REVIEW ARTICLE

From plasma to plasmonics: toward sustainable and clean water production through membranes

  • Farah Abuhatab 1,2 ,
  • Omar Khalifa 1,2,3 ,
  • Husam Al Araj 2 ,
  • Shadi W. Hasan , 1,2
Expand
  • 1. Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, 127788 Abu Dhabi, United Arab Emirates
  • 2. Department of Chemical Engineering, Khalifa University of Science and Technology, 127788 Abu Dhabi, United Arab Emirates
  • 3. Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA
shadi.hasan@ku.ac.ae

Received date: 22 Feb 2023

Accepted date: 13 May 2023

Published date: 15 Dec 2023

Copyright

2023 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

The increasing demand for potable water is never-ending. Freshwater resources are scarce and stress is accumulating on other alternatives. Therefore, new technologies and novel optimization methods are developed for the existing processes. Membrane-based processes are among the most efficient methods for water treatment. Yet, membranes suffer from severe operational problems, namely fouling and temperature polarization. These effects can harm the membrane’s permeability, permeate recovery, and lifetime. To mitigate such effects, membranes can be treated through two techniques: plasma treatment (a surface modification technique), and treatment through the use of plasmonic materials (surface and bulk modification). This article showcases plasma- and plasmonic-based treatments in the context of water desalination/purification. It aims to offer a comprehensive review of the current developments in membrane-based water treatment technologies along with suggested directions to enhance its overall efficiency through careful selection of material and system design. Moreover, basic guidelines and strategies are outlined on the different membrane modification techniques to evaluate its prerequisites. Besides, we discuss the challenges and future developments about these membrane modification methods.

Cite this article

Farah Abuhatab , Omar Khalifa , Husam Al Araj , Shadi W. Hasan . From plasma to plasmonics: toward sustainable and clean water production through membranes[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(12) : 1809 -1836 . DOI: 10.1007/s11705-023-2339-3

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

The authors would like to thank the Center for Membranes and Advanced Water Technology (CMAT) at Khalifa University for the support (Award No. RC2-2018-009).
1
Lou J, Liu Y, Wang Z, Zhao D, Song C, Wu J, Dasgupta N, Zhang W, Zhang D, Tao P. . Bioinspired multifunctional paper-based rGO composites for solar-driven clean water generation. ACS Applied Materials & Interfaces, 2016, 8(23): 14628–14636

DOI

2
Al-Obaidani S, Curcio E, Macedonio F, Di Profio G, Al-Hinai H, Drioli E. Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation. Journal of Membrane Science, 2008, 323(1): 85–98

DOI

3
Chen X, Yip N Y. Unlocking high-salinity desalination with cascading osmotically mediated reverse osmosis: energy and operating pressure analysis. Environmental Science & Technology, 2018, 52(4): 2242–2250

DOI

4
Jones E, Qadir M, van Vliet M T H, Smakhtin V, Kang S. The state of desalination and brine production: a global outlook. Science of the Total Environment, 2019, 657: 1343–1356

DOI

5
Ghaffour N, Soukane S, Lee J G, Kim Y, Alpatova A. Membrane distillation hybrids for water production and energy efficiency enhancement: a critical review. Applied Energy, 2019, 254: 113698

DOI

6
Filloux E, Wang J, Pidou M, Gernjak W, Yuan Z. Biofouling and scaling control of reverse osmosis membrane using one-step cleaning-potential of acidified nitrite solution as an agent. Journal of Membrane Science, 2015, 495: 276–283

DOI

7
Guo W, Ngo H H, Li J. A mini-review on membrane fouling. Bioresource Technology, 2012, 122: 27–34

DOI

8
Lee S, Lee C H. Effect of operating conditions on CaSO4 scale formation mechanism in nanofiltration for water softening. Water Research, 2000, 34(15): 3854–3866

DOI

9
Tang S, Wang Z, Wu Z, Zhou Q. Role of dissolved organic matters (DOM) in membrane fouling of membrane bioreactors for municipal wastewater treatment. Journal of Hazardous Materials, 2010, 178(1-3): 377–384

DOI

10
Xu P, Bellona C, Drewes J E. Fouling of nanofiltration and reverse osmosis membranes during municipal wastewater reclamation: membrane autopsy results from pilot-scale investigations. Journal of Membrane Science, 2010, 353(1-2): 111–121

DOI

11
Yiantsios S G, Karabelas A J. The effect of colloid stability on membrane fouling. Desalination, 1998, 118(1-3): 143–152

DOI

12
Martínez-Díez L, Vazquez-Gonzalez M I. Temperature and concentration polarization in membrane distillation of aqueous salt solutions. Journal of Membrane Science, 1999, 156(2): 265–273

DOI

13
Wang P, Chung T S. Recent advances in membrane distillation processes: membrane development, configuration design and application exploring. Journal of Membrane Science, 2015, 474: 39–56

DOI

14
Martinez-Diez L, Vázquez-González M I. Effects of polarization on mass transport through hydrophobic porous membranes. Industrial & Engineering Chemistry Research, 1998, 37(10): 4128–4135

DOI

15
Gao W, Liang H, Ma J, Han M, Chen Z, Han Z, Li G. Membrane fouling control in ultrafiltration technology for drinking water production: a review. Desalination, 2011, 272(1-3): 1–8

DOI

16
Razaqpur A G, Wang Y, Liao X, Liao Y, Wang R. Progress of photothermal membrane distillation for decentralized desalination: a review. Water Research, 2021, 201: 117299

DOI

17
Madalosso H B, Machado R, Hotza D, Marangoni C. Membrane surface modification by electrospinning, coating, and plasma for membrane distillation applications: a state-of-the-art review. Advanced Engineering Materials, 2021, 23(6): 2001456

DOI

18
Liu G, Xu J, Wang K. Solar water evaporation by black photothermal sheets. Nano Energy, 2017, 41: 269–284

DOI

19
Mansour S, Giwa A, Hasan S W. Novel graphene nanoplatelets-coated polyethylene membrane for the treatment of reject brine by pilot-scale direct contact membrane distillation: an optimization study. Desalination, 2018, 441: 9–20

DOI

20
Kang G, Cao Y. Application and modification of poly(vinylidenefluoride) (PVDF) membranes—a review. Journal of Membrane Science, 2014, 463: 145–165

DOI

21
Himma N F, Prasetya N, Anisah S, Wenten I G. Superhydrophobic membrane: progress in preparation and its separation properties. Reviews in Chemical Engineering, 2019, 35(2): 211–238

DOI

22
Cui Z, Zhang Y, Li X, Wang X, Drioli E, Wang Z, Zhao S. Optimization of novel composite membranes for water and mineral recovery by vacuum membrane distillation. Desalination, 2018, 440: 39–47

DOI

23
Pedram S, Mortaheb H R, Arefi-Khonsari F. Plasma treatment of polyethersulfone membrane for benzene removal from water by air gap membrane distillation. Environmental Technology, 2018, 39(2): 157–171

DOI

24
Yang C, Tian M, Xie Y, Li X M, Zhao B, He T, Liu J. Effective evaporation of CF4 plasma modified PVDF membranes in direct contact membrane distillation. Journal of Membrane Science, 2015, 482: 25–32

DOI

25
Ekanayake U G M, Barclay M, Seo D H, Park M J, MacLeod J, O’Mullane A P, Motta N, Shon H K, Ostrikov K. Utilization of plasma in water desalination and purification. Desalination, 2021, 500: 114903

DOI

26
Zarshenas K, Raisi A, Aroujalian A. Surface modification of polyamide composite membranes by corona air plasma for gas separation applications. RSC Advances, 2015, 5(25): 19760–19772

DOI

27
Khulbe K C, Feng C, Matsuura T. The art of surface modification of synthetic polymeric membranes. Journal of Applied Polymer Science, 2010, 115(2): 855–895

DOI

28
Kim E S, Yu Q, Deng B. Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling. Applied Surface Science, 2011, 257(23): 9863–9871

DOI

29
Lai J Y, Chao Y C. Plasma-modified nylon 4 membranes for reverse osmosis desalination. Journal of Applied Polymer Science, 1990, 39(1112): 2293–2303

DOI

30
Ohland A L, Salim V M M, Borges C P. Plasma functionalized hydroxyapatite incorporated in membranes for improved performance of osmotic processes. Desalination, 2019, 452: 87–93

DOI

31
Dumée L F, Alglave H, Chaffraix T, Lin B, Magniez K, Schütz J. Morphology-properties relationship of gas plasma treated hydrophobic meso-porous membranes and their improved performance for desalination by membrane distillation. Applied Surface Science, 2016, 363: 273–285

DOI

32
Zhao Z, Shi S, Cao H, Li Y. Effect of plasma treatment on the surface properties and antifouling performance of homogeneous anion exchange membrane. Desalination and Water Treatment, 2017, 89: 77–86

DOI

33
Fu Y, Wang G, Ming X, Liu X, Hou B, Mei T, Li J, Wang J, Wang X. Oxygen plasma treated graphene aerogel as a solar absorber for rapid and efficient solar steam generation. Carbon, 2018, 130: 250–256

DOI

34
Kong W, Wang G, Zhang M, Duan X, Hu J, Duan X. Villiform carbon fiber paper as current collector for capacitive deionization devices with high areal electrosorption capacity. Desalination, 2019, 459: 1–9

DOI

35
De Oliveira Barauna J B F, Pereira C S, Gonçalves I A, De Oliveira Vitoriano J, Junior C A. Sodium chloride crystallization by electric discharge in brine. Materials Research, 2017, 20(suppl 2): 215–220

DOI

36
Ekanayake U G M, Seo D H, Faershteyn K, O’Mullane A P, Shon H, MacLeod J, Golberg D, Ostrikov K. Atmospheric-pressure plasma seawater desalination: clean energy, agriculture, and resource recovery nexus for a blue planet. Sustainable Materials and Technologies, 2020, 25: e00181

DOI

37
Kruithof J C, Kamp P C, Martijn B J. UV/H2O2 treatment: a practical solution for organic contaminant control and primary disinfection. Ozone Science and Engineering, 2007, 29(4): 273–280

DOI

38
Johnson D C, Bzdek J P, Fahrenbruck C R, Chandler J C, Bisha B, Goodridge L D, Hybertson B M. An innovative non-thermal plasma reactor to eliminate microorganisms in water. Desalination and Water Treatment, 2016, 57(18): 8097–8108

DOI

39
Ulbin-Figlewicz N, Jarmoluk A, Marycz K. Antimicrobial activity of low-pressure plasma treatment against selected foodborne bacteria and meat microbiota. Annals of Microbiology, 2015, 65(3): 1537–1546

DOI

40
Daer S, Kharraz J, Giwa A, Hasan S W. Recent applications of nanomaterials in water desalination: a critical review and future opportunities. Desalination, 2015, 367: 37–48

DOI

41
Kallem P, Othman I, Ouda M, Hasan S W, AlNashef I, Banat F. Polyethersulfone hybrid ultrafiltration membranes fabricated with polydopamine modified ZnFe2O4 nanocomposites: applications in humic acid removal and oil/water emulsion separation. Process Safety and Environmental Protection, 2021, 148: 813–824

DOI

42
Alenazi N A, Hussein M A, Alamry K A, Asiri A M. Modified polyether-sulfone membrane: a mini review. Designed Monomers and Polymers, 2017, 20(1): 532–546

DOI

43
Van der Bruggen B. Chemical modification of polyethersulfone nanofiltration membranes: a review. Journal of Applied Polymer Science, 2009, 114(1): 630–642

DOI

44
AbdulkarimEIbrahimYHasanSNaddeoVBanatF. Novel polyethersulfone (PES) alpha-zirconium phosphate (α-ZrP) ion exchange mixed matrix membranes for effective removal of heavy metals from wastewater. PES, 10: 0 International Conference on Environmental Science and Technology 2019

45
Seh Z W, Liu S, Low M, Zhang S Y, Liu Z, Mlayah A, Han M Y. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Advanced Materials, 2012, 24(17): 2310–2314

DOI

46
Zhu L, Gao M, Peh C K N, Ho G W. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Materials Horizons, 2018, 5(3): 323–343

DOI

47
Jin X, Li Y, Li W, Zheng Y, Fan Z, Han X, Wang W, Lin T, Zhu Z. Nanomaterial design for efficient solar-driven steam generation. ACS Applied Energy Materials, 2019, 2(9): 6112–6126

DOI

48
Gao M, Zhu L, Peh C K, Ho G W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy & Environmental Science, 2019, 12(3): 841–864

DOI

49
Jun Y S, Wu X, Ghim D, Jiang Q, Cao S, Singamaneni S. Photothermal membrane water treatment for two worlds. Accounts of Chemical Research, 2019, 52(5): 1215–1225

DOI

50
Elsheikh A H, Sharshir S W, Ahmed Ali M K, Shaibo J, Edreis E M A, Abdelhamid T, Du C, Haiou Z. Thin film technology for solar steam generation: a new dawn. Solar Energy, 2019, 177: 561–575

DOI

51
Wang P. Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environmental Science. Nano, 2018, 5(5): 1078–1089

DOI

52
Said I A, Wang S, Li Q. Field demonstration of a nanophotonics-enabled solar membrane distillation reactor for desalination. Industrial & Engineering Chemistry Research, 2019, 58(40): 18829–18835

DOI

53
Rice D, Ghadimi S J, Barrios A C, Henry S, Walker W S, Li Q, Perreault F. Scaling resistance in nanophotonics-enabled solar membrane distillation. Environmental Science & Technology, 2020, 54(4): 2548–2555

DOI

54
Zuo K, Wang W, Deshmukh A, Jia S, Guo H, Xin R, Elimelech M, Ajayan P M, Lou J, Li Q. Multifunctional nanocoated membranes for high-rate electrothermal desalination of hypersaline waters. Nature Nanotechnology, 2020, 15(12): 1025–1032

DOI

55
Elizalde C N B, Al-Gharabli S, Kujawa J, Mavukkandy M, Hasan S W, Arafat H A. Fabrication of blend polyvinylidene fluoride/chitosan membranes for enhanced flux and fouling resistance. Separation and Purification Technology, 2018, 190: 68–76

DOI

56
Zhang Y, Li K, Liu L, Wang K, Xiang J, Hou D, Wang J. Titanium nitride nanoparticle embedded membrane for photothermal membrane distillation. Chemosphere, 2020, 256: 127053

DOI

57
Giwa A, Hasan S W. Novel polyethersulfone-functionalized graphene oxide (PES-fGO) mixed matrix membranes for wastewater treatment. Separation and Purification Technology, 2020, 241: 116735

DOI

58
Zhang Q, Xu W, Wang X. Carbon nanocomposites with high photothermal conversion efficiency. Science China Materials, 2018, 61(7): 905–914

DOI

59
Zhang C, Liang H, Xu Z, Wang Z. Harnessing solar-driven photothermal effect toward the water-energy nexus. Advanced Science, 2019, 6(18): 1900883

DOI

60
Yang F, Huang J, Deng L, Zhang Y, Dang G, Shao L. Hydrophilic modification of poly(aryl sulfone) membrane materials toward highly-efficient environmental remediation. Frontiers of Chemical Science and Engineering, 2022, 16(5): 614–633

DOI

61
Adamovich I, Agarwal S, Ahedo E, Alves L L, Baalrud S, Babaeva N, Bogaerts A, Bourdon A, Bruggeman P J, Canal C. . The 2022 plasma roadmap: low temperature plasma science and technology. Journal of Physics. D, Applied Physics, 2022, 55(37): 373001

DOI

62
Zhou R, Zhou R, Prasad K, Fang Z, Speight R, Bazaka K, Ostrikov K. Cold atmospheric plasma activated water as a prospective disinfectant: the crucial role of peroxynitrite. Green Chemistry, 2018, 20(23): 5276–5284

DOI

63
Kogelschatz U. Atmospheric-pressure plasma technology. Plasma Physics and Controlled Fusion, 2004, 46(12B): B63–B75

DOI

64
Mesbah A, Bonzanini A D, Graves D B. Learning-based control: applications in treatment of complex substrates using non-equilibrium plasmas

65
Bryjak M, Gancarz I, Smolinska K. Plasma nanostructuring of porous polymer membranes. Advances in Colloid and Interface Science, 2010, 161(1-2): 2–9

DOI

66
Wang J, Chen X, Reis R, Chen Z, Milne N, Winther-Jensen B, Kong L, Dumée L. Plasma modification and synthesis of membrane materials—a mechanistic review. Membranes (Basel), 2018, 8(3): 56

DOI

67
Bryjak M, Gancarz I, Poniak G, Tylus W. Modification of polysulfone membranes 4. Ammonia plasma treatment. European Polymer Journal, 2002, 38(4): 717–726

DOI

68
Pal D, Neogi S, De S. Improved antifouling characteristics of acrylonitrile co-polymer membrane by low temperature pulsed ammonia plasma in the treatment of oil-water emulsion. Vacuum, 2016, 131: 293–304

DOI

69
Jaleh B, Parvin P, Wanichapichart P, Saffar A P, Reyhani A. Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma. Applied Surface Science, 2010, 257(5): 1655–1659

DOI

70
Tompkins B D, Dennison J M, Fisher E R H. O2 plasma modification of track-etched polymer membranes for increased wettability and improved performance. Journal of Membrane Science, 2013, 428: 576–588

DOI

71
Yu H Y, He X C, Liu L Q, Gu J S, Wei X W. Surface modification of poly(propylene) microporous membrane to improve its antifouling characteristics in an SMBR: O2 plasma treatment. Plasma Processes and Polymers, 2008, 5(1): 84–91

DOI

72
Wavhal D S, Fisher E R. Modification of polysulfone ultrafiltration membranes by CO2 plasma treatment. Desalination, 2005, 172(2): 189–205

DOI

73
Wavhal D S, Fisher E R. Modification of porous poly(ether sulfone) membranes by low-temperature CO2-plasma treatment. Journal of Polymer Science. Part B, Polymer Physics, 2002, 40(21): 2473–2488

DOI

74
Steen M L, Hymas L, Havey E D, Capps N E, Castner D G, Fisher E R. Low temperature plasma treatment of asymmetric polysulfone membranes for permanent hydrophilic surface modification. Journal of Membrane Science, 2001, 188(1): 97–114

DOI

75
Steen M L, Jordan A C, Fisher E R. Hydrophilic modification of polymeric membranes by low temperature H2O plasma treatment. Journal of Membrane Science, 2002, 204(1-2): 341–357

DOI

76
Yan M G, Liu L Q, Tang Z Q, Huang L, Li W, Zhou J, Gu J S, Wei X W, Yu H Y. Plasma surface modification of polypropylene microfiltration membranes and fouling by BSA dispersion. Chemical Engineering Journal, 2008, 145(2): 218–224

DOI

77
Yu H Y, Hu M X, Xu Z K, Wang J L, Wang S Y. Surface modification of polypropylene microporous membranes to improve their antifouling property in MBR: NH3 plasma treatment. Separation and Purification Technology, 2005, 45(1): 8–15

DOI

78
Kull K R, Steen M L, Fisher E R. Surface modification with nitrogen-containing plasmas to produce hydrophilic, low-fouling membranes. Journal of Membrane Science, 2005, 246(2): 203–215

DOI

79
Kiamehr Z, Farokhi B, Hosseini S M. Development of a highly-permeable thin-film-based nanofiltration membrane by using surface treatment with air-Ar plasma. Korean Journal of Chemical Engineering, 2021, 38(1): 114–120

DOI

80
Mohammed S, Hegab H M, Ou R, Liu S, Ma H, Chen X, Sridhar T, Wang H. Effect of oxygen plasma treatment on the nanofiltration performance of reduced graphene oxide/cellulose nanofiber composite membranes. Green Chemical Engineering, 2021, 2(1): 122–131

DOI

81
Hegde C, Isloor A M, Padaki M, Wanichapichart P, Liangdeng Y. Synthesis and desalination performance of Ar+–N+ irradiated polysulfone based new NF membrane. Desalination, 2011, 265(1-3): 153–158

DOI

82
Reis R, Dumée L F, Tardy B L, Dagastine R, Orbell J D, Schutz J A, Duke M C. Towards enhanced performance thin-film composite membranes via surface plasma modification. Scientific Reports, 2016, 6(1): 29206

DOI

83
Reis R, Dumée L F, Merenda A, Orbell J D, Schütz J A, Duke M C. Plasma-induced physicochemical effects on a poly(amide) thin-film composite membrane. Desalination, 2017, 403: 3–11

DOI

84
Safarpour M, Vatanpour V, Khataee A, Zarrabi H, Gholami P, Yekavalangi M E. High flux and fouling resistant reverse osmosis membrane modified with plasma treated natural zeolite. Desalination, 2017, 411: 89–100

DOI

85
Varin K J, Lin N H, Cohen Y. Biofouling and cleaning effectiveness of surface nanostructured reverse osmosis membranes. Journal of Membrane Science, 2013, 446: 472–481

DOI

86
Reid K, Dixon M, Pelekani C, Jarvis K, Willis M, Yu Y. Biofouling control by hydrophilic surface modification of polypropylene feed spacers by plasma polymerisation. Desalination, 2014, 335(1): 108–118

DOI

87
Zou L, Vidalis I, Steele D, Michelmore A, Low S P, Verberk J Q J C. Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling. Journal of Membrane Science, 2011, 369(1-2): 420–428

DOI

88
Reis R, Duke M, Merenda A, Winther-Jensen B, Puskar L, Tobin M J, Orbell J D, Dumée L F. Customizing the surface charge of thin-film composite membranes by surface plasma thin film polymerization. Journal of Membrane Science, 2017, 537: 1–10

DOI

89
Hirsch U, Ruehl M, Teuscher N, Heilmann A. Antifouling coatings via plasma polymerization and atom transfer radical polymerization on thin film composite membranes for reverse osmosis. Applied Surface Science, 2018, 436: 207–216

DOI

90
Khongnakorn W, Bootluck W, Jutaporn P. Surface modification of FO membrane by plasma-grafting polymerization to minimize protein fouling. Journal of Water Process Engineering, 2020, 38: 101633

DOI

91
Gryta M. Application of polypropylene membranes hydrophilized by plasma for water desalination by membrane distillation. Desalination, 2021, 515: 115187

DOI

92
Butrón-García M I, Jofre-Reche J A, Martín-Martínez J M. Use of statistical design of experiments in the optimization of Ar-O2 low-pressure plasma treatment conditions of polydimethylsiloxane (PDMS) for increasing polarity and adhesion, and inhibiting hydrophobic recovery. Applied Surface Science, 2015, 332: 1–11

DOI

93
Xiao Z, Zheng R, Liu Y, He H, Yuan X, Ji Y, Li D, Yin H, Zhang Y, Li X M, He T. Slippery for scaling resistance in membrane distillation: a novel porous micropillared superhydrophobic surface. Water Research, 2019, 155: 152–161

DOI

94
Lai C L, Liou R M, Chen S H, Huang G W, Lee K R. Preparation and characterization of plasma-modified PTFE membrane and its application in direct contact membrane distillation. Desalination, 2011, 267(2-3): 184–192

DOI

95
Kong Y, Lin X, Wu Y, Chen J, Xu J. Plasma polymerization of octafluorocyclobutane and hydrophobic microporous composite membranes for membrane distillation. Journal of Applied Polymer Science, 1992, 46(2): 191–199

DOI

96
Wei X, Zhao B, Li X M, Wang Z, He B Q, He T, Jiang B. CF4 plasma surface modification of asymmetric hydrophilic polyethersulfone membranes for direct contact membrane distillation. Journal of Membrane Science, 2012, 407–408: 164–175

DOI

97
Yang C, Li X M, Gilron J, Kong D, Yin Y, Oren Y, Linder C, He T. CF4 plasma-modified superhydrophobic PVDF membranes for direct contact membrane distillation. Journal of Membrane Science, 2014, 456: 155–161

DOI

98
Tian M, Yin Y, Yang C, Zhao B, Song J, Liu J, Li X M, He T. CF4 plasma modified highly interconnective porous polysulfone membranes for direct contact membrane distillation (DCMD). Desalination, 2015, 369: 105–114

DOI

99
Woo Y C, Chen Y, Tijing L D, Phuntsho S, He T, Choi J S, Kim S H, Shon H K. CF4 plasma-modified omniphobic electrospun nanofiber membrane for produced water brine treatment by membrane distillation. Journal of Membrane Science, 2017, 529: 234–242

DOI

100
Liu L, Shen F, Chen X, Luo J, Su Y, Wu H, Wan Y. A novel plasma-induced surface hydrophobization strategy for membrane distillation: etching, dipping and grafting. Journal of Membrane Science, 2016, 499: 544–554

DOI

101
Linic S, Aslam U, Boerigter C, Morabito M. Photochemical transformations on plasmonic metal nanoparticles. Nature Materials, 2015, 14(6): 567–576

DOI

102
Lin Y, Xu H, Shan X, Di Y, Zhao A, Hu Y, Gan Z. Solar steam generation based on the photothermal effect: from designs to applications, and beyond. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(33): 19203–19227

DOI

103
Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L. Plasmonics for extreme light concentration and manipulation. Nature Materials, 2010, 9(3): 193–204

DOI

104
Boriskina S V, Ghasemi H, Chen G. Plasmonic materials for energy: from physics to applications. Materials Today, 2013, 16(10): 375–386

DOI

105
Gong B, Yang H, Wu S, Xiong G, Yan J, Cen K, Bo Z, Ostrikov K. Graphene array-based anti-fouling solar vapour gap membrane distillation with high energy efficiency. Nano-Micro Letters, 2019, 11(1): 1–14

DOI

106
Chen M, He Y, Ye Q, Wang X, Hu Y. Shape-dependent solar thermal conversion properties of plasmonic Au nanoparticles under different light filter conditions. Solar Energy, 2019, 182: 340–347

DOI

107
Rider A E, Ostrikov K, Furman S A. Plasmas meet plasmonics: everything old is new again. European Physical Journal D, 2012, 66(9): 1–19

DOI

108
Yang B, Li C, Wang Z, Dai Q. Thermoplasmonics in solar energy conversion: materials, nanostructured designs, and applications. Advanced Materials, 2022, 2107351(26): 1–31

DOI

109
Zoubos H, Koutsokeras L E, Anagnostopoulos D F, Lidorikis E, Kalogirou S A, Wildes A R, Kelires P C, Patsalas P. Broadband optical absorption of amorphous carbon/Ag nanocomposite films and its potential for solar harvesting applications. Solar Energy Materials and Solar Cells, 2013, 117: 350–356

DOI

110
Du M, Tang G H. Plasmonic nanofluids based on gold nanorods/nanoellipsoids/nanosheets for solar energy harvesting. Solar Energy, 2016, 137: 393–400

DOI

111
Zhou L, Tan Y, Wang J, Xu W, Yuan Y, Cai W, Zhu S, Zhu J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics, 2016, 10(6): 393–398

DOI

112
NaikGKimJKinseyNeds. Boltasseva A. Chapter 6—Alternative Plasmonic Materials. North-Holland: Handbook of Surface Science, 2014, 189–221

113
Naik G V, Shalaev V M, Boltasseva A. Alternative plasmonic materials: beyond gold and silver. Advanced Materials, 2013, 25(24): 3264–3294

DOI

114
Liu H, Chen C, Wen H, Guo R, Williams N A, Wang B, Chen F, Hu L. Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(39): 18839–18846

DOI

115
Wang J, Li Y, Deng L, Wei N, Weng Y, Dong S, Qi D, Qiu J, Chen X, Wu T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Advanced Materials, 2017, 29(3): 1603730

DOI

116
Fuzil N S, Othman N H, Alias N H, Marpani F, Othman Mohd H D, Ismail A F, Lau W J, Li K, Kusworo T D, Ichinose I. . A review on photothermal material and its usage in the development of photothermal membrane for sustainable clean water production. Desalination, 2021, 517: 115259

DOI

117
Tao F, Zhang Y, Yin K, Cao S, Chang X, Lei Y, Wang D, Fan R, Dong L, Yin Y. . A plasmonic interfacial evaporator for high-efficiency solar vapor generation. Sustainable Energy & Fuels, 2018, 2(12): 2762–2769

DOI

118
Xu J, Xu F, Qian M, Li Z, Sun P, Hong Z, Huang F. Copper nanodot-embedded graphene urchins of nearly full-spectrum solar absorption and extraordinary solar desalination. Nano Energy, 2018, 53: 425–431

DOI

119
Tao F, Zhang Y, Zhang F, Wang K, Chang X, An Y, Dong L, Yin Y. From CdS to Cu7S4 nanorods via a cation exchange route and their applications: environmental pollution removal, photothermal conversion and light-induced water evaporation. ChemistrySelect, 2017, 2(10): 3039–3048

DOI

120
Li X, Wang D, Zhang Y, Liu L, Wang W. Surface-ligand protected reduction on plasmonic tuning of one-dimensional MoO3−x nanobelts for solar steam generation. Nano Research, 2020, 13(11): 3025–3032

DOI

121
IshiiSChenKSugavaneshwarR POkuyamaHDaoT DShindeS LKaurMKitajimaMNagaoT. Efficient absorption of sunlight using resonant nanoparticles for solar heat applications. Materials Nanoarchitectonics, 2018, 241–253

122
Lu Q, Yang Y, Feng J, Wang X. Oxygen-defected molybdenum oxides hierarchical nanostructure constructed by atomic-level thickness nanosheets as an efficient absorber for solar steam generation. Solar RRL, 2019, 3(2): 1–8

DOI

123
AnsoriBGogotsiY. 2D Metal Carbides and Nitrides (MXenes): Structure, Properties and Applications. Berlin: Springer, 2019, 13–15

124
Lei J C, Zhang X, Zhou Z. Recent advances in MXene: preparation, properties, and applications. Frontiers of Physics, 2015, 10(3): 276–286

DOI

125
Zhang Q, Yi G, Fu Z, Yu H, Chen S, Quan X. Vertically aligned janus MXene-based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano, 2019, 13(11): 13196–13207

DOI

126
Chang C, Yang C, Liu Y, Tao P, Song C, Shang W, Wu J, Deng T. Efficient solar-thermal energy harvest driven by interfacial plasmonic heating-assisted evaporation. ACS Applied Materials & Interfaces, 2016, 8(35): 23412–23418

DOI

127
Wang X, He Y, Liu X, Shi L, Zhu J. Investigation of photothermal heating enabled by plasmonic nanofluids for direct solar steam generation. Solar Energy, 2017, 157: 35–46

DOI

128
Zhu L, Gao M, Peh C K N, Ho G W. Recent progress in solar-driven interfacial water evaporation: advanced designs and applications. Nano Energy, 2019, 57: 507–518

DOI

129
Lalisse A, Tessier G, Plain J, Baffou G. Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion. Journal of Physical Chemistry C, 2015, 119(45): 25518–25528

DOI

130
Leong K Y, Ong H C, Amer N H, Norazrina M J, Risby M S, Ku Ahmad K Z. An overview on current application of nanofluids in solar thermal collector and its challenges. Renewable & Sustainable Energy Reviews, 2016, 53: 1092–1105

DOI

131
Zhang H, Chen H J, Du X, Wen D. Photothermal conversion characteristics of gold nanoparticle dispersions. Solar Energy, 2014, 100: 141–147

DOI

132
Amjad M, Raza G, Xin Y, Pervaiz S, Xu J, Du X, Wen D. Volumetric solar heating and steam generation via gold nanofluids. Applied Energy, 2017, 206: 393–400

DOI

133
Chen M, He Y, Zhu J, Shuai Y, Jiang B, Huang Y. An experimental investigation on sunlight absorption characteristics of silver nanofluids. Solar Energy, 2015, 115: 85–94

DOI

134
Zhang Y, Liu L, Li K, Hou D, Wang J. Enhancement of energy utilization using nanofluid in solar powered membrane distillation. Chemosphere, 2018, 212: 554–562

DOI

135
Zeng J, Xuan Y. Enhanced solar thermal conversion and thermal conduction of MWCNT-SiO2/Ag binary nanofluids. Applied Energy, 2018, 212: 809–819

DOI

136
Zhu G, Wang L, Bing N, Xie H, Yu W. Enhancement of photothermal conversion performance using nanofluids based on bimetallic Ag-Au alloys in nitrogen-doped graphitic polyhedrons. Energy, 2019, 183: 747–755

DOI

137
Mehrali M, Ghatkesar M K, Pecnik R. Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids. Applied Energy, 2018, 224: 103–115

DOI

138
Xuan Y, Duan H, Li Q. Enhancement of solar energy absorption using a plasmonic nanofluid based on TiO2/Ag composite nanoparticles. RSC Advances, 2014, 4(31): 16206–16213

DOI

139
Wang L, Zhu G, Wang M, Yu W, Zeng J, Yu X, Xie H, Li Q. Dual plasmonic Au/TiN nanofluids for efficient solar photothermal conversion. Solar Energy, 2019, 184: 240–248

DOI

140
Lee B J, Park K, Walsh T, Xu L. Radiative heat transfer analysis in plasmonic nanofluids for direct solar thermal absorption. Journal of Solar Energy Engineering, 2012, 134(2): 021009

DOI

141
Chen N, Ma H, Li Y, Cheng J, Zhang C, Wu D, Zhu H. Complementary optical absorption and enhanced solar thermal conversion of CuO-ATO nanofluids. Solar Energy Materials and Solar Cells, 2017, 162: 83–92

DOI

142
Menbari A, Alemrajabi A A, Ghayeb Y. Experimental investigation of stability and extinction coefficient of Al2O3-CuO binary nanoparticles dispersed in ethylene glycol-water mixture for low-temperature direct absorption solar collectors. Energy Conversion and Management, 2016, 108: 501–510

DOI

143
Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P. Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. International Journal of Heat and Mass Transfer, 2008, 51(5-6): 1431–1438

DOI

144
Jeon J, Park S, Lee B J. Analysis on the performance of a flat-plate volumetric solar collector using blended plasmonic nanofluid. Solar Energy, 2016, 132: 247–256

DOI

145
Tao F, Green M, Garcia A V, Xiao T, Van Tran A T, Zhang Y, Yin Y, Chen X. Recent progress of nanostructured interfacial solar vapor generators. Applied Materials Today, 2019, 17: 45–84

DOI

146
Hogan N J, Urban A S, Ayala-Orozco C, Pimpinelli A, Nordlander P, Halas N J. Nanoparticles heat through light localization. Nano Letters, 2014, 14(8): 4640–4645

DOI

147
Wu S L, Chen H, Wang H L, Chen X, Yang H C, Darling S B. Solar-driven evaporators for water treatment: challenges and opportunities. Environmental Science. Water Research & Technology, 2021, 7(1): 24–39

DOI

148
Politano A, Di Profio G, Fontananova E, Sanna V, Cupolillo A, Curcio E. Overcoming temperature polarization in membrane distillation by thermoplasmonic effects activated by Ag nanofillers in polymeric membranes. Desalination, 2019, 451: 192–199

DOI

149
Li R, Zhang L, Shi L, Wang P. MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano, 2017, 11(4): 3752–3759

DOI

150
Hong S, Sycks D, Chan H F, Lin S, Lopez G P, Guilak F, Leong K W, Zhao X. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Advanced Materials, 2015, 27(27): 4035–4040

DOI

151
Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Materials Today, 2013, 16(12): 496–504

DOI

152
Muth J T, Vogt D M, Truby R L, Mengüç Y, Kolesky D B, Wood R J, Lewis J A. Embedded 3D printing of strain sensors within highly stretchable elastomers. Advanced Materials, 2014, 26(36): 6307–6312

DOI

153
Kiriarachchi H D, Awad F S, Hassan A A, Bobb J A, Lin A, El-Shall M S. Plasmonic chemically modified cotton nanocomposite fibers for efficient solar water desalination and wastewater treatment. Nanoscale, 2018, 10(39): 18531–18539

DOI

154
Ghim D, Wu X, Suazo M, Jun Y S. Achieving maximum recovery of latent heat in photothermally driven multi-layer stacked membrane distillation. Nano Energy, 2021, 80: 105444

DOI

155
Bae K, Kang G, Cho S K, Park W, Kim K, Padilla W J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nature Communications, 2015, 6(1): 10103

DOI

156
Chen M, Wu Y, Song W, Mo Y, Lin X, He Q, Guo B. Plasmonic nanoparticle-embedded poly(p-phenylene benzobisoxazole) nanofibrous composite films for solar steam generation. Nanoscale, 2018, 10(13): 6186–6193

DOI

157
Liu Z, Yang Z, Huang X, Xuan C, Xie J, Fu H, Wu Q, Zhang J, Zhou X, Liu Y. High-absorption recyclable photothermal membranes used in a bionic system for high-efficiency solar desalination: via enhanced localized heating. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(37): 20044–20052

DOI

158
Liu C, Huang J, Hsiung C E, Tian Y, Wang J, Han Y, Fratalocchi A. High-performance large-scale solar steam generation with nanolayers of reusable biomimetic nanoparticles. Advanced Sustainable Systems, 2017, 1(1-2): 1600013

DOI

159
Yang Y, Yang X, Fu L, Zou M, Cao A, Du Y, Yuan Q, Yan C H. Two-dimensional flexible bilayer Janus membrane for advanced photothermal water desalination. ACS Energy Letters, 2018, 3(5): 1165–1171

DOI

160
Chen J, Feng J, Li Z, Xu P, Wang X, Yin W, Wang M, Ge X, Yin Y. Space-confined seeded growth of black silver nanostructures for solar steam generation. Nano Letters, 2019, 19(1): 400–407

DOI

161
Avci A H, Santoro S, Politano A, Propato M, Micieli M, Aquino M, Wenjuan Z, Curcio E. Photothermal sweeping gas membrane distillation and reverse electrodialysis for light-to-heat-to-power conversion. Chemical Engineering and Processing, 2021, 164: 108382

DOI

162
Ye H, Li X, Deng L, Li P, Zhang T, Wang X, Hsiao B S. Silver nanoparticle-enabled photothermal nanofibrous membrane for light-driven membrane distillation. Industrial & Engineering Chemistry Research, 2019, 58(8): 3269–3281

DOI

163
Wu D, Zhao C, Xu Y, Zhang X, Yang L, Zhang Y, Gao Z, Song Y Y. Modulating solar energy harvesting on TiO2 nanochannel membranes by plasmonic nanoparticle assembly for desalination of contaminated seawater. ACS Applied Nano Materials, 2020, 3(11): 10895–10904

DOI

164
Lin Y, Chen Z, Fang L, Meng M, Liu Z, Di Y, Cai W, Huang S, Gan Z. Copper nanoparticles with near-unity, omnidirectional, and broadband optical absorption for highly efficient solar steam generation. Nanotechnology, 2018, 30(1): 015402

DOI

165
Zhang L, Xing J, Wen X, Chai J, Wang S, Xiong Q. Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination. Nanoscale, 2017, 9(35): 12843–12849

DOI

166
Shang M, Li N, Zhang S, Zhao T, Zhang C, Liu C, Li H, Wang Z. Full-spectrum solar-to-heat conversion membrane with interfacial plasmonic heating ability for high-efficiency desalination of seawater. ACS Applied Energy Materials, 2018, 1(1): 56–61

DOI

167
Xu Z, Rao N, Tang C Y, Law W C. Seawater desalination by interfacial solar vapor generation method using plasmonic heating nanocomposites. Micromachines, 2020, 11(9): 867

DOI

168
Guo Z, Ming X, Wang G, Hou B, Liu X, Mei T, Li J, Wang J, Wang X. Super-hydrophilic copper sulfide films as light absorbers for efficient solar steam generation under one sun illumination. Semiconductor Science and Technology, 2018, 33(2): 25008

DOI

169
Shi Y, Li R, Shi L, Ahmed E, Jin Y, Wang P. A robust CuCr2O4/SiO2 composite photothermal material with underwater black property and extremely high thermal stability for solar-driven water evaporation. Advanced Sustainable Systems, 2018, 2: 1–11

170
Kaur M, Ishii S, Shinde S L, Nagao T. All-ceramic microfibrous solar steam generator: TiN plasmonic nanoparticle-loaded transparent microfibers. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8523–8528

DOI

171
Bian Y, Tang K, Xu Z, Ma J, Shen Y, Hao L, Chen X, Nie K, Li J, Ma T. . Highly efficient solar steam generation by hybrid plasmonic structured TiN/mesoporous anodized alumina membrane. Journal of Materials Research, 2018, 33(22): 3857–3869

DOI

172
Traver E, Karaballi R A, Monfared Y E, Daurie H, Gagnon G A, Dasog M. TiN, ZrN, and HfN nanoparticles on nanoporous aluminum oxide membranes for solar-driven water evaporation and desalination. ACS Applied Nano Materials, 2020, 3(3): 2787–2794

DOI

173
KaurMIshiiSShindeS LNagaoT. All-ceramic solar-driven water purifier based on anodized aluminum oxide and plasmonic titanium nitride. Optics InfoBase Conference Papers, 2018, Part F125-: 1–8

174
Farid M U, Kharraz J A, Wang P, An A K. High-efficiency solar-driven water desalination using a thermally isolated plasmonic membrane. Journal of Cleaner Production, 2020, 271: 122684

DOI

175
Farid M U, Kharraz J A, An A K. Plasmonic titanium nitride nano-enabled membranes with high structural stability for efficient photothermal desalination. ACS Applied Materials & Interfaces, 2021, 13(3): 3805–3815

DOI

176
Chala T F, Wu C M, Chou M H, Guo Z L. Melt electrospun reduced tungsten oxide/polylactic acid fiber membranes as a photothermal material for light-driven interfacial water evaporation. ACS Applied Materials & Interfaces, 2018, 10(34): 28955–28962

DOI

177
Cheng X, Bai X, Yang J, Zhu X M, Wang J. Titanium oxynitride spheres with broad plasmon resonance for solar seawater desalination. ACS Applied Materials & Interfaces, 2022, 14(25): 28769–28780

DOI

178
Li G, Law W C, Chan K C. Floating, highly efficient, and scalable graphene membranes for seawater desalination using solar energy. Green Chemistry, 2018, 20(16): 3689–3695

DOI

179
Zhao J, Yang Y, Yang C, Tian Y, Han Y, Liu J, Yin X, Que W. A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(33): 16196–16204

DOI

180
Zha X J, Zhao X, Pu J H, Tang L S, Ke K, Bao R Y, Bai L, Liu Z Y, Yang M B, Yang W. Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification. ACS Applied Materials & Interfaces, 2019, 11(40): 36589–36597

DOI

181
Wang L, Shang J, Yang G, Ma Y, Kou L, Liu D, Yin H, Hegh D, Razal J, Lei W. 2D higher-metal nitride nanosheets for solar steam generation. Small, 2022, 2201770(28): 2–9

DOI

182
Behera S, Kim C, Kim K. Solar steam generation and desalination using ultra-broadband absorption in plasmonic alumina nanowire haze structure-graphene oxide-gold nanoparticle composite. Langmuir, 2020, 36(42): 12494–12503

DOI

183
Liu Y, Lou J, Ni M, Song C, Wu J, Dasgupta N P, Tao P, Shang W, Deng T. Bioinspired bifunctional membrane for efficient clean water generation. ACS Applied Materials & Interfaces, 2016, 8(1): 772–779

DOI

184
Huang J, He Y, Wang L, Huang Y, Jiang B. Bifunctional Au@TiO2 core-shell nanoparticle films for clean water generation by photocatalysis and solar evaporation. Energy Conversion and Management, 2017, 132: 452–459

DOI

185
Goharshadi K, Sajjadi S A, Goharshadi E K, Mehrkhah R. Highly efficient plasmonic wood/Ag/Pd photoabsorber in interfacial solar steam generation. Materials Research Bulletin, 2022, 154: 111916

DOI

186
Zhu L, Li J, Zhong L, Zhang L, Zhou M, Chen H, Hou Y, Zheng Y. Excellent dual-photothermal freshwater collector with high performance in large-scale evaporation. Nano Energy, 2022, 100: 107441

DOI

187
Gao M, Connor P K N, Ho G W. Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy & Environmental Science, 2016, 9(10): 3151–3160

DOI

188
Awad F S, Kiriarachchi H D, Abouzeid K M, Özgür Ü, El-Shall M S. Plasmonic graphene polyurethane nanocomposites for efficient solar water desalination. ACS Applied Energy Materials, 2018, 1(3): 976–985

DOI

189
Yi L, Ci S, Luo S, Shao P, Hou Y, Wen Z. Scalable and low-cost synthesis of black amorphous Al-Ti-O nanostructure for high-efficient photothermal desalination. Nano Energy, 2017, 41: 600–608

DOI

190
Yang Y, Han Y, Zhao J, Que W. 2D/1D MXene/MWCNT hybrid membrane-based evaporator for solar desalination. Materials (Basel), 2022, 15(3): 1–7

DOI

191
Chen J, Pei J, Zhao H. Effect of oxygen plasma treatment on the structure and mechanical properties of bilayer graphene studied by molecular dynamics simulation. Journal of Physical Chemistry C, 2021, 125(35): 19345–19352

DOI

192
MontgomeryD C. Design and Analysis of Experiments. 9th ed. United States: John Wiley & Sons, 2017

193
Lau W J, Gray S, Matsuura T, Emadzadeh D, Chen J P, Ismail A F. A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches. Water Research, 2015, 80: 306–324

DOI

194
Marchetti P, Jimenez Solomon M F, Szekely G, Livingston A G. Molecular separation with organic solvent nanofiltration: a critical review. Chemical Reviews, 2014, 114(21): 10735–10806

DOI

195
Zha S, Gusnawan P, Lin J, Zhang G, Liu N, Yu J. Integrating a novel TS-af-HFM NF process for portable treatment of oilfield produced water. Chemical Engineering Journal, 2017, 311: 203–208

DOI

196
Harpale A, Chew H B. Hydrogen-plasma patterning of multilayer graphene: mechanisms and modeling. Carbon, 2017, 117: 82–91

DOI

197
Liu L, Xie D, Wu M, Yang X, Xu Z, Wang W, Bai X, Wang E. Controlled oxidative functionalization of monolayer graphene by water-vapor plasma etching. Carbon, 2012, 50(8): 3039–3044

DOI

198
Huang L, Pei J, Jiang H, Hu X. Water desalination under one sun using graphene-based material modified PTFE membrane. Desalination, 2018, 442: 1–7

DOI

199
Politano A, Argurio P, Di Profio G, Sanna V, Cupolillo A, Chakraborty S, Arafat H A, Curcio E. Photothermal membrane distillation for seawater desalination. Advanced Materials, 2017, 29(2): 1603504

DOI

200
Tan Y Z, Wang H, Han L, Tanis-Kanbur M B, Pranav M V, Chew J W. Photothermal-enhanced and fouling-resistant membrane for solar-assisted membrane distillation. Journal of Membrane Science, 2018, 565: 254–265

DOI

201
Hou B, Cui Z, Zhu X, Liu X, Wang G, Wang J, Mei T, Li J, Wang X. Functionalized carbon materials for efficient solar steam and electricity generation. Materials Chemistry and Physics, 2019, 222: 159–164

DOI

202
Zuo G, Wang R. Novel membrane surface modification to enhance anti-oil fouling property for membrane distillation application. Journal of Membrane Science, 2013, 447: 26–35

DOI

203
Reis R, Dumée L F, He L, She F, Orbell J D, Winther-Jensen B, Duke M C. Amine enrichment of thin-film composite membranes via low pressure plasma polymerization for antimicrobial adhesion. ACS Applied Materials & Interfaces, 2015, 7(27): 14644–14653

DOI

204
Abdel-Wahed M S, Hefny M M, Abd-Elmaksoud S, El-Liethy M A, Kamel M A, El-Kalliny A S, Hamza I A. Removal of chemical and microbial water pollutants by cold plasma combined with Ag/TiO2-rGO nanoparticles. Scientific Reports, 2022, 12(1): 1–14

DOI

205
Wu S, Xiong G, Yang H, Gong B, Tian Y, Xu C, Wang Y, Fisher T, Yan J, Cen K. . Multifunctional solar waterways: plasma-enabled self-cleaning nanoarchitectures for energy-efficient desalination. Advanced Energy Materials, 2019, 9(30): 1–11

DOI

206
Khoo Y S, Lau W J, Liang Y Y, Karaman M, Gürsoy M, Lai G S, Ismail A F. Rapid and eco-friendly technique for surface modification of TFC RO membrane for improved filtration performance. Journal of Environmental Chemical Engineering, 2021, 9(3): 105227

DOI

207
Liu F, Wang L, Li D, Liu Q, Deng B. A review: the effect of the microporous support during interfacial polymerization on the morphology and performances of a thin film composite membrane for liquid purification. RSC Advances, 2019, 9(61): 35417–35428

DOI

Outlines

/