Polymer Science, 2009, 114(1): 630–642
|
44 |
AbdulkarimEIbrahimYHasanSNaddeoVBanatF. Novel polyethersulfone (PES) alpha-zirconium phosphate (α-ZrP) ion exchange mixed matrix membranes for effective removal of heavy metals from wastewater. PES, 10: 0 International Conference on Environmental Science and Technology 2019
|
45 |
Seh Z W, Liu S, Low M, Zhang S Y, Liu Z, Mlayah A, Han M Y. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Advanced Materials, 2012, 24(17): 2310–2314
|
46 |
Zhu L, Gao M, Peh C K N, Ho G W. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Materials Horizons, 2018, 5(3): 323–343
|
47 |
Jin X, Li Y, Li W, Zheng Y, Fan Z, Han X, Wang W, Lin T, Zhu Z. Nanomaterial design for efficient solar-driven steam generation. ACS Applied Energy Materials, 2019, 2(9): 6112–6126
|
48 |
Gao M, Zhu L, Peh C K, Ho G W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy & Environmental Science, 2019, 12(3): 841–864
|
49 |
Jun Y S, Wu X, Ghim D, Jiang Q, Cao S, Singamaneni S. Photothermal membrane water treatment for two worlds. Accounts of Chemical Research, 2019, 52(5): 1215–1225
|
50 |
Elsheikh A H, Sharshir S W, Ahmed Ali M K, Shaibo J, Edreis E M A, Abdelhamid T, Du C, Haiou Z. Thin film technology for solar steam generation: a new dawn. Solar Energy, 2019, 177: 561–575
|
51 |
Wang P. Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environmental Science. Nano, 2018, 5(5): 1078–1089
|
52 |
Said I A, Wang S, Li Q. Field demonstration of a nanophotonics-enabled solar membrane distillation reactor for desalination. Industrial & Engineering Chemistry Research, 2019, 58(40): 18829–18835
|
53 |
Rice D, Ghadimi S J, Barrios A C, Henry S, Walker W S, Li Q, Perreault F. Scaling resistance in nanophotonics-enabled solar membrane distillation. Environmental Science & Technology, 2020, 54(4): 2548–2555
|
54 |
Zuo K, Wang W, Deshmukh A, Jia S, Guo H, Xin R, Elimelech M, Ajayan P M, Lou J, Li Q. Multifunctional nanocoated membranes for high-rate electrothermal desalination of hypersaline waters. Nature Nanotechnology, 2020, 15(12): 1025–1032
|
55 |
Elizalde C N B, Al-Gharabli S, Kujawa J, Mavukkandy M, Hasan S W, Arafat H A. Fabrication of blend polyvinylidene fluoride/chitosan membranes for enhanced flux and fouling resistance. Separation and Purification Technology, 2018, 190: 68–76
|
56 |
Zhang Y, Li K, Liu L, Wang K, Xiang J, Hou D, Wang J. Titanium nitride nanoparticle embedded membrane for photothermal membrane distillation. Chemosphere, 2020, 256: 127053
|
57 |
Giwa A, Hasan S W. Novel polyethersulfone-functionalized graphene oxide (PES-fGO) mixed matrix membranes for wastewater treatment. Separation and Purification Technology, 2020, 241: 116735
|
58 |
Zhang Q, Xu W, Wang X. Carbon nanocomposites with high photothermal conversion efficiency. Science China Materials, 2018, 61(7): 905–914
|
59 |
Zhang C, Liang H, Xu Z, Wang Z. Harnessing solar-driven photothermal effect toward the water-energy nexus. Advanced Science, 2019, 6(18): 1900883
|
60 |
Yang F, Huang J, Deng L, Zhang Y, Dang G, Shao L. Hydrophilic modification of poly(aryl sulfone) membrane materials toward highly-efficient environmental remediation. Frontiers of Chemical Science and Engineering, 2022, 16(5): 614–633
|
61 |
Adamovich I, Agarwal S, Ahedo E, Alves L L, Baalrud S, Babaeva N, Bogaerts A, Bourdon A, Bruggeman P J, Canal C.
|
62 |
Zhou R, Zhou R, Prasad K, Fang Z, Speight R, Bazaka K, Ostrikov K. Cold atmospheric plasma activated water as a prospective disinfectant: the crucial role of peroxynitrite. Green Chemistry, 2018, 20(23): 5276–5284
|
63 |
Kogelschatz U. Atmospheric-pressure plasma technology. Plasma Physics and Controlled Fusion, 2004, 46(12B): B63–B75
|
64 |
Mesbah A, Bonzanini A D, Graves D B. Learning-based control: applications in treatment of complex substrates using non-equilibrium plasmas
|
65 |
Bryjak M, Gancarz I, Smolinska K. Plasma nanostructuring of porous polymer membranes. Advances in Colloid and Interface Science, 2010, 161(1-2): 2–9
|
66 |
Wang J, Chen X, Reis R, Chen Z, Milne N, Winther-Jensen B, Kong L, Dumée L. Plasma modification and synthesis of membrane materials—a mechanistic review. Membranes (Basel), 2018, 8(3): 56
|
67 |
Bryjak M, Gancarz I, Poniak G, Tylus W. Modification of polysulfone membranes 4. Ammonia plasma treatment. European Polymer Journal, 2002, 38(4): 717–726
|
68 |
Pal D, Neogi S, De S. Improved antifouling characteristics of acrylonitrile co-polymer membrane by low temperature pulsed ammonia plasma in the treatment of oil-water emulsion. Vacuum, 2016, 131: 293–304
|
69 |
Jaleh B, Parvin P, Wanichapichart P, Saffar A P, Reyhani A. Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma. Applied Surface Science, 2010, 257(5): 1655–1659
|
70 |
Tompkins B D, Dennison J M, Fisher E R H. O2 plasma modification of track-etched polymer membranes for increased wettability and improved performance. Journal of Membrane Science, 2013, 428: 576–588
|
71 |
Yu H Y, He X C, Liu L Q, Gu J S, Wei X W. Surface modification of poly(propylene) microporous membrane to improve its antifouling characteristics in an SMBR: O2 plasma treatment. Plasma Processes and Polymers, 2008, 5(1): 84–91
|
72 |
Wavhal D S, Fisher E R. Modification of polysulfone ultrafiltration membranes by CO2 plasma treatment. Desalination, 2005, 172(2): 189–205
|
73 |
Wavhal D S, Fisher E R. Modification of porous poly(ether sulfone) membranes by low-temperature CO2-plasma treatment. Journal of Polymer Science. Part B, Polymer Physics, 2002, 40(21): 2473–2488
|
74 |
Steen M L, Hymas L, Havey E D, Capps N E, Castner D G, Fisher E R. Low temperature plasma treatment of asymmetric polysulfone membranes for permanent hydrophilic surface modification. Journal of Membrane Science, 2001, 188(1): 97–114
|
75 |
Steen M L, Jordan A C, Fisher E R. Hydrophilic modification of polymeric membranes by low temperature H2O plasma treatment. Journal of Membrane Science, 2002, 204(1-2): 341–357
|
76 |
Yan M G, Liu L Q, Tang Z Q, Huang L, Li W, Zhou J, Gu J S, Wei X W, Yu H Y. Plasma surface modification of polypropylene microfiltration membranes and fouling by BSA dispersion. Chemical Engineering Journal, 2008, 145(2): 218–224
|
77 |
Yu H Y, Hu M X, Xu Z K, Wang J L, Wang S Y. Surface modification of polypropylene microporous membranes to improve their antifouling property in MBR: NH3 plasma treatment. Separation and Purification Technology, 2005, 45(1): 8–15
|
78 |
Kull K R, Steen M L, Fisher E R. Surface modification with nitrogen-containing plasmas to produce hydrophilic, low-fouling membranes. Journal of Membrane Science, 2005, 246(2): 203–215
|
79 |
Kiamehr Z, Farokhi B, Hosseini S M. Development of a highly-permeable thin-film-based nanofiltration membrane by using surface treatment with air-Ar plasma. Korean Journal of Chemical Engineering, 2021, 38(1): 114–120
|
80 |
Mohammed S, Hegab H M, Ou R, Liu S, Ma H, Chen X, Sridhar T, Wang H. Effect of oxygen plasma treatment on the nanofiltration performance of reduced graphene oxide/cellulose nanofiber composite membranes. Green Chemical Engineering, 2021, 2(1): 122–131
|
81 |
Hegde C, Isloor A M, Padaki M, Wanichapichart P, Liangdeng Y. Synthesis and desalination performance of Ar+–N+ irradiated polysulfone based new NF membrane. Desalination, 2011, 265(1-3): 153–158
|
82 |
Reis R, Dumée L F, Tardy B L, Dagastine R, Orbell J D, Schutz J A, Duke M C. Towards enhanced performance thin-film composite membranes via surface plasma modification. Scientific Reports, 2016, 6(1): 29206
|
83 |
Reis R, Dumée L F, Merenda A, Orbell J D, Schütz J A, Duke M C. Plasma-induced physicochemical effects on a poly(amide) thin-film composite membrane. Desalination, 2017, 403: 3–11
|
84 |
Safarpour M, Vatanpour V, Khataee A, Zarrabi H, Gholami P, Yekavalangi M E. High flux and fouling resistant reverse osmosis membrane modified with plasma treated natural zeolite. Desalination, 2017, 411: 89–100
|
85 |
Varin K J, Lin N H, Cohen Y. Biofouling and cleaning effectiveness of surface nanostructured reverse osmosis membranes. Journal of Membrane Science, 2013, 446: 472–481
|
86 |
Reid K, Dixon M, Pelekani C, Jarvis K, Willis M, Yu Y. Biofouling control by hydrophilic surface modification of polypropylene feed spacers by plasma polymerisation. Desalination, 2014, 335(1): 108–118
|
87 |
Zou L, Vidalis I, Steele D, Michelmore A, Low S P, Verberk J Q J C. Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling. Journal of Membrane Science, 2011, 369(1-2): 420–428
|
88 |
Reis R, Duke M, Merenda A, Winther-Jensen B, Puskar L, Tobin M J, Orbell J D, Dumée L F. Customizing the surface charge of thin-film composite membranes by surface plasma thin film polymerization. Journal of Membrane Science, 2017, 537: 1–10
|
89 |
Hirsch U, Ruehl M, Teuscher N, Heilmann A. Antifouling coatings via plasma polymerization and atom transfer radical polymerization on thin film composite membranes for reverse osmosis. Applied Surface Science, 2018, 436: 207–216
|
90 |
Khongnakorn W, Bootluck W, Jutaporn P. Surface modification of FO membrane by plasma-grafting polymerization to minimize protein fouling. Journal of Water Process Engineering, 2020, 38: 101633
|
91 |
Gryta M. Application of polypropylene membranes hydrophilized by plasma for water desalination by membrane distillation. Desalination, 2021, 515: 115187
|
92 |
Butrón-García M I, Jofre-Reche J A, Martín-Martínez J M. Use of statistical design of experiments in the optimization of Ar-O2 low-pressure plasma treatment conditions of polydimethylsiloxane (PDMS) for increasing polarity and adhesion, and inhibiting hydrophobic recovery. Applied Surface Science, 2015, 332: 1–11
|
93 |
Xiao Z, Zheng R, Liu Y, He H, Yuan X, Ji Y, Li D, Yin H, Zhang Y, Li X M, He T. Slippery for scaling resistance in membrane distillation: a novel porous micropillared superhydrophobic surface. Water Research, 2019, 155: 152–161
|
94 |
Lai C L, Liou R M, Chen S H, Huang G W, Lee K R. Preparation and characterization of plasma-modified PTFE membrane and its application in direct contact membrane distillation. Desalination, 2011, 267(2-3): 184–192
|
95 |
Kong Y, Lin X, Wu Y, Chen J, Xu J. Plasma polymerization of octafluorocyclobutane and hydrophobic microporous composite membranes for membrane distillation. Journal of Applied Polymer Science, 1992, 46(2): 191–199
|
96 |
Wei X, Zhao B, Li X M, Wang Z, He B Q, He T, Jiang B. CF4 plasma surface modification of asymmetric hydrophilic polyethersulfone membranes for direct contact membrane distillation. Journal of Membrane Science, 2012, 407–408: 164–175
|
97 |
Yang C, Li X M, Gilron J, Kong D, Yin Y, Oren Y, Linder C, He T. CF4 plasma-modified superhydrophobic PVDF membranes for direct contact membrane distillation. Journal of Membrane Science, 2014, 456: 155–161
|
98 |
Tian M, Yin Y, Yang C, Zhao B, Song J, Liu J, Li X M, He T. CF4 plasma modified highly interconnective porous polysulfone membranes for direct contact membrane distillation (DCMD). Desalination, 2015, 369: 105–114
|
99 |
Woo Y C, Chen Y, Tijing L D, Phuntsho S, He T, Choi J S, Kim S H, Shon H K. CF4 plasma-modified omniphobic electrospun nanofiber membrane for produced water brine treatment by membrane distillation. Journal of Membrane Science, 2017, 529: 234–242
|
100 |
Liu L, Shen F, Chen X, Luo J, Su Y, Wu H, Wan Y. A novel plasma-induced surface hydrophobization strategy for membrane distillation: etching, dipping and grafting. Journal of Membrane Science, 2016, 499: 544–554
|
101 |
Linic S, Aslam U, Boerigter C, Morabito M. Photochemical transformations on plasmonic metal nanoparticles. Nature Materials, 2015, 14(6): 567–576
|
102 |
Lin Y, Xu H, Shan X, Di Y, Zhao A, Hu Y, Gan Z. Solar steam generation based on the photothermal effect: from designs to applications, and beyond. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(33): 19203–19227
|
103 |
Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L. Plasmonics for extreme light concentration and manipulation. Nature Materials, 2010, 9(3): 193–204
|
104 |
Boriskina S V, Ghasemi H, Chen G. Plasmonic materials for energy: from physics to applications. Materials Today, 2013, 16(10): 375–386
|
105 |
Gong B, Yang H, Wu S, Xiong G, Yan J, Cen K, Bo Z, Ostrikov K. Graphene array-based anti-fouling solar vapour gap membrane distillation with high energy efficiency. Nano-Micro Letters, 2019, 11(1): 1–14
|
106 |
Chen M, He Y, Ye Q, Wang X, Hu Y. Shape-dependent solar thermal conversion properties of plasmonic Au nanoparticles under different light filter conditions. Solar Energy, 2019, 182: 340–347
|
107 |
Rider A E, Ostrikov K, Furman S A. Plasmas meet plasmonics: everything old is new again. European Physical Journal D, 2012, 66(9): 1–19
|
108 |
Yang B, Li C, Wang Z, Dai Q. Thermoplasmonics in solar energy conversion: materials, nanostructured designs, and applications. Advanced Materials, 2022, 2107351(26): 1–31
|
109 |
Zoubos H, Koutsokeras L E, Anagnostopoulos D F, Lidorikis E, Kalogirou S A, Wildes A R, Kelires P C, Patsalas P. Broadband optical absorption of amorphous carbon/Ag nanocomposite films and its potential for solar harvesting applications. Solar Energy Materials and Solar Cells, 2013, 117: 350–356
|
110 |
Du M, Tang G H. Plasmonic nanofluids based on gold nanorods/nanoellipsoids/nanosheets for solar energy harvesting. Solar Energy, 2016, 137: 393–400
|
111 |
Zhou L, Tan Y, Wang J, Xu W, Yuan Y, Cai W, Zhu S, Zhu J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics, 2016, 10(6): 393–398
|
112 |
NaikGKimJKinseyNeds
|
113 |
Naik G V, Shalaev V M, Boltasseva A. Alternative plasmonic materials: beyond gold and silver. Advanced Materials, 2013, 25(24): 3264–3294
|
114 |
Liu H, Chen C, Wen H, Guo R, Williams N A, Wang B, Chen F, Hu L. Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(39): 18839–18846
|
115 |
Wang J, Li Y, Deng L, Wei N, Weng Y, Dong S, Qi D, Qiu J, Chen X, Wu T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Advanced Materials, 2017, 29(3): 1603730
|
116 |
Fuzil N S, Othman N H, Alias N H, Marpani F, Othman Mohd H D, Ismail A F, Lau W J, Li K, Kusworo T D, Ichinose I.
|
117 |
Tao F, Zhang Y, Yin K, Cao S, Chang X, Lei Y, Wang D, Fan R, Dong L, Yin Y.
|
118 |
Xu J, Xu F, Qian M, Li Z, Sun P, Hong Z, Huang F. Copper nanodot-embedded graphene urchins of nearly full-spectrum solar absorption and extraordinary solar desalination. Nano Energy, 2018, 53: 425–431
|
119 |
Tao F, Zhang Y, Zhang F, Wang K, Chang X, An Y, Dong L, Yin Y. From CdS to Cu7S4 nanorods via a cation exchange route and their applications: environmental pollution removal, photothermal conversion and light-induced water evaporation. ChemistrySelect, 2017, 2(10): 3039–3048
|
120 |
Li X, Wang D, Zhang Y, Liu L, Wang W. Surface-ligand protected reduction on plasmonic tuning of one-dimensional MoO3−x nanobelts for solar steam generation. Nano Research, 2020, 13(11): 3025–3032
|
121 |
IshiiSChenKSugavaneshwarR POkuyamaHDaoT DShindeS LKaurMKitajimaMNagaoT. Efficient absorption of sunlight using resonant nanoparticles for solar heat applications. Materials Nanoarchitectonics, 2018, 241–253
|
122 |
Lu Q, Yang Y, Feng J, Wang X. Oxygen-defected molybdenum oxides hierarchical nanostructure constructed by atomic-level thickness nanosheets as an efficient absorber for solar steam generation. Solar RRL, 2019, 3(2): 1–8
|
123 |
AnsoriBGogotsiY. 2D Metal Carbides and Nitrides (MXenes): Structure, Properties and Applications. Berlin: Springer, 2019, 13–15
|
124 |
Lei J C, Zhang X, Zhou Z. Recent advances in MXene: preparation, properties, and applications. Frontiers of Physics, 2015, 10(3): 276–286
|
125 |
Zhang Q, Yi G, Fu Z, Yu H, Chen S, Quan X. Vertically aligned janus MXene-based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano, 2019, 13(11): 13196–13207
|
126 |
Chang C, Yang C, Liu Y, Tao P, Song C, Shang W, Wu J, Deng T. Efficient solar-thermal energy harvest driven by interfacial plasmonic heating-assisted evaporation. ACS Applied Materials & Interfaces, 2016, 8(35): 23412–23418
|
127 |
Wang X, He Y, Liu X, Shi L, Zhu J. Investigation of photothermal heating enabled by plasmonic nanofluids for direct solar steam generation. Solar Energy, 2017, 157: 35–46
|
128 |
Zhu L, Gao M, Peh C K N, Ho G W. Recent progress in solar-driven interfacial water evaporation: advanced designs and applications. Nano Energy, 2019, 57: 507–518
|
129 |
Lalisse A, Tessier G, Plain J, Baffou G. Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion. Journal of Physical Chemistry C, 2015, 119(45): 25518–25528
|
130 |
Leong K Y, Ong H C, Amer N H, Norazrina M J, Risby M S, Ku Ahmad K Z. An overview on current application of nanofluids in solar thermal collector and its challenges. Renewable & Sustainable Energy Reviews, 2016, 53: 1092–1105
|
131 |
Zhang H, Chen H J, Du X, Wen D. Photothermal conversion characteristics of gold nanoparticle dispersions. Solar Energy, 2014, 100: 141–147
|
132 |
Amjad M, Raza G, Xin Y, Pervaiz S, Xu J, Du X, Wen D. Volumetric solar heating and steam generation via gold nanofluids. Applied Energy, 2017, 206: 393–400
|
133 |
Chen M, He Y, Zhu J, Shuai Y, Jiang B, Huang Y. An experimental investigation on sunlight absorption characteristics of silver nanofluids. Solar Energy, 2015, 115: 85–94
|
134 |
Zhang Y, Liu L, Li K, Hou D, Wang J. Enhancement of energy utilization using nanofluid in solar powered membrane distillation. Chemosphere, 2018, 212: 554–562
|
135 |
Zeng J, Xuan Y. Enhanced solar thermal conversion and thermal conduction of MWCNT-SiO2/Ag binary nanofluids. Applied Energy, 2018, 212: 809–819
|
136 |
Zhu G, Wang L, Bing N, Xie H, Yu W. Enhancement of photothermal conversion performance using nanofluids based on bimetallic Ag-Au alloys in nitrogen-doped graphitic polyhedrons. Energy, 2019, 183: 747–755
|
137 |
Mehrali M, Ghatkesar M K, Pecnik R. Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids. Applied Energy, 2018, 224: 103–115
|
138 |
Xuan Y, Duan H, Li Q. Enhancement of solar energy absorption using a plasmonic nanofluid based on TiO2/Ag composite nanoparticles. RSC Advances, 2014, 4(31): 16206–16213
|
139 |
Wang L, Zhu G, Wang M, Yu W, Zeng J, Yu X, Xie H, Li Q. Dual plasmonic Au/TiN nanofluids for efficient solar photothermal conversion. Solar Energy, 2019, 184: 240–248
|
140 |
Lee B J, Park K, Walsh T, Xu L. Radiative heat transfer analysis in plasmonic nanofluids for direct solar thermal absorption. Journal of Solar Energy Engineering, 2012, 134(2): 021009
|
141 |
Chen N, Ma H, Li Y, Cheng J, Zhang C, Wu D, Zhu H. Complementary optical absorption and enhanced solar thermal conversion of CuO-ATO nanofluids. Solar Energy Materials and Solar Cells, 2017, 162: 83–92
|
142 |
Menbari A, Alemrajabi A A, Ghayeb Y. Experimental investigation of stability and extinction coefficient of Al2O3-CuO binary nanoparticles dispersed in ethylene glycol-water mixture for low-temperature direct absorption solar collectors. Energy Conversion and Management, 2016, 108: 501–510
|
143 |
Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P. Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. International Journal of Heat and Mass Transfer, 2008, 51(5-6): 1431–1438
|
144 |
Jeon J, Park S, Lee B J. Analysis on the performance of a flat-plate volumetric solar collector using blended plasmonic nanofluid. Solar Energy, 2016, 132: 247–256
|
145 |
Tao F, Green M, Garcia A V, Xiao T, Van Tran A T, Zhang Y, Yin Y, Chen X. Recent progress of nanostructured interfacial solar vapor generators. Applied Materials Today, 2019, 17: 45–84
|
146 |
Hogan N J, Urban A S, Ayala-Orozco C, Pimpinelli A, Nordlander P, Halas N J. Nanoparticles heat through light localization. Nano Letters, 2014, 14(8): 4640–4645
|
147 |
Wu S L, Chen H, Wang H L, Chen X, Yang H C, Darling S B. Solar-driven evaporators for water treatment: challenges and opportunities. Environmental Science. Water Research & Technology, 2021, 7(1): 24–39
|
148 |
Politano A, Di Profio G, Fontananova E, Sanna V, Cupolillo A, Curcio E. Overcoming temperature polarization in membrane distillation by thermoplasmonic effects activated by Ag nanofillers in polymeric membranes. Desalination, 2019, 451: 192–199
|
149 |
Li R, Zhang L, Shi L, Wang P. MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano, 2017, 11(4): 3752–3759
|
150 |
Hong S, Sycks D, Chan H F, Lin S, Lopez G P, Guilak F, Leong K W, Zhao X. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Advanced Materials, 2015, 27(27): 4035–4040
|
151 |
Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Materials Today, 2013, 16(12): 496–504
|
152 |
Muth J T, Vogt D M, Truby R L, Mengüç Y, Kolesky D B, Wood R J, Lewis J A. Embedded 3D printing of strain sensors within highly stretchable elastomers. Advanced Materials, 2014, 26(36): 6307–6312
|
153 |
Kiriarachchi H D, Awad F S, Hassan A A, Bobb J A, Lin A, El-Shall M S. Plasmonic chemically modified cotton nanocomposite fibers for efficient solar water desalination and wastewater treatment. Nanoscale, 2018, 10(39): 18531–18539
|
154 |
Ghim D, Wu X, Suazo M, Jun Y S. Achieving maximum recovery of latent heat in photothermally driven multi-layer stacked membrane distillation. Nano Energy, 2021, 80: 105444
|
155 |
Bae K, Kang G, Cho S K, Park W, Kim K, Padilla W J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nature Communications, 2015, 6(1): 10103
|
156 |
Chen M, Wu Y, Song W, Mo Y, Lin X, He Q, Guo B. Plasmonic nanoparticle-embedded poly(p-phenylene benzobisoxazole) nanofibrous composite films for solar steam generation. Nanoscale, 2018, 10(13): 6186–6193
|
157 |
Liu Z, Yang Z, Huang X, Xuan C, Xie J, Fu H, Wu Q, Zhang J, Zhou X, Liu Y. High-absorption recyclable photothermal membranes used in a bionic system for high-efficiency solar desalination: via enhanced localized heating. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(37): 20044–20052
|
158 |
Liu C, Huang J, Hsiung C E, Tian Y, Wang J, Han Y, Fratalocchi A. High-performance large-scale solar steam generation with nanolayers of reusable biomimetic nanoparticles. Advanced Sustainable Systems, 2017, 1(1-2): 1600013
|
159 |
Yang Y, Yang X, Fu L, Zou M, Cao A, Du Y, Yuan Q, Yan C H. Two-dimensional flexible bilayer Janus membrane for advanced photothermal water desalination. ACS Energy Letters, 2018, 3(5): 1165–1171
|
160 |
Chen J, Feng J, Li Z, Xu P, Wang X, Yin W, Wang M, Ge X, Yin Y. Space-confined seeded growth of black silver nanostructures for solar steam generation. Nano Letters, 2019, 19(1): 400–407
|
161 |
Avci A H, Santoro S, Politano A, Propato M, Micieli M, Aquino M, Wenjuan Z, Curcio E. Photothermal sweeping gas membrane distillation and reverse electrodialysis for light-to-heat-to-power conversion. Chemical Engineering and Processing, 2021, 164: 108382
|
162 |
Ye H, Li X, Deng L, Li P, Zhang T, Wang X, Hsiao B S. Silver nanoparticle-enabled photothermal nanofibrous membrane for light-driven membrane distillation. Industrial & Engineering Chemistry Research, 2019, 58(8): 3269–3281
|
163 |
Wu D, Zhao C, Xu Y, Zhang X, Yang L, Zhang Y, Gao Z, Song Y Y. Modulating solar energy harvesting on TiO2 nanochannel membranes by plasmonic nanoparticle assembly for desalination of contaminated seawater. ACS Applied Nano Materials, 2020, 3(11): 10895–10904
|
164 |
Lin Y, Chen Z, Fang L, Meng M, Liu Z, Di Y, Cai W, Huang S, Gan Z. Copper nanoparticles with near-unity, omnidirectional, and broadband optical absorption for highly efficient solar steam generation. Nanotechnology, 2018, 30(1): 015402
|
165 |
Zhang L, Xing J, Wen X, Chai J, Wang S, Xiong Q. Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination. Nanoscale, 2017, 9(35): 12843–12849
|
166 |
Shang M, Li N, Zhang S, Zhao T, Zhang C, Liu C, Li H, Wang Z. Full-spectrum solar-to-heat conversion membrane with interfacial plasmonic heating ability for high-efficiency desalination of seawater. ACS Applied Energy Materials, 2018, 1(1): 56–61
|
167 |
Xu Z, Rao N, Tang C Y, Law W C. Seawater desalination by interfacial solar vapor generation method using plasmonic heating nanocomposites. Micromachines, 2020, 11(9): 867
|
168 |
Guo Z, Ming X, Wang G, Hou B, Liu X, Mei T, Li J, Wang J, Wang X. Super-hydrophilic copper sulfide films as light absorbers for efficient solar steam generation under one sun illumination. Semiconductor Science and Technology, 2018, 33(2): 25008
|
169 |
Shi Y, Li R, Shi L, Ahmed E, Jin Y, Wang P. A robust CuCr2O4/SiO2 composite photothermal material with underwater black property and extremely high thermal stability for solar-driven water evaporation. Advanced Sustainable Systems, 2018, 2: 1–11
|
170 |
Kaur M, Ishii S, Shinde S L, Nagao T. All-ceramic microfibrous solar steam generator: TiN plasmonic nanoparticle-loaded transparent microfibers. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8523–8528
|
171 |
Bian Y, Tang K, Xu Z, Ma J, Shen Y, Hao L, Chen X, Nie K, Li J, Ma T.
|
172 |
Traver E, Karaballi R A, Monfared Y E, Daurie H, Gagnon G A, Dasog M. TiN, ZrN, and HfN nanoparticles on nanoporous aluminum oxide membranes for solar-driven water evaporation and desalination. ACS Applied Nano Materials, 2020, 3(3): 2787–2794
|
173 |
KaurMIshiiSShindeS LNagaoT. All-ceramic solar-driven water purifier based on anodized aluminum oxide and plasmonic titanium nitride. Optics InfoBase Conference Papers, 2018, Part F125-: 1–8
|
174 |
Farid M U, Kharraz J A, Wang P, An A K. High-efficiency solar-driven water desalination using a thermally isolated plasmonic membrane. Journal of Cleaner Production, 2020, 271: 122684
|
175 |
Farid M U, Kharraz J A, An A K. Plasmonic titanium nitride nano-enabled membranes with high structural stability for efficient photothermal desalination. ACS Applied Materials & Interfaces, 2021, 13(3): 3805–3815
|
176 |
Chala T F, Wu C M, Chou M H, Guo Z L. Melt electrospun reduced tungsten oxide/polylactic acid fiber membranes as a photothermal material for light-driven interfacial water evaporation. ACS Applied Materials & Interfaces, 2018, 10(34): 28955–28962
|
177 |
Cheng X, Bai X, Yang J, Zhu X M, Wang J. Titanium oxynitride spheres with broad plasmon resonance for solar seawater desalination. ACS Applied Materials & Interfaces, 2022, 14(25): 28769–28780
|
178 |
Li G, Law W C, Chan K C. Floating, highly efficient, and scalable graphene membranes for seawater desalination using solar energy. Green Chemistry, 2018, 20(16): 3689–3695
|
179 |
Zhao J, Yang Y, Yang C, Tian Y, Han Y, Liu J, Yin X, Que W. A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(33): 16196–16204
|
180 |
Zha X J, Zhao X, Pu J H, Tang L S, Ke K, Bao R Y, Bai L, Liu Z Y, Yang M B, Yang W. Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification. ACS Applied Materials & Interfaces, 2019, 11(40): 36589–36597
|
181 |
Wang L, Shang J, Yang G, Ma Y, Kou L, Liu D, Yin H, Hegh D, Razal J, Lei W. 2D higher-metal nitride nanosheets for solar steam generation. Small, 2022, 2201770(28): 2–9
|
182 |
Behera S, Kim C, Kim K. Solar steam generation and desalination using ultra-broadband absorption in plasmonic alumina nanowire haze structure-graphene oxide-gold nanoparticle composite. Langmuir, 2020, 36(42): 12494–12503
|
183 |
Liu Y, Lou J, Ni M, Song C, Wu J, Dasgupta N P, Tao P, Shang W, Deng T. Bioinspired bifunctional membrane for efficient clean water generation. ACS Applied Materials & Interfaces, 2016, 8(1): 772–779
|
184 |
Huang J, He Y, Wang L, Huang Y, Jiang B. Bifunctional Au@TiO2 core-shell nanoparticle films for clean water generation by photocatalysis and solar evaporation. Energy Conversion and Management, 2017, 132: 452–459
|
185 |
Goharshadi K, Sajjadi S A, Goharshadi E K, Mehrkhah R. Highly efficient plasmonic wood/Ag/Pd photoabsorber in interfacial solar steam generation. Materials Research Bulletin, 2022, 154: 111916
|
186 |
Zhu L, Li J, Zhong L, Zhang L, Zhou M, Chen H, Hou Y, Zheng Y. Excellent dual-photothermal freshwater collector with high performance in large-scale evaporation. Nano Energy, 2022, 100: 107441
|
187 |
Gao M, Connor P K N, Ho G W. Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy & Environmental Science, 2016, 9(10): 3151–3160
|
188 |
Awad F S, Kiriarachchi H D, Abouzeid K M, Özgür Ü, El-Shall M S. Plasmonic graphene polyurethane nanocomposites for efficient solar water desalination. ACS Applied Energy Materials, 2018, 1(3): 976–985
|
189 |
Yi L, Ci S, Luo S, Shao P, Hou Y, Wen Z. Scalable and low-cost synthesis of black amorphous Al-Ti-O nanostructure for high-efficient photothermal desalination. Nano Energy, 2017, 41: 600–608
|
190 |
Yang Y, Han Y, Zhao J, Que W. 2D/1D MXene/MWCNT hybrid membrane-based evaporator for solar desalination. Materials (Basel), 2022, 15(3): 1–7
|
191 |
Chen J, Pei J, Zhao H. Effect of oxygen plasma treatment on the structure and mechanical properties of bilayer graphene studied by molecular dynamics simulation. Journal of Physical Chemistry C, 2021, 125(35): 19345–19352
|
192 |
MontgomeryD C. Design and Analysis of Experiments. 9th ed. United States: John Wiley & Sons, 2017
|
193 |
Lau W J, Gray S, Matsuura T, Emadzadeh D, Chen J P, Ismail A F. A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches. Water Research, 2015, 80: 306–324
|
194 |
Marchetti P, Jimenez Solomon M F, Szekely G, Livingston A G. Molecular separation with organic solvent nanofiltration: a critical review. Chemical Reviews, 2014, 114(21): 10735–10806
|
195 |
Zha S, Gusnawan P, Lin J, Zhang G, Liu N, Yu J. Integrating a novel TS-af-HFM NF process for portable treatment of oilfield produced water. Chemical Engineering Journal, 2017, 311: 203–208
|
196 |
Harpale A, Chew H B. Hydrogen-plasma patterning of multilayer graphene: mechanisms and modeling. Carbon, 2017, 117: 82–91
|
197 |
Liu L, Xie D, Wu M, Yang X, Xu Z, Wang W, Bai X, Wang E. Controlled oxidative functionalization of monolayer graphene by water-vapor plasma etching. Carbon, 2012, 50(8): 3039–3044
|
198 |
Huang L, Pei J, Jiang H, Hu X. Water desalination under one sun using graphene-based material modified PTFE membrane. Desalination, 2018, 442: 1–7
|
199 |
Politano A, Argurio P, Di Profio G, Sanna V, Cupolillo A, Chakraborty S, Arafat H A, Curcio E. Photothermal membrane distillation for seawater desalination. Advanced Materials, 2017, 29(2): 1603504
|
200 |
Tan Y Z, Wang H, Han L, Tanis-Kanbur M B, Pranav M V, Chew J W. Photothermal-enhanced and fouling-resistant membrane for solar-assisted membrane distillation. Journal of Membrane Science, 2018, 565: 254–265
|
201 |
Hou B, Cui Z, Zhu X, Liu X, Wang G, Wang J, Mei T, Li J, Wang X. Functionalized carbon materials for efficient solar steam and electricity generation. Materials Chemistry and Physics, 2019, 222: 159–164
|
202 |
Zuo G, Wang R. Novel membrane surface modification to enhance anti-oil fouling property for membrane distillation application. Journal of Membrane Science, 2013, 447: 26–35
|
203 |
Reis R, Dumée L F, He L, She F, Orbell J D, Winther-Jensen B, Duke M C. Amine enrichment of thin-film composite membranes via low pressure plasma polymerization for antimicrobial adhesion. ACS Applied Materials & Interfaces, 2015, 7(27): 14644–14653
|
204 |
Abdel-Wahed M S, Hefny M M, Abd-Elmaksoud S, El-Liethy M A, Kamel M A, El-Kalliny A S, Hamza I A. Removal of chemical and microbial water pollutants by cold plasma combined with Ag/TiO2-rGO nanoparticles. Scientific Reports, 2022, 12(1): 1–14
|
205 |
Wu S, Xiong G, Yang H, Gong B, Tian Y, Xu C, Wang Y, Fisher T, Yan J, Cen K.
|
206 |
Khoo Y S, Lau W J, Liang Y Y, Karaman M, Gürsoy M, Lai G S, Ismail A F. Rapid and eco-friendly technique for surface modification of TFC RO membrane for improved filtration performance. Journal of Environmental Chemical Engineering, 2021, 9(3): 105227
|
207 |
Liu F, Wang L, Li D, Liu Q, Deng B. A review: the effect of the microporous support during interfacial polymerization on the morphology and performances of a thin film composite membrane for liquid purification. RSC Advances, 2019, 9(61): 35417–35428
|
/
〈 | 〉 |